onenand_base.c 69.9 KB
Newer Older
1 2 3
/*
 *  linux/drivers/mtd/onenand/onenand_base.c
 *
4
 *  Copyright (C) 2005-2007 Samsung Electronics
5 6
 *  Kyungmin Park <kyungmin.park@samsung.com>
 *
7 8 9 10 11
 *  Credits:
 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
 *	auto-placement support, read-while load support, various fixes
 *	Copyright (C) Nokia Corporation, 2007
 *
12 13 14 15 16 17 18 19
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/sched.h>
21
#include <linux/interrupt.h>
22
#include <linux/jiffies.h>
23 24 25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

/**
 * onenand_oob_64 - oob info for large (2KB) page
 */
32
static struct nand_ecclayout onenand_oob_64 = {
33 34 35 36 37 38 39 40 41
	.eccbytes	= 20,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		40, 41, 42, 43, 44,
		56, 57, 58, 59, 60,
		},
	.oobfree	= {
		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42 43
		{34, 3}, {46, 2}, {50, 3}, {62, 2}
	}
44 45 46 47 48
};

/**
 * onenand_oob_32 - oob info for middle (1KB) page
 */
49
static struct nand_ecclayout onenand_oob_32 = {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	.eccbytes	= 10,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		},
	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};

static const unsigned char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
};

/**
 * onenand_readw - [OneNAND Interface] Read OneNAND register
 * @param addr		address to read
 *
 * Read OneNAND register
 */
static unsigned short onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

/**
 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 * @param value		value to write
 * @param addr		address to write
 *
 * Write OneNAND register with value
 */
static void onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

/**
 * onenand_block_address - [DEFAULT] Get block address
94
 * @param this		onenand chip data structure
95 96 97 98 99
 * @param block		the block
 * @return		translated block address if DDP, otherwise same
 *
 * Setup Start Address 1 Register (F100h)
 */
100
static int onenand_block_address(struct onenand_chip *this, int block)
101
{
102 103 104
	/* Device Flash Core select, NAND Flash Block Address */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105 106 107 108 109 110

	return block;
}

/**
 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111
 * @param this		onenand chip data structure
112 113 114 115 116
 * @param block		the block
 * @return		set DBS value if DDP, otherwise 0
 *
 * Setup Start Address 2 Register (F101h) for DDP
 */
117
static int onenand_bufferram_address(struct onenand_chip *this, int block)
118
{
119 120 121
	/* Device BufferRAM Select */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1;
122

123
	return ONENAND_DDP_CHIP0;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

/**
 * onenand_page_address - [DEFAULT] Get page address
 * @param page		the page address
 * @param sector	the sector address
 * @return		combined page and sector address
 *
 * Setup Start Address 8 Register (F107h)
 */
static int onenand_page_address(int page, int sector)
{
	/* Flash Page Address, Flash Sector Address */
	int fpa, fsa;

	fpa = page & ONENAND_FPA_MASK;
	fsa = sector & ONENAND_FSA_MASK;

	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}

/**
 * onenand_buffer_address - [DEFAULT] Get buffer address
 * @param dataram1	DataRAM index
 * @param sectors	the sector address
 * @param count		the number of sectors
 * @return		the start buffer value
 *
 * Setup Start Buffer Register (F200h)
 */
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
	int bsa, bsc;

	/* BufferRAM Sector Address */
	bsa = sectors & ONENAND_BSA_MASK;

	if (dataram1)
		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
	else
		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */

	/* BufferRAM Sector Count */
	bsc = count & ONENAND_BSC_MASK;

	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}

172 173 174 175 176 177 178 179 180 181 182 183
/**
 * onenand_get_density - [DEFAULT] Get OneNAND density
 * @param dev_id	OneNAND device ID
 *
 * Get OneNAND density from device ID
 */
static inline int onenand_get_density(int dev_id)
{
	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	return (density & ONENAND_DEVICE_DENSITY_MASK);
}

184 185 186 187 188 189 190 191 192 193 194 195 196
/**
 * onenand_command - [DEFAULT] Send command to OneNAND device
 * @param mtd		MTD device structure
 * @param cmd		the command to be sent
 * @param addr		offset to read from or write to
 * @param len		number of bytes to read or write
 *
 * Send command to OneNAND device. This function is used for middle/large page
 * devices (1KB/2KB Bytes per page)
 */
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
	struct onenand_chip *this = mtd->priv;
197
	int value, block, page;
198 199 200 201 202 203

	/* Address translation */
	switch (cmd) {
	case ONENAND_CMD_UNLOCK:
	case ONENAND_CMD_LOCK:
	case ONENAND_CMD_LOCK_TIGHT:
204
	case ONENAND_CMD_UNLOCK_ALL:
205 206 207 208 209 210
		block = -1;
		page = -1;
		break;

	case ONENAND_CMD_ERASE:
	case ONENAND_CMD_BUFFERRAM:
211
	case ONENAND_CMD_OTP_ACCESS:
212 213 214 215 216 217 218
		block = (int) (addr >> this->erase_shift);
		page = -1;
		break;

	default:
		block = (int) (addr >> this->erase_shift);
		page = (int) (addr >> this->page_shift);
219 220 221 222 223 224 225 226 227

		if (ONENAND_IS_2PLANE(this)) {
			/* Make the even block number */
			block &= ~1;
			/* Is it the odd plane? */
			if (addr & this->writesize)
				block++;
			page >>= 1;
		}
228 229 230 231 232 233 234
		page &= this->page_mask;
		break;
	}

	/* NOTE: The setting order of the registers is very important! */
	if (cmd == ONENAND_CMD_BUFFERRAM) {
		/* Select DataRAM for DDP */
235
		value = onenand_bufferram_address(this, block);
236 237
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);

238 239 240 241 242 243
		if (ONENAND_IS_2PLANE(this))
			/* It is always BufferRAM0 */
			ONENAND_SET_BUFFERRAM0(this);
		else
			/* Switch to the next data buffer */
			ONENAND_SET_NEXT_BUFFERRAM(this);
244 245 246 247 248 249

		return 0;
	}

	if (block != -1) {
		/* Write 'DFS, FBA' of Flash */
250
		value = onenand_block_address(this, block);
251
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
252

253 254 255
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
256 257 258
	}

	if (page != -1) {
259 260
		/* Now we use page size operation */
		int sectors = 4, count = 4;
261 262 263 264 265 266 267 268 269
		int dataram;

		switch (cmd) {
		case ONENAND_CMD_READ:
		case ONENAND_CMD_READOOB:
			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
			break;

		default:
270 271
			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
				cmd = ONENAND_CMD_2X_PROG;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
			dataram = ONENAND_CURRENT_BUFFERRAM(this);
			break;
		}

		/* Write 'FPA, FSA' of Flash */
		value = onenand_page_address(page, sectors);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);

		/* Write 'BSA, BSC' of DataRAM */
		value = onenand_buffer_address(dataram, sectors, count);
		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
	}

	/* Interrupt clear */
	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);

