ksz_common.c 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*
 * Microchip switch driver main logic
 *
 * Copyright (C) 2017
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>

#include "ksz_priv.h"

static const struct {
	int index;
	char string[ETH_GSTRING_LEN];
} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
	{ 0x00, "rx_hi" },
	{ 0x01, "rx_undersize" },
	{ 0x02, "rx_fragments" },
	{ 0x03, "rx_oversize" },
	{ 0x04, "rx_jabbers" },
	{ 0x05, "rx_symbol_err" },
	{ 0x06, "rx_crc_err" },
	{ 0x07, "rx_align_err" },
	{ 0x08, "rx_mac_ctrl" },
	{ 0x09, "rx_pause" },
	{ 0x0A, "rx_bcast" },
	{ 0x0B, "rx_mcast" },
	{ 0x0C, "rx_ucast" },
	{ 0x0D, "rx_64_or_less" },
	{ 0x0E, "rx_65_127" },
	{ 0x0F, "rx_128_255" },
	{ 0x10, "rx_256_511" },
	{ 0x11, "rx_512_1023" },
	{ 0x12, "rx_1024_1522" },
	{ 0x13, "rx_1523_2000" },
	{ 0x14, "rx_2001" },
	{ 0x15, "tx_hi" },
	{ 0x16, "tx_late_col" },
	{ 0x17, "tx_pause" },
	{ 0x18, "tx_bcast" },
	{ 0x19, "tx_mcast" },
	{ 0x1A, "tx_ucast" },
	{ 0x1B, "tx_deferred" },
	{ 0x1C, "tx_total_col" },
	{ 0x1D, "tx_exc_col" },
	{ 0x1E, "tx_single_col" },
	{ 0x1F, "tx_mult_col" },
	{ 0x80, "rx_total" },
	{ 0x81, "tx_total" },
	{ 0x82, "rx_discards" },
	{ 0x83, "tx_discards" },
};

static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
	u8 data;

	ksz_read8(dev, addr, &data);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	ksz_write8(dev, addr, data);
}

static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
	u32 data;

	ksz_read32(dev, addr, &data);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	ksz_write32(dev, addr, data);
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
	u32 addr;
	u8 data;

	addr = PORT_CTRL_ADDR(port, offset);
	ksz_read8(dev, addr, &data);

	if (set)
		data |= bits;
	else
		data &= ~bits;

	ksz_write8(dev, addr, data);
}

static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
			   u32 bits, bool set)
{
	u32 addr;
	u32 data;

	addr = PORT_CTRL_ADDR(port, offset);
	ksz_read32(dev, addr, &data);

	if (set)
		data |= bits;
	else
		data &= ~bits;

	ksz_write32(dev, addr, data);
}

static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u8 data;

	do {
		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
	struct ksz_device *dev = ds->priv;
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
	struct ksz_device *dev = ds->priv;
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void read_table(struct dsa_switch *ds, u32 *table)
{
	struct ksz_device *dev = ds->priv;

	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void write_table(struct dsa_switch *ds, u32 *table)
{
	struct ksz_device *dev = ds->priv;

	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u32 data;

	do {
		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u32 data;

	do {
		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int ksz_reset_switch(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	u8 data8;
	u16 data16;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

	/* set broadcast storm protection 10% rate */
	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
	data16 &= ~BROADCAST_STORM_RATE;
	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);

	return 0;
}

static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
	u8 data8;
	u16 data16;

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* set flow control */
	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
		       MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	/* configure MAC to 1G & RGMII mode */
	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
	data8 |= PORT_RGMII_ID_EG_ENABLE;
	data8 &= ~PORT_MII_NOT_1GBIT;
	data8 &= ~PORT_MII_SEL_M;
	data8 |= PORT_RGMII_SEL;
	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);

	/* clear pending interrupts */
	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

static void ksz_config_cpu_port(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	int i;

	ds->num_ports = dev->port_cnt;

	for (i = 0; i < ds->num_ports; i++) {
		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
			dev->cpu_port = i;

