onenand_base.c 69.9 KB
Newer Older
1 2 3
/*
 *  linux/drivers/mtd/onenand/onenand_base.c
 *
4
 *  Copyright (C) 2005-2007 Samsung Electronics
5 6
 *  Kyungmin Park <kyungmin.park@samsung.com>
 *
7 8 9 10 11
 *  Credits:
 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
 *	auto-placement support, read-while load support, various fixes
 *	Copyright (C) Nokia Corporation, 2007
 *
12 13 14 15 16 17 18 19
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/sched.h>
21
#include <linux/interrupt.h>
22
#include <linux/jiffies.h>
23 24 25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

/**
 * onenand_oob_64 - oob info for large (2KB) page
 */
32
static struct nand_ecclayout onenand_oob_64 = {
33 34 35 36 37 38 39 40 41
	.eccbytes	= 20,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		40, 41, 42, 43, 44,
		56, 57, 58, 59, 60,
		},
	.oobfree	= {
		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42 43
		{34, 3}, {46, 2}, {50, 3}, {62, 2}
	}
44 45 46 47 48
};

/**
 * onenand_oob_32 - oob info for middle (1KB) page
 */
49
static struct nand_ecclayout onenand_oob_32 = {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	.eccbytes	= 10,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		},
	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};

static const unsigned char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
};

/**
 * onenand_readw - [OneNAND Interface] Read OneNAND register
 * @param addr		address to read
 *
 * Read OneNAND register
 */
static unsigned short onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

/**
 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 * @param value		value to write
 * @param addr		address to write
 *
 * Write OneNAND register with value
 */
static void onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

/**
 * onenand_block_address - [DEFAULT] Get block address
94
 * @param this		onenand chip data structure
95 96 97 98 99
 * @param block		the block
 * @return		translated block address if DDP, otherwise same
 *
 * Setup Start Address 1 Register (F100h)
 */
100
static int onenand_block_address(struct onenand_chip *this, int block)
101
{
102 103 104
	/* Device Flash Core select, NAND Flash Block Address */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105 106 107 108 109 110

	return block;
}

/**
 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111
 * @param this		onenand chip data structure
112 113 114 115 116
 * @param block		the block
 * @return		set DBS value if DDP, otherwise 0
 *
 * Setup Start Address 2 Register (F101h) for DDP
 */
117
static int onenand_bufferram_address(struct onenand_chip *this, int block)
118
{
119 120 121
	/* Device BufferRAM Select */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1;
122

123
	return ONENAND_DDP_CHIP0;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

/**
 * onenand_page_address - [DEFAULT] Get page address
 * @param page		the page address
 * @param sector	the sector address
 * @return		combined page and sector address
 *
 * Setup Start Address 8 Register (F107h)
 */
static int onenand_page_address(int page, int sector)
{
	/* Flash Page Address, Flash Sector Address */
	int fpa, fsa;

	fpa = page & ONENAND_FPA_MASK;
	fsa = sector & ONENAND_FSA_MASK;

	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}

/**
 * onenand_buffer_address - [DEFAULT] Get buffer address
 * @param dataram1	DataRAM index
 * @param sectors	the sector address
 * @param count		the number of sectors
 * @return		the start buffer value
 *
 * Setup Start Buffer Register (F200h)
 */
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
	int bsa, bsc;

	/* BufferRAM Sector Address */
	bsa = sectors & ONENAND_BSA_MASK;

	if (dataram1)
		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
	else
		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */

	/* BufferRAM Sector Count */
	bsc = count & ONENAND_BSC_MASK;

	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}

/**
 * onenand_command - [DEFAULT] Send command to OneNAND device
 * @param mtd		MTD device structure
 * @param cmd		the command to be sent
 * @param addr		offset to read from or write to
 * @param len		number of bytes to read or write
 *
 * Send command to OneNAND device. This function is used for middle/large page
 * devices (1KB/2KB Bytes per page)
 */
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
	struct onenand_chip *this = mtd->priv;
185
	int value, readcmd = 0, block_cmd = 0;
186 187 188 189 190 191 192
	int block, page;