	/* Write command */
	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);

	return 0;
}

/**
 * onenand_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done. This applies to all OneNAND command
 * Read can take up to 30us, erase up to 2ms and program up to 350us
 * according to general OneNAND specs
 */
static int onenand_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip * this = mtd->priv;
	unsigned long timeout;
	unsigned int flags = ONENAND_INT_MASTER;
	unsigned int interrupt = 0;
309
	unsigned int ctrl;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

		if (interrupt & flags)
			break;

		if (state != FL_READING)
			cond_resched();
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
328
		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
329
		if (ctrl & ONENAND_CTRL_LOCK)
330
			printk(KERN_ERR "onenand_wait: it's locked error.\n");
331
		return -EIO;
332 333 334
	}

	if (interrupt & ONENAND_INT_READ) {
335
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
336
		if (ecc) {
337
			if (ecc & ONENAND_ECC_2BIT_ALL) {
338
				printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
339
				mtd->ecc_stats.failed++;
340
				return -EBADMSG;
341 342
			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
				printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
343
				mtd->ecc_stats.corrected++;
344
			}
345
		}
346 347 348
	} else if (state == FL_READING) {
		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return -EIO;
349 350 351 352 353
	}

	return 0;
}

354 355 356 357 358 359 360 361 362
/*
 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 * @param irq		onenand interrupt number
 * @param dev_id	interrupt data
 *
 * complete the work
 */
static irqreturn_t onenand_interrupt(int irq, void *data)
{
363
	struct onenand_chip *this = data;
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	/* To handle shared interrupt */
	if (!this->complete.done)
		complete(&this->complete);

	return IRQ_HANDLED;
}

/*
 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;

	wait_for_completion(&this->complete);

	return onenand_wait(mtd, state);
}

/*
 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Try interrupt based wait (It is used one-time)
 */
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long remain, timeout;

	/* We use interrupt wait first */
	this->wait = onenand_interrupt_wait;

	timeout = msecs_to_jiffies(100);
	remain = wait_for_completion_timeout(&this->complete, timeout);
	if (!remain) {
		printk(KERN_INFO "OneNAND: There's no interrupt. "
				"We use the normal wait\n");

		/* Release the irq */
		free_irq(this->irq, this);
D
David Woodhouse 已提交
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		this->wait = onenand_wait;
	}

	return onenand_wait(mtd, state);
}

/*
 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 * @param mtd		MTD device structure
 *
 * There's two method to wait onenand work
 * 1. polling - read interrupt status register
 * 2. interrupt - use the kernel interrupt method
 */
static void onenand_setup_wait(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	int syscfg;

	init_completion(&this->complete);

	if (this->irq <= 0) {
		this->wait = onenand_wait;
		return;
	}

	if (request_irq(this->irq, &onenand_interrupt,
				IRQF_SHARED, "onenand", this)) {
		/* If we can't get irq, use the normal wait */
		this->wait = onenand_wait;
		return;
	}

	/* Enable interrupt */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	syscfg |= ONENAND_SYS_CFG1_IOBE;
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

	this->wait = onenand_try_interrupt_wait;
}

453 454 455 456 457 458 459 460 461 462 463 464 465
/**
 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @return		offset given area
 *
 * Return BufferRAM offset given area
 */
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
466
		/* Note: the 'this->writesize' is a real page size */
467
		if (area == ONENAND_DATARAM)
468
			return this->writesize;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

/**
 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area
 */
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

496 497 498 499 500 501 502 503 504 505 506
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

507 508 509 510 511
	memcpy(buffer, bufferram + offset, count);

	return 0;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/**
 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area with Sync. Burst Mode
 */
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);

534 535 536 537 538 539 540 541 542 543 544
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

545 546 547 548 549 550 551
	memcpy(buffer, bufferram + offset, count);

	this->mmcontrol(mtd, 0);

	return 0;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
/**
 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Write the BufferRAM area
 */
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
		const unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;
		int byte_offset;

		/* Align with word(16-bit) size */
		count--;

		/* Calculate byte access offset */
		byte_offset = offset + count;

		/* Read word and save byte */
		word = this->read_word(bufferram + byte_offset);
		word = (word & ~0xff) | buffer[count];
		this->write_word(word, bufferram + byte_offset);
	}

588 589 590 591 592
	memcpy(bufferram + offset, buffer, count);

	return 0;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 * @param mtd		MTD data structure
 * @param addr		address to check
 * @return		blockpage address
 *
 * Get blockpage address at 2x program mode
 */
static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
	int blockpage, block, page;

	/* Calculate the even block number */
	block = (int) (addr >> this->erase_shift) & ~1;
	/* Is it the odd plane? */
	if (addr & this->writesize)
		block++;
	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
	blockpage = (block << 7) | page;

	return blockpage;
}

617 618 619 620
/**
 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to check
621
 * @return		1 if there are valid data, otherwise 0
622 623 624 625 626 627
 *
 * Check bufferram if there is data we required
 */
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
628
	int blockpage, found = 0;
629
	unsigned int i;
630

631 632 633 634
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
635

636
	/* Is there valid data? */
637
	i = ONENAND_CURRENT_BUFFERRAM(this);
638
	if (this->bufferram[i].blockpage == blockpage)
639 640 641 642 643 644 645 646 647
		found = 1;
	else {
		/* Check another BufferRAM */
		i = ONENAND_NEXT_BUFFERRAM(this);
		if (this->bufferram[i].blockpage == blockpage) {
			ONENAND_SET_NEXT_BUFFERRAM(this);
			found = 1;
		}
	}
648

649 650 651 652 653
	if (found && ONENAND_IS_DDP(this)) {
		/* Select DataRAM for DDP */
		int block = (int) (addr >> this->erase_shift);
		int value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
654
	}
655

656
	return found;
657 658 659 660 661 662 663 664 665 666
}

/**
 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to update
 * @param valid		valid flag
 *
 * Update BufferRAM information
 */
667
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
668 669 670
		int valid)
{
	struct onenand_chip *this = mtd->priv;
671 672
	int blockpage;
	unsigned int i;
673

674 675 676 677
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
678

679 680
	/* Invalidate another BufferRAM */
	i = ONENAND_NEXT_BUFFERRAM(this);
681
	if (this->bufferram[i].blockpage == blockpage)
682
		this->bufferram[i].blockpage = -1;
683 684 685

	/* Update BufferRAM */
	i = ONENAND_CURRENT_BUFFERRAM(this);
686 687 688 689
	if (valid)
		this->bufferram[i].blockpage = blockpage;
	else
		this->bufferram[i].blockpage = -1;
690 691
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/**
 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		start address to invalidate
 * @param len		length to invalidate
 *
 * Invalidate BufferRAM information
 */
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
		unsigned int len)
{
	struct onenand_chip *this = mtd->priv;
	int i;
	loff_t end_addr = addr + len;

	/* Invalidate BufferRAM */
	for (i = 0; i < MAX_BUFFERRAM; i++) {
		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
		if (buf_addr >= addr && buf_addr < end_addr)
			this->bufferram[i].blockpage = -1;
	}
}

715 716 717 718 719 720 721
/**
 * onenand_get_device - [GENERIC] Get chip for selected access
 * @param mtd		MTD device structure
 * @param new_state	the state which is requested
 *
 * Get the device and lock it for exclusive access
 */
722
static int onenand_get_device(struct mtd_info *mtd, int new_state)
723 724 725 726 727 728 729 730 731 732 733 734 735 736
{
	struct onenand_chip *this = mtd->priv;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * Grab the lock and see if the device is available
	 */
	while (1) {
		spin_lock(&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock(&this->chip_lock);
			break;
		}
737 738 739 740
		if (new_state == FL_PM_SUSPENDED) {
			spin_unlock(&this->chip_lock);
			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
		}
741 742 743 744 745 746
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&this->wq, &wait);
		spin_unlock(&this->chip_lock);
		schedule();
		remove_wait_queue(&this->wq, &wait);
	}
747 748

	return 0;
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
}

/**
 * onenand_release_device - [GENERIC] release chip
 * @param mtd		MTD device structure
 *
 * Deselect, release chip lock and wake up anyone waiting on the device
 */
static void onenand_release_device(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	/* Release the chip */
	spin_lock(&this->chip_lock);
	this->state = FL_READY;
	wake_up(&this->wq);
	spin_unlock(&this->chip_lock);
}

