ksz_common.c 28.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Microchip switch driver main logic
 *
5
 * Copyright (C) 2017-2018 Microchip Technology Inc.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
 */

#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>

#include "ksz_priv.h"

static const struct {
	int index;
	char string[ETH_GSTRING_LEN];
} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
	{ 0x00, "rx_hi" },
	{ 0x01, "rx_undersize" },
	{ 0x02, "rx_fragments" },
	{ 0x03, "rx_oversize" },
	{ 0x04, "rx_jabbers" },
	{ 0x05, "rx_symbol_err" },
	{ 0x06, "rx_crc_err" },
	{ 0x07, "rx_align_err" },
	{ 0x08, "rx_mac_ctrl" },
	{ 0x09, "rx_pause" },
	{ 0x0A, "rx_bcast" },
	{ 0x0B, "rx_mcast" },
	{ 0x0C, "rx_ucast" },
	{ 0x0D, "rx_64_or_less" },
	{ 0x0E, "rx_65_127" },
	{ 0x0F, "rx_128_255" },
	{ 0x10, "rx_256_511" },
	{ 0x11, "rx_512_1023" },
	{ 0x12, "rx_1024_1522" },
	{ 0x13, "rx_1523_2000" },
	{ 0x14, "rx_2001" },
	{ 0x15, "tx_hi" },
	{ 0x16, "tx_late_col" },
	{ 0x17, "tx_pause" },
	{ 0x18, "tx_bcast" },
	{ 0x19, "tx_mcast" },
	{ 0x1A, "tx_ucast" },
	{ 0x1B, "tx_deferred" },
	{ 0x1C, "tx_total_col" },
	{ 0x1D, "tx_exc_col" },
	{ 0x1E, "tx_single_col" },
	{ 0x1F, "tx_mult_col" },
	{ 0x80, "rx_total" },
	{ 0x81, "tx_total" },
	{ 0x82, "rx_discards" },
	{ 0x83, "tx_discards" },
};

static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
	u8 data;

	ksz_read8(dev, addr, &data);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	ksz_write8(dev, addr, data);
}

static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
	u32 data;

	ksz_read32(dev, addr, &data);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	ksz_write32(dev, addr, data);
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
	u32 addr;
	u8 data;

	addr = PORT_CTRL_ADDR(port, offset);
	ksz_read8(dev, addr, &data);

	if (set)
		data |= bits;
	else
		data &= ~bits;

	ksz_write8(dev, addr, data);
}

static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
			   u32 bits, bool set)
{
	u32 addr;
	u32 data;

	addr = PORT_CTRL_ADDR(port, offset);
	ksz_read32(dev, addr, &data);

	if (set)
		data |= bits;
	else
		data &= ~bits;

	ksz_write32(dev, addr, data);
}

static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u8 data;

	do {
		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
	struct ksz_device *dev = ds->priv;
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
	struct ksz_device *dev = ds->priv;
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void read_table(struct dsa_switch *ds, u32 *table)
{
	struct ksz_device *dev = ds->priv;

	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void write_table(struct dsa_switch *ds, u32 *table)
{
	struct ksz_device *dev = ds->priv;

	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u32 data;

	do {
		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u32 data;

	do {
		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

256
static int ksz9477_reset_switch(struct ksz_device *dev)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
{
	u8 data8;
	u16 data16;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

	/* set broadcast storm protection 10% rate */
	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
	data16 &= ~BROADCAST_STORM_RATE;
	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);

	return 0;
}

290
static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
{
	u8 data8;
	u16 data16;

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* set flow control */
	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
		       MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	/* configure MAC to 1G & RGMII mode */
	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
	data8 |= PORT_RGMII_ID_EG_ENABLE;
	data8 &= ~PORT_MII_NOT_1GBIT;
	data8 &= ~PORT_MII_SEL_M;
	data8 |= PORT_RGMII_SEL;
	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);

	/* clear pending interrupts */
	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

336
static void ksz9477_config_cpu_port(struct dsa_switch *ds)
337 338 339 340 341 342 343 344 345 346 347
{
	struct ksz_device *dev = ds->priv;
	int i;

	ds->num_ports = dev->port_cnt;

	for (i = 0; i < ds->num_ports; i++) {
		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
			dev->cpu_port = i;