			/* enable cpu port */
			port_setup(dev, i, true);
		}
	}
}

static int ksz_setup(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
				       dev->num_vlans, GFP_KERNEL);
	if (!dev->vlan_cache)
		return -ENOMEM;

	ret = ksz_reset_switch(ds);
	if (ret) {
		dev_err(ds->dev, "failed to reset switch\n");
		return ret;
	}

	/* accept packet up to 2000bytes */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);

	ksz_config_cpu_port(ds);

	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

	/* start switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);

	return 0;
}

397 398
static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
						  int port)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	return DSA_TAG_PROTO_KSZ;
}

static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
	struct ksz_device *dev = ds->priv;
	u16 val = 0;

	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);

	return val;
}

static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct ksz_device *dev = ds->priv;

	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);

	return 0;
}

static int ksz_enable_port(struct dsa_switch *ds, int port,
			   struct phy_device *phy)
{
	struct ksz_device *dev = ds->priv;

	/* setup slave port */
	port_setup(dev, port, false);

	return 0;
}

static void ksz_disable_port(struct dsa_switch *ds, int port,
			     struct phy_device *phy)
{
	struct ksz_device *dev = ds->priv;

	/* there is no port disable */
	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
}

442
static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
443
{
444 445 446
	if (sset != ETH_SS_STATS)
		return 0;

447 448 449
	return TOTAL_SWITCH_COUNTER_NUM;
}

450 451
static void ksz_get_strings(struct dsa_switch *ds, int port,
			    u32 stringset, uint8_t *buf)
452 453 454
{
	int i;

455 456 457
	if (stringset != ETH_SS_STATS)
		return;

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
		       ETH_GSTRING_LEN);
	}
}

static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
				  uint64_t *buf)
{
	struct ksz_device *dev = ds->priv;
	int i;
	u32 data;
	int timeout;

	mutex_lock(&dev->stats_mutex);

	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
		data = MIB_COUNTER_READ;
		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

		timeout = 1000;
		do {
			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
				    &data);
			usleep_range(1, 10);
			if (!(data & MIB_COUNTER_READ))
				break;
		} while (timeout-- > 0);

		/* failed to read MIB. get out of loop */
		if (!timeout) {
			dev_dbg(dev->dev, "Failed to get MIB\n");
			break;
		}

		/* count resets upon read */
		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);

		dev->mib_value[i] += (uint64_t)data;
		buf[i] = dev->mib_value[i];
	}

	mutex_unlock(&dev->stats_mutex);
}

static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
	struct ksz_device *dev = ds->priv;
	u8 data;

	ksz_pread8(dev, port, P_STP_CTRL, &data);
	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);

	switch (state) {
	case BR_STATE_DISABLED:
		data |= PORT_LEARN_DISABLE;
		break;
	case BR_STATE_LISTENING:
		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
		break;
	case BR_STATE_LEARNING:
		data |= PORT_RX_ENABLE;
		break;
	case BR_STATE_FORWARDING:
		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
		break;
	case BR_STATE_BLOCKING:
		data |= PORT_LEARN_DISABLE;
		break;
	default:
		dev_err(ds->dev, "invalid STP state: %d\n", state);
		return;
	}

	ksz_pwrite8(dev, port, P_STP_CTRL, data);
}

static void ksz_port_fast_age(struct dsa_switch *ds, int port)
{
	struct ksz_device *dev = ds->priv;
	u8 data8;

	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 |= SW_FAST_AGING;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	data8 &= ~SW_FAST_AGING;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
}

static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
{
	struct ksz_device *dev = ds->priv;

	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
569
				 const struct switchdev_obj_port_vlan *vlan)
570 571 572 573 574 575 576
{
	/* nothing needed */

	return 0;
}

static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
577
			      const struct switchdev_obj_port_vlan *vlan)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
{
	struct ksz_device *dev = ds->priv;
	u32 vlan_table[3];
	u16 vid;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
		if (get_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to get vlan table\n");
			return;
		}