/**
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param buf		destination address
 * @param column	oob offset to read from
 * @param thislen	oob length to read
 */
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
				int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int readcol = column;
	int readend = column + thislen;
	int lastgap = 0;
	unsigned int i;
	uint8_t *oob_buf = this->oob_buf;

	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		if (readcol >= lastgap)
			readcol += free->offset - lastgap;
		if (readend >= lastgap)
			readend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		int free_end = free->offset + free->length;
		if (free->offset < readend && free_end > readcol) {
			int st = max_t(int,free->offset,readcol);
			int ed = min_t(int,free_end,readend);
			int n = ed - st;
			memcpy(buf, oob_buf + st, n);
			buf += n;
		} else if (column == 0)
			break;
	}
	return 0;
}

/**
811
 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
812 813
 * @param mtd		MTD device structure
 * @param from		offset to read from
814
 * @param ops:		oob operation description structure
815
 *
816 817
 * OneNAND read main and/or out-of-band data
 */
818
static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
819
				struct mtd_oob_ops *ops)
820 821
{
	struct onenand_chip *this = mtd->priv;
822
	struct mtd_ecc_stats stats;
823 824 825 826 827 828
	size_t len = ops->len;
	size_t ooblen = ops->ooblen;
	u_char *buf = ops->datbuf;
	u_char *oobbuf = ops->oobbuf;
	int read = 0, column, thislen;
	int oobread = 0, oobcolumn, thisooblen, oobsize;
829
	int ret = 0, boundary = 0;
830
	int writesize = this->writesize;
831

832
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
833 834 835 836 837 838 839

	if (ops->mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	oobcolumn = from & (mtd->oobsize - 1);
840 841 842

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
843
		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
844 845
		ops->retlen = 0;
		ops->oobretlen = 0;
846 847 848
		return -EINVAL;
	}

849
	stats = mtd->ecc_stats;
850

851 852 853 854 855
 	/* Read-while-load method */

 	/* Do first load to bufferRAM */
 	if (read < len) {
 		if (!onenand_check_bufferram(mtd, from)) {
856
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
857 858
 			ret = this->wait(mtd, FL_READING);
 			onenand_update_bufferram(mtd, from, !ret);
859 860
			if (ret == -EBADMSG)
				ret = 0;
861 862 863
 		}
 	}

864 865 866 867
	thislen = min_t(int, writesize, len - read);
	column = from & (writesize - 1);
	if (column + thislen > writesize)
		thislen = writesize - column;
868 869 870 871 872

 	while (!ret) {
 		/* If there is more to load then start next load */
 		from += thislen;
 		if (read + thislen < len) {
873
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
874 875 876 877 878
 			/*
 			 * Chip boundary handling in DDP
 			 * Now we issued chip 1 read and pointed chip 1
 			 * bufferam so we have to point chip 0 bufferam.
 			 */
879 880 881
 			if (ONENAND_IS_DDP(this) &&
 			    unlikely(from == (this->chipsize >> 1))) {
 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
882 883 884
 				boundary = 1;
 			} else
 				boundary = 0;
885 886 887 888
 			ONENAND_SET_PREV_BUFFERRAM(this);
 		}
 		/* While load is going, read from last bufferRAM */
 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

		/* Read oob area if needed */
		if (oobbuf) {
			thisooblen = oobsize - oobcolumn;
			thisooblen = min_t(int, thisooblen, ooblen - oobread);

			if (ops->mode == MTD_OOB_AUTO)
				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
			else
				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
			oobread += thisooblen;
			oobbuf += thisooblen;
			oobcolumn = 0;
		}

904 905 906 907 908
 		/* See if we are done */
 		read += thislen;
 		if (read == len)
 			break;
 		/* Set up for next read from bufferRAM */
909
 		if (unlikely(boundary))
910
 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
911 912
 		ONENAND_SET_NEXT_BUFFERRAM(this);
 		buf += thislen;
913
		thislen = min_t(int, writesize, len - read);
914 915 916 917 918
 		column = 0;
 		cond_resched();
 		/* Now wait for load */
 		ret = this->wait(mtd, FL_READING);
 		onenand_update_bufferram(mtd, from, !ret);
919 920
		if (ret == -EBADMSG)
			ret = 0;
921
 	}
922 923 924 925 926 927

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
928 929
	ops->retlen = read;
	ops->oobretlen = oobread;
930

931 932 933
	if (ret)
		return ret;

934 935 936
	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

937
	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
938 939 940
}

/**
941
 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
942 943
 * @param mtd		MTD device structure
 * @param from		offset to read from
944
 * @param ops:		oob operation description structure
945 946 947
 *
 * OneNAND read out-of-band data from the spare area
 */
948
static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
949
			struct mtd_oob_ops *ops)
950 951
{
	struct onenand_chip *this = mtd->priv;
952
	struct mtd_ecc_stats stats;
953
	int read = 0, thislen, column, oobsize;
954 955 956
	size_t len = ops->ooblen;
	mtd_oob_mode_t mode = ops->mode;
	u_char *buf = ops->oobbuf;
957 958
	int ret = 0;

959 960
	from += ops->ooboffs;

961
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
962 963

	/* Initialize return length value */
964
	ops->oobretlen = 0;
965

966 967 968 969 970 971 972 973
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = from & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
974
		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
975 976 977
		return -EINVAL;
	}

978
	/* Do not allow reads past end of device */
979 980 981
	if (unlikely(from >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (from >> this->page_shift)) * oobsize)) {
982
		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
983 984 985
		return -EINVAL;
	}

986 987
	stats = mtd->ecc_stats;

988
	while (read < len) {
989 990
		cond_resched();

991
		thislen = oobsize - column;
992 993 994 995 996 997 998
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = this->wait(mtd, FL_READING);
999 1000 1001 1002
		if (ret && ret != -EBADMSG) {
			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
			break;
		}
1003

1004 1005 1006 1007
		if (mode == MTD_OOB_AUTO)
			onenand_transfer_auto_oob(mtd, buf, column, thislen);
		else
			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

		read += thislen;

		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Page size */
J
Joern Engel 已提交
1019
			from += mtd->writesize;
1020 1021 1022 1023
			column = 0;
		}
	}

1024
	ops->oobretlen = read;
1025 1026 1027 1028 1029 1030 1031 1032

	if (ret)
		return ret;

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return 0;
1033 1034
}

1035
/**
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
 * onenand_read - [MTD Interface] Read data from flash
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
 * Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= buf,
		.oobbuf	= NULL,
	};
	int ret;

1056 1057 1058
	onenand_get_device(mtd, FL_READING);
	ret = onenand_read_ops_nolock(mtd, from, &ops);
	onenand_release_device(mtd);
1059

1060
	*retlen = ops.retlen;
1061 1062 1063 1064 1065
	return ret;
}

/**
 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1066 1067 1068
 * @param mtd:		MTD device structure
 * @param from:		offset to read from
 * @param ops:		oob operation description structure
1069 1070