			/* enable cpu port */
348
			ksz9477_port_setup(dev, i, true);
349 350 351 352
		}
	}
}

353
static int ksz9477_setup(struct dsa_switch *ds)
354 355 356 357 358 359 360 361 362
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
				       dev->num_vlans, GFP_KERNEL);
	if (!dev->vlan_cache)
		return -ENOMEM;

363
	ret = ksz9477_reset_switch(dev);
364 365 366 367 368 369 370 371
	if (ret) {
		dev_err(ds->dev, "failed to reset switch\n");
		return ret;
	}

	/* accept packet up to 2000bytes */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);

372
	ksz9477_config_cpu_port(ds);
373 374 375 376 377 378 379 380 381 382 383 384

	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

	/* start switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);

	return 0;
}

385 386
static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
						      int port)
387 388 389 390
{
	return DSA_TAG_PROTO_KSZ;
}

391
static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
392 393 394 395 396 397 398 399 400
{
	struct ksz_device *dev = ds->priv;
	u16 val = 0;

	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);

	return val;
}

401 402
static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
			       u16 val)
403 404 405 406 407 408 409 410 411 412 413 414 415 416
{
	struct ksz_device *dev = ds->priv;

	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);

	return 0;
}

static int ksz_enable_port(struct dsa_switch *ds, int port,
			   struct phy_device *phy)
{
	struct ksz_device *dev = ds->priv;

	/* setup slave port */
417
	ksz9477_port_setup(dev, port, false);
418 419 420 421 422 423 424 425 426 427 428 429 430

	return 0;
}

static void ksz_disable_port(struct dsa_switch *ds, int port,
			     struct phy_device *phy)
{
	struct ksz_device *dev = ds->priv;

	/* there is no port disable */
	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
}

431
static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
432
{
433 434 435
	if (sset != ETH_SS_STATS)
		return 0;

436 437 438
	return TOTAL_SWITCH_COUNTER_NUM;
}

439 440
static void ksz9477_get_strings(struct dsa_switch *ds, int port,
				u32 stringset, uint8_t *buf)
441 442 443
{
	int i;

444 445 446
	if (stringset != ETH_SS_STATS)
		return;

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
		       ETH_GSTRING_LEN);
	}
}

static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
				  uint64_t *buf)
{
	struct ksz_device *dev = ds->priv;
	int i;
	u32 data;
	int timeout;

	mutex_lock(&dev->stats_mutex);

	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
		data = MIB_COUNTER_READ;
		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

		timeout = 1000;
		do {
			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
				    &data);
			usleep_range(1, 10);
			if (!(data & MIB_COUNTER_READ))
				break;
		} while (timeout-- > 0);

		/* failed to read MIB. get out of loop */
		if (!timeout) {
			dev_dbg(dev->dev, "Failed to get MIB\n");
			break;
		}

		/* count resets upon read */
		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);

		dev->mib_value[i] += (uint64_t)data;
		buf[i] = dev->mib_value[i];
	}

	mutex_unlock(&dev->stats_mutex);
}

493 494
static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
				       u8 state)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
{
	struct ksz_device *dev = ds->priv;
	u8 data;

	ksz_pread8(dev, port, P_STP_CTRL, &data);
	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);

	switch (state) {
	case BR_STATE_DISABLED:
		data |= PORT_LEARN_DISABLE;
		break;
	case BR_STATE_LISTENING:
		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
		break;
	case BR_STATE_LEARNING:
		data |= PORT_RX_ENABLE;
		break;
	case BR_STATE_FORWARDING:
		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
		break;
	case BR_STATE_BLOCKING:
		data |= PORT_LEARN_DISABLE;
		break;
	default:
		dev_err(ds->dev, "invalid STP state: %d\n", state);
		return;
	}

	ksz_pwrite8(dev, port, P_STP_CTRL, data);
}

static void ksz_port_fast_age(struct dsa_switch *ds, int port)
{
	struct ksz_device *dev = ds->priv;
	u8 data8;

	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 |= SW_FAST_AGING;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	data8 &= ~SW_FAST_AGING;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
}

539 540
static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
				       bool flag)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
{
	struct ksz_device *dev = ds->priv;

	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
560
				 const struct switchdev_obj_port_vlan *vlan)
561 562 563 564 565 566
{
	/* nothing needed */

	return 0;
}

567 568
static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_vlan *vlan)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	struct ksz_device *dev = ds->priv;
	u32 vlan_table[3];
	u16 vid;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
		if (get_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to get vlan table\n");
			return;
		}