	/* Address translation */
	switch (cmd) {
	case ONENAND_CMD_UNLOCK:
	case ONENAND_CMD_LOCK:
	case ONENAND_CMD_LOCK_TIGHT:
193
	case ONENAND_CMD_UNLOCK_ALL:
194 195 196 197 198 199
		block = -1;
		page = -1;
		break;

	case ONENAND_CMD_ERASE:
	case ONENAND_CMD_BUFFERRAM:
200 201
	case ONENAND_CMD_OTP_ACCESS:
		block_cmd = 1;
202 203 204 205 206 207 208
		block = (int) (addr >> this->erase_shift);
		page = -1;
		break;

	default:
		block = (int) (addr >> this->erase_shift);
		page = (int) (addr >> this->page_shift);
209 210 211 212 213 214 215 216 217

		if (ONENAND_IS_2PLANE(this)) {
			/* Make the even block number */
			block &= ~1;
			/* Is it the odd plane? */
			if (addr & this->writesize)
				block++;
			page >>= 1;
		}
218 219 220 221 222 223 224
		page &= this->page_mask;
		break;
	}

	/* NOTE: The setting order of the registers is very important! */
	if (cmd == ONENAND_CMD_BUFFERRAM) {
		/* Select DataRAM for DDP */
225
		value = onenand_bufferram_address(this, block);
226 227
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);

228 229 230 231 232 233
		if (ONENAND_IS_2PLANE(this))
			/* It is always BufferRAM0 */
			ONENAND_SET_BUFFERRAM0(this);
		else
			/* Switch to the next data buffer */
			ONENAND_SET_NEXT_BUFFERRAM(this);
234 235 236 237 238 239

		return 0;
	}

	if (block != -1) {
		/* Write 'DFS, FBA' of Flash */
240
		value = onenand_block_address(this, block);
241
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
242

K
Kyungmin Park 已提交
243
		if (block_cmd) {
244 245 246 247
			/* Select DataRAM for DDP */
			value = onenand_bufferram_address(this, block);
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
248 249 250
	}

	if (page != -1) {
251 252
		/* Now we use page size operation */
		int sectors = 4, count = 4;
253 254 255 256 257 258 259 260 261 262
		int dataram;

		switch (cmd) {
		case ONENAND_CMD_READ:
		case ONENAND_CMD_READOOB:
			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
			readcmd = 1;
			break;

		default:
263 264
			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
				cmd = ONENAND_CMD_2X_PROG;
265 266 267 268 269 270 271 272 273 274 275
			dataram = ONENAND_CURRENT_BUFFERRAM(this);
			break;
		}

		/* Write 'FPA, FSA' of Flash */
		value = onenand_page_address(page, sectors);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);

		/* Write 'BSA, BSC' of DataRAM */
		value = onenand_buffer_address(dataram, sectors, count);
		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
276

277 278
		if (readcmd) {
			/* Select DataRAM for DDP */
279
			value = onenand_bufferram_address(this, block);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
	}

	/* Interrupt clear */
	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);

	/* Write command */
	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);

	return 0;
}

/**
 * onenand_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done. This applies to all OneNAND command
 * Read can take up to 30us, erase up to 2ms and program up to 350us
 * according to general OneNAND specs
 */
static int onenand_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip * this = mtd->priv;
	unsigned long timeout;
	unsigned int flags = ONENAND_INT_MASTER;
	unsigned int interrupt = 0;
308
	unsigned int ctrl;
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

		if (interrupt & flags)
			break;

		if (state != FL_READING)
			cond_resched();
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
327
		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
328
		if (ctrl & ONENAND_CTRL_LOCK)
329
			printk(KERN_ERR "onenand_wait: it's locked error.\n");
330
		return -EIO;
331 332 333
	}

	if (interrupt & ONENAND_INT_READ) {
334
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
335
		if (ecc) {
336
			if (ecc & ONENAND_ECC_2BIT_ALL) {
337
				printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
338
				mtd->ecc_stats.failed++;
339
				return -EBADMSG;
340 341
			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
				printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
342
				mtd->ecc_stats.corrected++;
343
			}
344
		}
345 346 347
	} else if (state == FL_READING) {
		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return -EIO;
348 349 350 351 352
	}

	return 0;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/*
 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 * @param irq		onenand interrupt number
 * @param dev_id	interrupt data
 *
 * complete the work
 */
static irqreturn_t onenand_interrupt(int irq, void *data)
{
	struct onenand_chip *this = (struct onenand_chip *) data;