 * Read main and/or out-of-band
1071 1072 1073 1074
 */
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
1075 1076
	int ret;

1077
	switch (ops->mode) {
1078 1079 1080 1081
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1082
		/* Not implemented yet */
1083 1084 1085
	default:
		return -EINVAL;
	}
1086

1087
	onenand_get_device(mtd, FL_READING);
1088
	if (ops->datbuf)
1089 1090 1091 1092
		ret = onenand_read_ops_nolock(mtd, from, ops);
	else
		ret = onenand_read_oob_nolock(mtd, from, ops);
	onenand_release_device(mtd);
1093

1094
	return ret;
1095 1096
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * onenand_bbt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long timeout;
	unsigned int interrupt;
	unsigned int ctrl;

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
		if (interrupt & ONENAND_INT_MASTER)
			break;
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

1122
	/* Initial bad block case: 0x2400 or 0x0400 */
1123 1124
	if (ctrl & ONENAND_CTRL_ERROR) {
		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1125
		return ONENAND_BBT_READ_ERROR;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	}

	if (interrupt & ONENAND_INT_READ) {
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
		if (ecc & ONENAND_ECC_2BIT_ALL)
			return ONENAND_BBT_READ_ERROR;
	} else {
		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	return 0;
}

/**
 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
 * @param mtd		MTD device structure
 * @param from		offset to read from
1145
 * @param ops		oob operation description structure
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
 *
 * OneNAND read out-of-band data from the spare area for bbt scan
 */
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
			    struct mtd_oob_ops *ops)
{
	struct onenand_chip *this = mtd->priv;
	int read = 0, thislen, column;
	int ret = 0;
	size_t len = ops->ooblen;
	u_char *buf = ops->oobbuf;

1158
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	/* Initialize return value */
	ops->oobretlen = 0;

	/* Do not allow reads past end of device */
	if (unlikely((from + len) > mtd->size)) {
		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	column = from & (mtd->oobsize - 1);

	while (read < len) {
		cond_resched();

		thislen = mtd->oobsize - column;
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = onenand_bbt_wait(mtd, FL_READING);
		if (ret)
			break;

		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
		read += thislen;
		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Update Page size */
1198
			from += this->writesize;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	ops->oobretlen = read;
	return ret;
}

1210
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1211 1212 1213 1214 1215 1216
/**
 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 * @param to		offset to read from
 */
1217
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1218 1219
{
	struct onenand_chip *this = mtd->priv;
1220
	u_char oobbuf[64];
1221 1222 1223 1224 1225 1226 1227 1228
	int status, i;

	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
	onenand_update_bufferram(mtd, to, 0);
	status = this->wait(mtd, FL_READING);
	if (status)
		return status;

1229 1230 1231
	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
	for (i = 0; i < mtd->oobsize; i++)
		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1232 1233 1234 1235 1236
			return -EBADMSG;

	return 0;
}

1237
/**
1238 1239 1240 1241 1242
 * onenand_verify - [GENERIC] verify the chip contents after a write
 * @param mtd          MTD device structure
 * @param buf          the databuffer to verify
 * @param addr         offset to read from
 * @param len          number of bytes to read and compare
1243
 */
1244
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1245 1246
{
	struct onenand_chip *this = mtd->priv;
1247
	void __iomem *dataram;
1248
	int ret = 0;
1249
	int thislen, column;
1250

1251
	while (len != 0) {
1252 1253 1254 1255
		thislen = min_t(int, this->writesize, len);
		column = addr & (this->writesize - 1);
		if (column + thislen > this->writesize)
			thislen = this->writesize - column;
1256

1257
		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1258

1259 1260 1261 1262 1263
		onenand_update_bufferram(mtd, addr, 0);

		ret = this->wait(mtd, FL_READING);
		if (ret)
			return ret;
1264

1265
		onenand_update_bufferram(mtd, addr, 1);
1266

1267 1268
		dataram = this->base + ONENAND_DATARAM;
		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1269

1270 1271 1272 1273 1274 1275 1276
		if (memcmp(buf, dataram + column, thislen))
			return -EBADMSG;

		len -= thislen;
		buf += thislen;
		addr += thislen;
	}
1277

1278 1279 1280
	return 0;
}
#else
1281
#define onenand_verify(...)		(0)
1282
#define onenand_verify_oob(...)		(0)
1283 1284
#endif

1285
#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1286 1287

/**
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param oob_buf	oob buffer
 * @param buf		source address
 * @param column	oob offset to write to
 * @param thislen	oob length to write
 */
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
				  const u_char *buf, int column, int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int writecol = column;
	int writeend = column + thislen;
	int lastgap = 0;
	unsigned int i;

	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		if (writecol >= lastgap)
			writecol += free->offset - lastgap;
		if (writeend >= lastgap)
			writeend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		int free_end = free->offset + free->length;
		if (free->offset < writeend && free_end > writecol) {
			int st = max_t(int,free->offset,writecol);
			int ed = min_t(int,free_end,writeend);
			int n = ed - st;
			memcpy(oob_buf + st, buf, n);
			buf += n;
		} else if (column == 0)
			break;
	}
	return 0;
}

/**
1329
 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1330 1331
 * @param mtd		MTD device structure
 * @param to		offset to write to
1332
 * @param ops		oob operation description structure
1333
 *
1334
 * Write main and/or oob with ECC
1335
 */
1336
static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1337
				struct mtd_oob_ops *ops)
1338 1339
{
	struct onenand_chip *this = mtd->priv;
1340 1341 1342 1343 1344 1345 1346
	int written = 0, column, thislen, subpage;
	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
	size_t len = ops->len;
	size_t ooblen = ops->ooblen;
	const u_char *buf = ops->datbuf;
	const u_char *oob = ops->oobbuf;
	u_char *oobbuf;
1347 1348
	int ret = 0;

1349
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1350 1351

	/* Initialize retlen, in case of early exit */
1352 1353
	ops->retlen = 0;
	ops->oobretlen = 0;
1354 1355 1356

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
1357
		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1358 1359 1360 1361 1362
		return -EINVAL;
	}

	/* Reject writes, which are not page aligned */
        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1363
                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1364 1365 1366
                return -EINVAL;
        }

1367 1368 1369 1370 1371 1372 1373
	if (ops->mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	oobcolumn = to & (mtd->oobsize - 1);

1374 1375
	column = to & (mtd->writesize - 1);

1376 1377
	/* Loop until all data write */
	while (written < len) {
1378 1379
		u_char *wbuf = (u_char *) buf;

1380 1381 1382
		thislen = min_t(int, mtd->writesize - column, len - written);
		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);

1383 1384
		cond_resched();

1385
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1386 1387

		/* Partial page write */
1388
		subpage = thislen < mtd->writesize;
1389 1390
		if (subpage) {
			memset(this->page_buf, 0xff, mtd->writesize);
1391
			memcpy(this->page_buf + column, buf, thislen);
1392 1393
			wbuf = this->page_buf;
		}
1394

1395
		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

		if (oob) {
			oobbuf = this->oob_buf;

			/* We send data to spare ram with oobsize
			 * to prevent byte access */
			memset(oobbuf, 0xff, mtd->oobsize);
			if (ops->mode == MTD_OOB_AUTO)
				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
			else
				memcpy(oobbuf + oobcolumn, oob, thisooblen);

			oobwritten += thisooblen;
			oob += thisooblen;
			oobcolumn = 0;
		} else
			oobbuf = (u_char *) ffchars;