		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
		if (untagged)
			vlan_table[1] |= BIT(port);
		else
			vlan_table[1] &= ~BIT(port);
		vlan_table[1] &= ~(BIT(dev->cpu_port));

		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);

		if (set_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to set vlan table\n");
			return;
		}

		/* change PVID */
		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
	}
}

static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
			     const struct switchdev_obj_port_vlan *vlan)
{
	struct ksz_device *dev = ds->priv;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 vid;
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
		if (get_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to get vlan table\n");
			return -ETIMEDOUT;
		}

		vlan_table[2] &= ~BIT(port);

		if (pvid == vid)
			pvid = 1;

		if (untagged)
			vlan_table[1] &= ~BIT(port);

		if (set_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to set vlan table\n");
			return -ETIMEDOUT;
		}
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

struct alu_struct {
	/* entry 1 */
	u8	is_static:1;
	u8	is_src_filter:1;
	u8	is_dst_filter:1;
	u8	prio_age:3;
	u32	_reserv_0_1:23;
	u8	mstp:3;
	/* entry 2 */
	u8	is_override:1;
	u8	is_use_fid:1;
	u32	_reserv_1_1:23;
	u8	port_forward:7;
	/* entry 3 & 4*/
	u32	_reserv_2_1:9;
	u8	fid:7;
	u8	mac[ETH_ALEN];
};

666 667
static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
			    const unsigned char *addr, u16 vid)
668 669 670 671
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
672
	int ret = 0;
673 674 675 676

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
677 678
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
679 680
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

681 682
	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
683 684 685 686 687 688
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
689 690
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0) {
691 692 693 694 695 696 697 698 699 700
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	read_table(ds, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
701
	if (vid)
702
		alu_table[1] |= ALU_V_USE_FID;
703 704 705 706
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);
707 708 709 710 711 712

	write_table(ds, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
713 714 715
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to write ALU\n");
716 717 718

exit:
	mutex_unlock(&dev->alu_mutex);
719 720

	return ret;
721 722 723
}

static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
724
			    const unsigned char *addr, u16 vid)
725 726 727 728 729 730 731 732 733
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
734 735
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
736 737
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

738 739
	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	write_table(ds, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
814
			     dsa_fdb_dump_cb_t *cb, void *data)
815 816 817
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;
818
	u32 ksz_data;
819 820 821 822 823 824 825 826 827 828 829 830
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
831 832
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

		/* read ALU table */
		read_table(ds, alu_table);

		convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
849
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
850 851 852
			if (ret)
				goto exit;
		}
853
	} while (ksz_data & ALU_START);
854 855 856 857 858 859 860 861 862 863 864 865

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
866
				const struct switchdev_obj_port_mdb *mdb)
867 868 869 870 871 872
{
	/* nothing to do */
	return 0;
}

static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
873
			     const struct switchdev_obj_port_mdb *mdb)
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

	for (index = 0; index < dev->num_statics; index++) {
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		read_table(ds, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    (static_table[3] == mac_lo)) {
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
	if (index == dev->num_statics)
		goto exit;

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	write_table(ds, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
}

static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_mdb *mdb)
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

	for (index = 0; index < dev->num_statics; index++) {
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
		if (ret < 0) {
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		read_table(ds, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    (static_table[3] == mac_lo)) {
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
	if (index == dev->num_statics) {
		ret = -EINVAL;
		goto exit;
	}

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	write_table(ds, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
			       struct dsa_mall_mirror_tc_entry *mirror,
			       bool ingress)
{
	struct ksz_device *dev = ds->priv;

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
				struct dsa_mall_mirror_tc_entry *mirror)
{
	struct ksz_device *dev = ds->priv;
	u8 data;

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);

	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);