		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
		if (untagged)
			vlan_table[1] |= BIT(port);
		else
			vlan_table[1] &= ~BIT(port);
		vlan_table[1] &= ~(BIT(dev->cpu_port));

		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);

		if (set_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to set vlan table\n");
			return;
		}

		/* change PVID */
		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
	}
}

601 602
static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
				 const struct switchdev_obj_port_vlan *vlan)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
{
	struct ksz_device *dev = ds->priv;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 vid;
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
		if (get_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to get vlan table\n");
			return -ETIMEDOUT;
		}

		vlan_table[2] &= ~BIT(port);

		if (pvid == vid)
			pvid = 1;

		if (untagged)
			vlan_table[1] &= ~BIT(port);

		if (set_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to set vlan table\n");
			return -ETIMEDOUT;
		}
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

struct alu_struct {
	/* entry 1 */
	u8	is_static:1;
	u8	is_src_filter:1;
	u8	is_dst_filter:1;
	u8	prio_age:3;
	u32	_reserv_0_1:23;
	u8	mstp:3;
	/* entry 2 */
	u8	is_override:1;
	u8	is_use_fid:1;
	u32	_reserv_1_1:23;
	u8	port_forward:7;
	/* entry 3 & 4*/
	u32	_reserv_2_1:9;
	u8	fid:7;
	u8	mac[ETH_ALEN];
};

657 658
static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
				const unsigned char *addr, u16 vid)
659 660 661 662
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
663
	int ret = 0;
664 665 666 667

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
668 669
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
670 671
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

672 673
	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
674 675 676 677 678 679
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
680 681
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0) {
682 683 684 685 686 687 688 689 690 691
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	read_table(ds, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
692
	if (vid)
693
		alu_table[1] |= ALU_V_USE_FID;
694 695 696 697
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);
698 699 700 701 702 703

	write_table(ds, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
704 705 706
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to write ALU\n");
707 708 709

exit:
	mutex_unlock(&dev->alu_mutex);
710 711

	return ret;
712 713
}

714 715
static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
				const unsigned char *addr, u16 vid)
716 717 718 719 720 721 722 723 724
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
725 726
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
727 728
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

729 730
	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	write_table(ds, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

804 805
static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
				 dsa_fdb_dump_cb_t *cb, void *data)
806 807 808
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;
809
	u32 ksz_data;
810 811 812 813 814 815 816 817 818 819 820 821
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
822 823
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

		/* read ALU table */
		read_table(ds, alu_table);

		convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
840
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
841 842 843
			if (ret)
				goto exit;
		}
844
	} while (ksz_data & ALU_START);
845 846 847 848 849 850 851 852 853 854 855 856

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
857
				const struct switchdev_obj_port_mdb *mdb)
858 859 860 861 862
{
	/* nothing to do */
	return 0;
}

863 864
static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
				 const struct switchdev_obj_port_mdb *mdb)
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

	for (index = 0; index < dev->num_statics; index++) {
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		read_table(ds, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
T
Tristram Ha 已提交
895
			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
896
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
T
Tristram Ha 已提交
897
			    static_table[3] == mac_lo) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
	if (index == dev->num_statics)
		goto exit;

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	write_table(ds, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
}

933 934
static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_mdb *mdb)
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

	for (index = 0; index < dev->num_statics; index++) {
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
		if (ret < 0) {
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		read_table(ds, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

T
Tristram Ha 已提交
968
			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
969
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
T
Tristram Ha 已提交
970
			    static_table[3] == mac_lo) {
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
	if (index == dev->num_statics) {
		ret = -EINVAL;
		goto exit;
	}

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	write_table(ds, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

1010 1011 1012
static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
				   struct dsa_mall_mirror_tc_entry *mirror,
				   bool ingress)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
{
	struct ksz_device *dev = ds->priv;

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

1032 1033
static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
				    struct dsa_mall_mirror_tc_entry *mirror)
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	struct ksz_device *dev = ds->priv;
	u8 data;

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);

	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);