		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1415

J
Joern Engel 已提交
1416
		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1417

1418 1419
		ret = this->wait(mtd, FL_WRITING);

1420
		/* In partial page write we don't update bufferram */
1421
		onenand_update_bufferram(mtd, to, !ret && !subpage);
1422 1423 1424 1425
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
		}
1426 1427

		if (ret) {
1428
			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1429
			break;
1430 1431 1432
		}

		/* Only check verify write turn on */
1433
		ret = onenand_verify(mtd, buf, to, thislen);
1434
		if (ret) {
1435
			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1436
			break;
1437 1438
		}

1439
		written += thislen;
1440

1441 1442 1443
		if (written == len)
			break;

1444
		column = 0;
1445 1446 1447 1448
		to += thislen;
		buf += thislen;
	}

1449
	ops->retlen = written;
1450

1451 1452 1453
	return ret;
}

1454

1455
/**
1456
 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1457 1458 1459 1460 1461
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
1462
 * @param mode		operation mode
1463 1464 1465
 *
 * OneNAND write out-of-band
 */
1466 1467
static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
				    struct mtd_oob_ops *ops)
1468 1469
{
	struct onenand_chip *this = mtd->priv;
1470
	int column, ret = 0, oobsize;
1471
	int written = 0;
1472
	u_char *oobbuf;
1473 1474 1475 1476 1477
	size_t len = ops->ooblen;
	const u_char *buf = ops->oobbuf;
	mtd_oob_mode_t mode = ops->mode;

	to += ops->ooboffs;
1478

1479
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1480 1481

	/* Initialize retlen, in case of early exit */
1482
	ops->oobretlen = 0;
1483

1484 1485 1486 1487 1488 1489 1490 1491
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = to & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
1492
		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1493 1494 1495
		return -EINVAL;
	}

1496
	/* For compatibility with NAND: Do not allow write past end of page */
1497
	if (unlikely(column + len > oobsize)) {
1498
		printk(KERN_ERR "onenand_write_oob_nolock: "
1499 1500 1501 1502
		      "Attempt to write past end of page\n");
		return -EINVAL;
	}

1503 1504 1505 1506
	/* Do not allow reads past end of device */
	if (unlikely(to >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (to >> this->page_shift)) * oobsize)) {
1507
		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1508 1509 1510
		return -EINVAL;
	}

1511
	oobbuf = this->oob_buf;
1512

1513 1514
	/* Loop until all data write */
	while (written < len) {
1515
		int thislen = min_t(int, oobsize, len - written);
1516

1517 1518
		cond_resched();

1519 1520
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);

1521 1522
		/* We send data to spare ram with oobsize
		 * to prevent byte access */
1523
		memset(oobbuf, 0xff, mtd->oobsize);
1524
		if (mode == MTD_OOB_AUTO)
1525
			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1526
		else
1527 1528
			memcpy(oobbuf + column, buf, thislen);
		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1529 1530 1531 1532

		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);

		onenand_update_bufferram(mtd, to, 0);
1533 1534 1535 1536
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, 0);
		}
1537

1538 1539
		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
1540
			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1541
			break;
1542 1543
		}

1544
		ret = onenand_verify_oob(mtd, oobbuf, to);
1545
		if (ret) {
1546
			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1547
			break;
1548
		}
1549 1550 1551 1552 1553

		written += thislen;
		if (written == len)
			break;

1554
		to += mtd->writesize;
1555
		buf += thislen;
1556
		column = 0;
1557 1558
	}

1559
	ops->oobretlen = written;
1560

1561
	return ret;
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/**
 * onenand_write - [MTD Interface] write buffer to FLASH
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
 * Write with ECC
 */
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= (u_char *) buf,
		.oobbuf	= NULL,
	};
	int ret;

1585 1586 1587
	onenand_get_device(mtd, FL_WRITING);
	ret = onenand_write_ops_nolock(mtd, to, &ops);
	onenand_release_device(mtd);
1588

1589
	*retlen = ops.retlen;
1590 1591 1592
	return ret;
}

1593 1594
/**
 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1595 1596 1597
 * @param mtd:		MTD device structure
 * @param to:		offset to write
 * @param ops:		oob operation description structure
1598 1599 1600 1601
 */
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
1602 1603
	int ret;

1604
	switch (ops->mode) {
1605 1606 1607 1608
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1609
		/* Not implemented yet */
1610 1611 1612
	default:
		return -EINVAL;
	}
1613

1614
	onenand_get_device(mtd, FL_WRITING);
1615
	if (ops->datbuf)
1616 1617 1618 1619
		ret = onenand_write_ops_nolock(mtd, to, ops);
	else
		ret = onenand_write_oob_nolock(mtd, to, ops);
	onenand_release_device(mtd);
1620

1621
	return ret;
1622 1623
}

1624
/**
1625
 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1626 1627 1628 1629 1630 1631 1632
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 * @param allowbbt	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
1633
static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1634 1635 1636 1637 1638 1639 1640 1641
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;

	/* Return info from the table */
	return bbm->isbad_bbt(mtd, ofs, allowbbt);
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/**
 * onenand_erase - [MTD Interface] erase block(s)
 * @param mtd		MTD device structure
 * @param instr		erase instruction
 *
 * Erase one ore more blocks
 */
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int block_size;
	loff_t addr;
	int len;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	block_size = (1 << this->erase_shift);

	/* Start address must align on block boundary */
	if (unlikely(instr->addr & (block_size - 1))) {
1663
		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1664 1665 1666 1667 1668
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (unlikely(instr->len & (block_size - 1))) {
1669
		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1670 1671 1672 1673 1674
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1675
		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_ERASING);

	/* Loop throught the pages */
	len = instr->len;
	addr = instr->addr;

	instr->state = MTD_ERASING;

	while (len) {
1691
		cond_resched();
1692

1693
		/* Check if we have a bad block, we do not erase bad blocks */
1694
		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1695 1696 1697 1698
			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
1699 1700 1701

		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);

1702 1703
		onenand_invalidate_bufferram(mtd, addr, block_size);

1704 1705 1706
		ret = this->wait(mtd, FL_ERASING);
		/* Check, if it is write protected */
		if (ret) {
1707
			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = addr;
			goto erase_exit;
		}

		len -= block_size;
		addr += block_size;
	}

	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

1726 1727 1728 1729
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	return ret;
}

/**
 * onenand_sync - [MTD Interface] sync
 * @param mtd		MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void onenand_sync(struct mtd_info *mtd)
{
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_SYNCING);

	/* Release it and go back */
	onenand_release_device(mtd);
}

/**
 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1754 1755
 *
 * Check whether the block is bad
1756 1757 1758
 */
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1759 1760
	int ret;

1761 1762 1763 1764
	/* Check for invalid offset */
	if (ofs > mtd->size)
		return -EINVAL;

1765 1766 1767 1768
	onenand_get_device(mtd, FL_READING);
	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
	onenand_release_device(mtd);
	return ret;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
}

/**
 * onenand_default_block_markbad - [DEFAULT] mark a block bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
 */
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;
	u_char buf[2] = {0, 0};
1784 1785 1786 1787 1788 1789
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = 2,
		.oobbuf = buf,
		.ooboffs = 0,
	};
1790 1791 1792 1793 1794 1795 1796 1797 1798
	int block;