	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

static const struct dsa_switch_ops ksz_switch_ops = {
	.get_tag_protocol	= ksz_get_tag_protocol,
	.setup			= ksz_setup,
	.phy_read		= ksz_phy_read16,
	.phy_write		= ksz_phy_write16,
	.port_enable		= ksz_enable_port,
	.port_disable		= ksz_disable_port,
	.get_strings		= ksz_get_strings,
	.get_ethtool_stats	= ksz_get_ethtool_stats,
	.get_sset_count		= ksz_sset_count,
	.port_stp_state_set	= ksz_port_stp_state_set,
	.port_fast_age		= ksz_port_fast_age,
	.port_vlan_filtering	= ksz_port_vlan_filtering,
	.port_vlan_prepare	= ksz_port_vlan_prepare,
	.port_vlan_add		= ksz_port_vlan_add,
	.port_vlan_del		= ksz_port_vlan_del,
	.port_fdb_dump		= ksz_port_fdb_dump,
	.port_fdb_add		= ksz_port_fdb_add,
	.port_fdb_del		= ksz_port_fdb_del,
	.port_mdb_prepare       = ksz_port_mdb_prepare,
	.port_mdb_add           = ksz_port_mdb_add,
	.port_mdb_del           = ksz_port_mdb_del,
	.port_mirror_add	= ksz_port_mirror_add,
	.port_mirror_del	= ksz_port_mirror_del,
};

struct ksz_chip_data {
	u32 chip_id;
	const char *dev_name;
	int num_vlans;
	int num_alus;
	int num_statics;
	int cpu_ports;
	int port_cnt;
};

static const struct ksz_chip_data ksz_switch_chips[] = {
	{
		.chip_id = 0x00947700,
		.dev_name = "KSZ9477",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
	},
1105 1106 1107 1108 1109 1110 1111 1112 1113
	{
		.chip_id = 0x00989700,
		.dev_name = "KSZ9897",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
	},
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
};

static int ksz_switch_init(struct ksz_device *dev)
{
	int i;

	mutex_init(&dev->reg_mutex);
	mutex_init(&dev->stats_mutex);
	mutex_init(&dev->alu_mutex);
	mutex_init(&dev->vlan_mutex);

	dev->ds->ops = &ksz_switch_ops;

	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
		const struct ksz_chip_data *chip = &ksz_switch_chips[i];

		if (dev->chip_id == chip->chip_id) {
			dev->name = chip->dev_name;
			dev->num_vlans = chip->num_vlans;
			dev->num_alus = chip->num_alus;
			dev->num_statics = chip->num_statics;
			dev->port_cnt = chip->port_cnt;
			dev->cpu_ports = chip->cpu_ports;

			break;
		}
	}

	/* no switch found */
	if (!dev->port_cnt)
		return -ENODEV;

	return 0;
}

struct ksz_device *ksz_switch_alloc(struct device *base,
				    const struct ksz_io_ops *ops,
				    void *priv)
{
	struct dsa_switch *ds;
	struct ksz_device *swdev;

	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
	if (!ds)
		return NULL;

	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
	if (!swdev)
		return NULL;

	ds->priv = swdev;
	swdev->dev = base;

	swdev->ds = ds;
	swdev->priv = priv;
	swdev->ops = ops;

	return swdev;
}
EXPORT_SYMBOL(ksz_switch_alloc);

int ksz_switch_detect(struct ksz_device *dev)
{
	u8 data8;
	u32 id32;
	int ret;

	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

	/* read chip id */
	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
	if (ret)
		return ret;

	dev->chip_id = id32;

	return 0;
}
EXPORT_SYMBOL(ksz_switch_detect);

int ksz_switch_register(struct ksz_device *dev)
{
	int ret;

	if (dev->pdata)
		dev->chip_id = dev->pdata->chip_id;

	if (ksz_switch_detect(dev))
		return -EINVAL;

	ret = ksz_switch_init(dev);
	if (ret)
		return ret;

	return dsa_register_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_register);

void ksz_switch_remove(struct ksz_device *dev)
{
	dsa_unregister_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_remove);

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
MODULE_LICENSE("GPL");