	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

static const struct dsa_switch_ops ksz_switch_ops = {
1051 1052 1053 1054
	.get_tag_protocol	= ksz9477_get_tag_protocol,
	.setup			= ksz9477_setup,
	.phy_read		= ksz9477_phy_read16,
	.phy_write		= ksz9477_phy_write16,
1055 1056
	.port_enable		= ksz_enable_port,
	.port_disable		= ksz_disable_port,
1057
	.get_strings		= ksz9477_get_strings,
1058 1059
	.get_ethtool_stats	= ksz_get_ethtool_stats,
	.get_sset_count		= ksz_sset_count,
1060
	.port_stp_state_set	= ksz9477_port_stp_state_set,
1061
	.port_fast_age		= ksz_port_fast_age,
1062
	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1063
	.port_vlan_prepare	= ksz_port_vlan_prepare,
1064 1065 1066 1067 1068
	.port_vlan_add		= ksz9477_port_vlan_add,
	.port_vlan_del		= ksz9477_port_vlan_del,
	.port_fdb_dump		= ksz9477_port_fdb_dump,
	.port_fdb_add		= ksz9477_port_fdb_add,
	.port_fdb_del		= ksz9477_port_fdb_del,
1069
	.port_mdb_prepare       = ksz_port_mdb_prepare,
1070 1071 1072 1073
	.port_mdb_add           = ksz9477_port_mdb_add,
	.port_mdb_del           = ksz9477_port_mdb_del,
	.port_mirror_add	= ksz9477_port_mirror_add,
	.port_mirror_del	= ksz9477_port_mirror_del,
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
};

struct ksz_chip_data {
	u32 chip_id;
	const char *dev_name;
	int num_vlans;
	int num_alus;
	int num_statics;
	int cpu_ports;
	int port_cnt;
};

1086
static const struct ksz_chip_data ksz9477_switch_chips[] = {
1087 1088 1089 1090 1091 1092 1093 1094 1095
	{
		.chip_id = 0x00947700,
		.dev_name = "KSZ9477",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
	},
1096 1097 1098 1099 1100 1101 1102 1103 1104
	{
		.chip_id = 0x00989700,
		.dev_name = "KSZ9897",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
	},
1105 1106
};

1107
static int ksz9477_switch_init(struct ksz_device *dev)
1108 1109 1110 1111 1112
{
	int i;

	dev->ds->ops = &ksz_switch_ops;

1113 1114
	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

		if (dev->chip_id == chip->chip_id) {
			dev->name = chip->dev_name;
			dev->num_vlans = chip->num_vlans;
			dev->num_alus = chip->num_alus;
			dev->num_statics = chip->num_statics;
			dev->port_cnt = chip->port_cnt;
			dev->cpu_ports = chip->cpu_ports;

			break;
		}
	}

	/* no switch found */
	if (!dev->port_cnt)
		return -ENODEV;

	return 0;
}

struct ksz_device *ksz_switch_alloc(struct device *base,
				    const struct ksz_io_ops *ops,
				    void *priv)
{
	struct dsa_switch *ds;
	struct ksz_device *swdev;

	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
	if (!ds)
		return NULL;

	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
	if (!swdev)
		return NULL;

	ds->priv = swdev;
	swdev->dev = base;

	swdev->ds = ds;
	swdev->priv = priv;
	swdev->ops = ops;

	return swdev;
}
EXPORT_SYMBOL(ksz_switch_alloc);

int ksz_switch_detect(struct ksz_device *dev)
{
	u8 data8;
	u32 id32;
	int ret;

	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

	/* read chip id */
	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
	if (ret)
		return ret;

	dev->chip_id = id32;

	return 0;
}
EXPORT_SYMBOL(ksz_switch_detect);

int ksz_switch_register(struct ksz_device *dev)
{
	int ret;

	if (dev->pdata)
		dev->chip_id = dev->pdata->chip_id;

1195 1196 1197 1198 1199
	mutex_init(&dev->reg_mutex);
	mutex_init(&dev->stats_mutex);
	mutex_init(&dev->alu_mutex);
	mutex_init(&dev->vlan_mutex);

1200 1201 1202
	if (ksz_switch_detect(dev))
		return -EINVAL;

1203
	ret = ksz9477_switch_init(dev);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (ret)
		return ret;

	return dsa_register_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_register);

void ksz_switch_remove(struct ksz_device *dev)
{
	dsa_unregister_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_remove);

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
MODULE_LICENSE("GPL");