	/* Get block number */
	block = ((int) ofs) >> bbm->bbt_erase_shift;
        if (bbm->bbt)
                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

        /* We write two bytes, so we dont have to mess with 16 bit access */
        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1799
        return onenand_write_oob_nolock(mtd, ofs, &ops);
1800 1801 1802 1803 1804 1805
}

/**
 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1806 1807
 *
 * Mark the block as bad
1808 1809 1810
 */
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	struct onenand_chip *this = mtd->priv;
	int ret;

	ret = onenand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

1822 1823 1824 1825
	onenand_get_device(mtd, FL_WRITING);
	ret = this->block_markbad(mtd, ofs);
	onenand_release_device(mtd);
	return ret;
1826 1827 1828
}

/**
K
Kyungmin Park 已提交
1829
 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1830 1831
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
K
Kyungmin Park 已提交
1832
 * @param len		number of bytes to lock or unlock
1833
 * @param cmd		lock or unlock command
1834
 *
K
Kyungmin Park 已提交
1835
 * Lock or unlock one or more blocks
1836
 */
K
Kyungmin Park 已提交
1837
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1838 1839 1840
{
	struct onenand_chip *this = mtd->priv;
	int start, end, block, value, status;
K
Kyungmin Park 已提交
1841
	int wp_status_mask;
1842 1843 1844 1845

	start = ofs >> this->erase_shift;
	end = len >> this->erase_shift;

K
Kyungmin Park 已提交
1846 1847 1848 1849 1850
	if (cmd == ONENAND_CMD_LOCK)
		wp_status_mask = ONENAND_WP_LS;
	else
		wp_status_mask = ONENAND_WP_US;

1851
	/* Continuous lock scheme */
1852
	if (this->options & ONENAND_HAS_CONT_LOCK) {
1853 1854 1855
		/* Set start block address */
		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
		/* Set end block address */
1856
		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1857 1858
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1859 1860

		/* There's no return value */
K
Kyungmin Park 已提交
1861
		this->wait(mtd, FL_LOCKING);
1862 1863 1864 1865 1866 1867 1868 1869

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1870
		if (!(status & wp_status_mask))
1871 1872 1873 1874 1875 1876
			printk(KERN_ERR "wp status = 0x%x\n", status);

		return 0;
	}

	/* Block lock scheme */
1877
	for (block = start; block < start + end; block++) {
1878 1879 1880 1881 1882 1883
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1884 1885
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1886 1887
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1888 1889

		/* There's no return value */
K
Kyungmin Park 已提交
1890
		this->wait(mtd, FL_LOCKING);
1891 1892 1893 1894 1895 1896 1897 1898

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1899
		if (!(status & wp_status_mask))
1900 1901
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
1902

1903 1904 1905
	return 0;
}

K
Kyungmin Park 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * onenand_lock - [MTD Interface] Lock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Lock one or more blocks
 */
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
1916 1917 1918 1919 1920 1921
	int ret;

	onenand_get_device(mtd, FL_LOCKING);
	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
	onenand_release_device(mtd);
	return ret;
K
Kyungmin Park 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
}

/**
 * onenand_unlock - [MTD Interface] Unlock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Unlock one or more blocks
 */
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
1934 1935 1936 1937 1938 1939
	int ret;

	onenand_get_device(mtd, FL_LOCKING);
	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
	onenand_release_device(mtd);
	return ret;
K
Kyungmin Park 已提交
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/**
 * onenand_check_lock_status - [OneNAND Interface] Check lock status
 * @param this		onenand chip data structure
 *
 * Check lock status
 */
static void onenand_check_lock_status(struct onenand_chip *this)
{
	unsigned int value, block, status;
	unsigned int end;

	end = this->chipsize >> this->erase_shift;
	for (block = 0; block < end; block++) {
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
		if (!(status & ONENAND_WP_US))
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
}

/**
 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
 * @param mtd		MTD device structure
 *
 * Unlock all blocks
 */
static int onenand_unlock_all(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1982 1983
		/* Set start block address */
		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1984 1985 1986 1987
		/* Write unlock command */
		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);

		/* There's no return value */
K
Kyungmin Park 已提交
1988
		this->wait(mtd, FL_LOCKING);
1989 1990 1991 1992 1993 1994 1995

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Workaround for all block unlock in DDP */
1996
		if (ONENAND_IS_DDP(this)) {
1997
			/* 1st block on another chip */
1998 1999
			loff_t ofs = this->chipsize >> 1;
			size_t len = mtd->erasesize;
2000

2001
			onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2002 2003 2004 2005 2006 2007 2008
		}

		onenand_check_lock_status(this);

		return 0;
	}

2009
	onenand_do_lock_cmd(mtd, 0x0, this->chipsize, ONENAND_CMD_UNLOCK);
2010 2011 2012 2013

	return 0;
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
#ifdef CONFIG_MTD_ONENAND_OTP

/* Interal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
		size_t *retlen, u_char *buf);

/**
 * do_otp_read - [DEFAULT] Read OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of readbytes
 * @param buf		the databuffer to put/get data
 *
 * Read OTP block area.
 */
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
2034 2035 2036 2037 2038 2039
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= buf,
		.oobbuf	= NULL,
	};
2040 2041 2042 2043 2044 2045
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2046
	ret = onenand_read_ops_nolock(mtd, from, &ops);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_write - [DEFAULT] Write OTP block area
 * @param mtd		MTD device structure
2058
 * @param to		The offset to write
2059 2060 2061 2062 2063 2064
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write OTP block area.
 */
2065
static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2066 2067 2068 2069 2070
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	unsigned char *pbuf = buf;
	int ret;
2071
	struct mtd_oob_ops ops;
2072 2073

	/* Force buffer page aligned */
J
Joern Engel 已提交
2074
	if (len < mtd->writesize) {
2075
		memcpy(this->page_buf, buf, len);
J
Joern Engel 已提交
2076
		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2077
		pbuf = this->page_buf;
J
Joern Engel 已提交
2078
		len = mtd->writesize;
2079 2080 2081 2082 2083 2084
	}

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2085 2086
	ops.len = len;
	ops.ooblen = 0;
2087
	ops.datbuf = pbuf;
2088 2089 2090
	ops.oobbuf = NULL;
	ret = onenand_write_ops_nolock(mtd, to, &ops);
	*retlen = ops.retlen;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_lock - [DEFAULT] Lock OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to lock
 * @param retlen	pointer to variable to store the number of lock bytes
 * @param buf		the databuffer to put/get data
 *
 * Lock OTP block area.
 */
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
2113 2114 2115 2116 2117 2118
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = len,
		.oobbuf = buf,
		.ooboffs = 0,
	};
2119 2120 2121 2122 2123 2124
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2125
	ret = onenand_write_oob_nolock(mtd, from, &ops);
2126 2127

	*retlen = ops.oobretlen;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * onenand_otp_walk - [DEFAULT] Handle OTP operation
 * @param mtd		MTD device structure
 * @param from		The offset to read/write
 * @param len		number of bytes to read/write
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 * @param action	do given action
 * @param mode		specify user and factory
 *
 * Handle OTP operation.
 */
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf,
			otp_op_t action, int mode)
{
	struct onenand_chip *this = mtd->priv;
	int otp_pages;
	int density;
	int ret = 0;

	*retlen = 0;

2159
	density = onenand_get_density(this->device_id);
2160 2161 2162 2163 2164 2165
	if (density < ONENAND_DEVICE_DENSITY_512Mb)
		otp_pages = 20;
	else
		otp_pages = 10;

	if (mode == MTD_OTP_FACTORY) {
J
Joern Engel 已提交
2166
		from += mtd->writesize * otp_pages;
2167 2168 2169 2170
		otp_pages = 64 - otp_pages;
	}

	/* Check User/Factory boundary */
J
Joern Engel 已提交
2171
	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2172 2173
		return 0;

2174
	onenand_get_device(mtd, FL_OTPING);
2175 2176 2177 2178 2179
	while (len > 0 && otp_pages > 0) {
		if (!action) {	/* OTP Info functions */
			struct otp_info *otpinfo;

			len -= sizeof(struct otp_info);
2180 2181 2182 2183
			if (len <= 0) {
				ret = -ENOSPC;
				break;
			}
2184 2185 2186

			otpinfo = (struct otp_info *) buf;
			otpinfo->start = from;
J
Joern Engel 已提交
2187
			otpinfo->length = mtd->writesize;
2188 2189
			otpinfo->locked = 0;

J
Joern Engel 已提交
2190
			from += mtd->writesize;
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
			buf += sizeof(struct otp_info);
			*retlen += sizeof(struct otp_info);
		} else {
			size_t tmp_retlen;
			int size = len;

			ret = action(mtd, from, len, &tmp_retlen, buf);

			buf += size;
			len -= size;
			*retlen += size;

2203 2204
			if (ret)
				break;
2205 2206 2207
		}
		otp_pages--;
	}
2208
	onenand_release_device(mtd);
2209

2210
	return ret;
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
}

/**
 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read factory OTP info.
 */
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);

	return ret ? : retlen;
}

/**
 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read factory OTP area.
 */
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}

/**
 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read user OTP info.
 */
static int onenand_get_user_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);

	return ret ? : retlen;
}

/**
 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read user OTP area.
 */
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}

/**
 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write user OTP area.
 */
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}

/**
 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to unlock
 *
 * Write lock mark on spare area in page 0 in OTP block
 */
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len)
{
	unsigned char oob_buf[64];
	size_t retlen;
	int ret;

	memset(oob_buf, 0xff, mtd->oobsize);
	/*
	 * Note: OTP lock operation
	 *       OTP block : 0xXXFC
	 *       1st block : 0xXXF3 (If chip support)
	 *       Both      : 0xXXF0 (If chip support)
	 */
	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;

	/*
	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
	 * We write 16 bytes spare area instead of 2 bytes.
	 */
	from = 0;
	len = 16;

	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);

	return ret ? : retlen;
}
#endif	/* CONFIG_MTD_ONENAND_OTP */

2336
/**
2337
 * onenand_check_features - Check and set OneNAND features
2338 2339
 * @param mtd		MTD data structure
 *
2340 2341
 * Check and set OneNAND features
 * - lock scheme
2342
 * - two plane
2343
 */
2344
static void onenand_check_features(struct mtd_info *mtd)
2345 2346 2347 2348 2349
{
	struct onenand_chip *this = mtd->priv;
	unsigned int density, process;

	/* Lock scheme depends on density and process */
2350
	density = onenand_get_density(this->device_id);
2351 2352 2353
	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;

	/* Lock scheme */
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	switch (density) {
	case ONENAND_DEVICE_DENSITY_4Gb:
		this->options |= ONENAND_HAS_2PLANE;

	case ONENAND_DEVICE_DENSITY_2Gb:
		/* 2Gb DDP don't have 2 plane */
		if (!ONENAND_IS_DDP(this))
			this->options |= ONENAND_HAS_2PLANE;
		this->options |= ONENAND_HAS_UNLOCK_ALL;

	case ONENAND_DEVICE_DENSITY_1Gb:
2365
		/* A-Die has all block unlock */
2366
		if (process)
2367
			this->options |= ONENAND_HAS_UNLOCK_ALL;
2368 2369 2370 2371 2372
		break;

	default:
		/* Some OneNAND has continuous lock scheme */
		if (!process)
2373
			this->options |= ONENAND_HAS_CONT_LOCK;
2374
		break;
2375
	}
2376 2377 2378 2379 2380 2381 2382

	if (this->options & ONENAND_HAS_CONT_LOCK)
		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
	if (this->options & ONENAND_HAS_UNLOCK_ALL)
		printk(KERN_DEBUG "Chip support all block unlock\n");
	if (this->options & ONENAND_HAS_2PLANE)
		printk(KERN_DEBUG "Chip has 2 plane\n");
2383 2384
}

2385
/**
2386
 * onenand_print_device_info - Print device & version ID
2387
 * @param device        device ID
2388
 * @param version	version ID
2389
 *
2390
 * Print device & version ID
2391
 */
2392
static void onenand_print_device_info(int device, int version)
2393 2394 2395 2396 2397 2398
{
        int vcc, demuxed, ddp, density;

        vcc = device & ONENAND_DEVICE_VCC_MASK;
        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
        ddp = device & ONENAND_DEVICE_IS_DDP;
2399
        density = onenand_get_density(device);
2400 2401 2402 2403 2404 2405
        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
                demuxed ? "" : "Muxed ",
                ddp ? "(DDP)" : "",
                (16 << density),
                vcc ? "2.65/3.3" : "1.8",
                device);
2406
	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
}

static const struct onenand_manufacturers onenand_manuf_ids[] = {
        {ONENAND_MFR_SAMSUNG, "Samsung"},
};

/**
 * onenand_check_maf - Check manufacturer ID
 * @param manuf         manufacturer ID
 *
 * Check manufacturer ID
 */
static int onenand_check_maf(int manuf)
{
2421 2422
	int size = ARRAY_SIZE(onenand_manuf_ids);
	char *name;
2423 2424
        int i;

2425
	for (i = 0; i < size; i++)
2426 2427 2428
                if (manuf == onenand_manuf_ids[i].id)
                        break;

2429 2430 2431 2432 2433 2434
	if (i < size)
		name = onenand_manuf_ids[i].name;
	else
		name = "Unknown";

	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2435

2436
	return (i == size);
2437 2438 2439 2440 2441 2442 2443
}

/**
 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
 * @param mtd		MTD device structure
 *
 * OneNAND detection method:
2444
 *   Compare the values from command with ones from register
2445 2446 2447 2448
 */
static int onenand_probe(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
2449
	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2450
	int density;
K
Kyungmin Park 已提交
2451 2452 2453 2454 2455 2456
	int syscfg;

	/* Save system configuration 1 */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	/* Clear Sync. Burst Read mode to read BootRAM */
	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2457 2458 2459 2460 2461 2462 2463 2464

	/* Send the command for reading device ID from BootRAM */
	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);

	/* Read manufacturer and device IDs from BootRAM */
	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);

K
Kyungmin Park 已提交
2465 2466 2467 2468 2469 2470 2471 2472
	/* Reset OneNAND to read default register values */
	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
	/* Wait reset */
	this->wait(mtd, FL_RESETING);

	/* Restore system configuration 1 */
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

2473 2474 2475 2476 2477 2478 2479
	/* Check manufacturer ID */
	if (onenand_check_maf(bram_maf_id))
		return -ENXIO;

	/* Read manufacturer and device IDs from Register */
	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2480
	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2481 2482 2483 2484 2485 2486

	/* Check OneNAND device */
	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
		return -ENXIO;

	/* Flash device information */
2487
	onenand_print_device_info(dev_id, ver_id);
2488
	this->device_id = dev_id;
2489
	this->version_id = ver_id;
2490

2491
	density = onenand_get_density(dev_id);
2492
	this->chipsize = (16 << density) << 20;
2493
	/* Set density mask. it is used for DDP */
2494 2495 2496 2497
	if (ONENAND_IS_DDP(this))
		this->density_mask = (1 << (density + 6));
	else
		this->density_mask = 0;
2498 2499 2500

	/* OneNAND page size & block size */
	/* The data buffer size is equal to page size */
J
Joern Engel 已提交
2501 2502
	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
	mtd->oobsize = mtd->writesize >> 5;
2503
	/* Pages per a block are always 64 in OneNAND */
J
Joern Engel 已提交
2504
	mtd->erasesize = mtd->writesize << 6;
2505 2506

	this->erase_shift = ffs(mtd->erasesize) - 1;
J
Joern Engel 已提交
2507
	this->page_shift = ffs(mtd->writesize) - 1;
2508
	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2509 2510
	/* It's real page size */
	this->writesize = mtd->writesize;
2511 2512 2513 2514 2515

	/* REVIST: Multichip handling */

	mtd->size = this->chipsize;

2516 2517
	/* Check OneNAND features */
	onenand_check_features(mtd);
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	/*
	 * We emulate the 4KiB page and 256KiB erase block size
	 * But oobsize is still 64 bytes.
	 * It is only valid if you turn on 2X program support,
	 * Otherwise it will be ignored by compiler.
	 */
	if (ONENAND_IS_2PLANE(this)) {
		mtd->writesize <<= 1;
		mtd->erasesize <<= 1;
	}

2530 2531 2532
	return 0;
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/**
 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
 * @param mtd		MTD device structure
 */
static int onenand_suspend(struct mtd_info *mtd)
{
	return onenand_get_device(mtd, FL_PM_SUSPENDED);
}

/**
 * onenand_resume - [MTD Interface] Resume the OneNAND flash
 * @param mtd		MTD device structure
 */
static void onenand_resume(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->state == FL_PM_SUSPENDED)
		onenand_release_device(mtd);
	else
		printk(KERN_ERR "resume() called for the chip which is not"
				"in suspended state\n");
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/**
 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
 * @param mtd		MTD device structure
 * @param maxchips	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values.
 */
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
2569
	int i;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	struct onenand_chip *this = mtd->priv;

	if (!this->read_word)
		this->read_word = onenand_readw;
	if (!this->write_word)
		this->write_word = onenand_writew;

	if (!this->command)
		this->command = onenand_command;
	if (!this->wait)
2580
		onenand_setup_wait(mtd);
2581 2582 2583 2584 2585 2586

	if (!this->read_bufferram)
		this->read_bufferram = onenand_read_bufferram;
	if (!this->write_bufferram)
		this->write_bufferram = onenand_write_bufferram;

2587 2588 2589 2590 2591
	if (!this->block_markbad)
		this->block_markbad = onenand_default_block_markbad;
	if (!this->scan_bbt)
		this->scan_bbt = onenand_default_bbt;

2592 2593 2594
	if (onenand_probe(mtd))
		return -ENXIO;

2595 2596 2597 2598 2599 2600
	/* Set Sync. Burst Read after probing */
	if (this->mmcontrol) {
		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
		this->read_bufferram = onenand_sync_read_bufferram;
	}

2601 2602
	/* Allocate buffers, if necessary */
	if (!this->page_buf) {
2603
		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2604 2605 2606 2607 2608 2609
		if (!this->page_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
			return -ENOMEM;
		}
		this->options |= ONENAND_PAGEBUF_ALLOC;
	}
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	if (!this->oob_buf) {
		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
		if (!this->oob_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
			if (this->options & ONENAND_PAGEBUF_ALLOC) {
				this->options &= ~ONENAND_PAGEBUF_ALLOC;
				kfree(this->page_buf);
			}
			return -ENOMEM;
		}
		this->options |= ONENAND_OOBBUF_ALLOC;
	}
2622

2623 2624 2625 2626
	this->state = FL_READY;
	init_waitqueue_head(&this->wq);
	spin_lock_init(&this->chip_lock);

2627 2628 2629
	/*
	 * Allow subpage writes up to oobsize.
	 */
2630 2631
	switch (mtd->oobsize) {
	case 64:
2632
		this->ecclayout = &onenand_oob_64;
2633
		mtd->subpage_sft = 2;
2634 2635 2636
		break;

	case 32:
2637
		this->ecclayout = &onenand_oob_32;
2638
		mtd->subpage_sft = 1;
2639 2640 2641 2642 2643
		break;

	default:
		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
			mtd->oobsize);
2644
		mtd->subpage_sft = 0;
2645
		/* To prevent kernel oops */
2646
		this->ecclayout = &onenand_oob_32;
2647 2648 2649
		break;
	}

2650
	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2651 2652 2653 2654 2655 2656

	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area
	 */
	this->ecclayout->oobavail = 0;
2657 2658
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
	    this->ecclayout->oobfree[i].length; i++)
2659 2660
		this->ecclayout->oobavail +=
			this->ecclayout->oobfree[i].length;
V
Vitaly Wool 已提交
2661
	mtd->oobavail = this->ecclayout->oobavail;
2662

2663
	mtd->ecclayout = this->ecclayout;
2664

2665 2666
	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
J
Joern Engel 已提交
2667
	mtd->flags = MTD_CAP_NANDFLASH;
2668 2669 2670 2671 2672 2673 2674
	mtd->erase = onenand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = onenand_read;
	mtd->write = onenand_write;
	mtd->read_oob = onenand_read_oob;
	mtd->write_oob = onenand_write_oob;
2675 2676 2677 2678 2679 2680 2681 2682
#ifdef CONFIG_MTD_ONENAND_OTP
	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
	mtd->get_user_prot_info = onenand_get_user_prot_info;
	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
2683
	mtd->sync = onenand_sync;
K
Kyungmin Park 已提交
2684
	mtd->lock = onenand_lock;
2685
	mtd->unlock = onenand_unlock;
2686 2687
	mtd->suspend = onenand_suspend;
	mtd->resume = onenand_resume;
2688 2689 2690 2691 2692
	mtd->block_isbad = onenand_block_isbad;
	mtd->block_markbad = onenand_block_markbad;
	mtd->owner = THIS_MODULE;

	/* Unlock whole block */
2693
	onenand_unlock_all(mtd);
2694

2695
	return this->scan_bbt(mtd);
2696 2697 2698 2699 2700 2701 2702 2703
}

/**
 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
 * @param mtd		MTD device structure
 */
void onenand_release(struct mtd_info *mtd)
{
2704 2705
	struct onenand_chip *this = mtd->priv;

2706 2707 2708 2709 2710 2711
#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);
2712 2713

	/* Free bad block table memory, if allocated */
2714 2715 2716
	if (this->bbm) {
		struct bbm_info *bbm = this->bbm;
		kfree(bbm->bbt);
2717
		kfree(this->bbm);
2718
	}
2719
	/* Buffers allocated by onenand_scan */
2720 2721
	if (this->options & ONENAND_PAGEBUF_ALLOC)
		kfree(this->page_buf);
2722 2723
	if (this->options & ONENAND_OOBBUF_ALLOC)
		kfree(this->oob_buf);
2724 2725 2726 2727 2728 2729 2730 2731
}

EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");