	/* To handle shared interrupt */
	if (!this->complete.done)
		complete(&this->complete);

	return IRQ_HANDLED;
}

/*
 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;

	wait_for_completion(&this->complete);

	return onenand_wait(mtd, state);
}

/*
 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Try interrupt based wait (It is used one-time)
 */
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long remain, timeout;

	/* We use interrupt wait first */
	this->wait = onenand_interrupt_wait;

	timeout = msecs_to_jiffies(100);
	remain = wait_for_completion_timeout(&this->complete, timeout);
	if (!remain) {
		printk(KERN_INFO "OneNAND: There's no interrupt. "
				"We use the normal wait\n");

		/* Release the irq */
		free_irq(this->irq, this);
D
David Woodhouse 已提交
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		this->wait = onenand_wait;
	}

	return onenand_wait(mtd, state);
}

/*
 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 * @param mtd		MTD device structure
 *
 * There's two method to wait onenand work
 * 1. polling - read interrupt status register
 * 2. interrupt - use the kernel interrupt method
 */
static void onenand_setup_wait(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	int syscfg;

	init_completion(&this->complete);

	if (this->irq <= 0) {
		this->wait = onenand_wait;
		return;
	}

	if (request_irq(this->irq, &onenand_interrupt,
				IRQF_SHARED, "onenand", this)) {
		/* If we can't get irq, use the normal wait */
		this->wait = onenand_wait;
		return;
	}

	/* Enable interrupt */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	syscfg |= ONENAND_SYS_CFG1_IOBE;
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

	this->wait = onenand_try_interrupt_wait;
}

452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @return		offset given area
 *
 * Return BufferRAM offset given area
 */
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
465
		/* Note: the 'this->writesize' is a real page size */
466
		if (area == ONENAND_DATARAM)
467
			return this->writesize;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

/**
 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area
 */
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

495 496 497 498 499 500 501 502 503 504 505
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

506 507 508 509 510
	memcpy(buffer, bufferram + offset, count);

	return 0;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area with Sync. Burst Mode
 */
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);

533 534 535 536 537 538 539 540 541 542 543
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

544 545 546 547 548 549 550
	memcpy(buffer, bufferram + offset, count);

	this->mmcontrol(mtd, 0);

	return 0;
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Write the BufferRAM area
 */
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
		const unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;
		int byte_offset;

		/* Align with word(16-bit) size */
		count--;

		/* Calculate byte access offset */
		byte_offset = offset + count;

		/* Read word and save byte */
		word = this->read_word(bufferram + byte_offset);
		word = (word & ~0xff) | buffer[count];
		this->write_word(word, bufferram + byte_offset);
	}

587 588 589 590 591
	memcpy(bufferram + offset, buffer, count);

	return 0;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/**
 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 * @param mtd		MTD data structure
 * @param addr		address to check
 * @return		blockpage address
 *
 * Get blockpage address at 2x program mode
 */
static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
	int blockpage, block, page;

	/* Calculate the even block number */
	block = (int) (addr >> this->erase_shift) & ~1;
	/* Is it the odd plane? */
	if (addr & this->writesize)
		block++;
	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
	blockpage = (block << 7) | page;

	return blockpage;
}

616 617 618 619
/**
 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to check
620
 * @return		1 if there are valid data, otherwise 0
621 622 623 624 625 626
 *
 * Check bufferram if there is data we required
 */
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
627
	int blockpage, found = 0;
628
	unsigned int i;
629

630 631 632 633
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
634

635
	/* Is there valid data? */
636
	i = ONENAND_CURRENT_BUFFERRAM(this);
637
	if (this->bufferram[i].blockpage == blockpage)
638 639 640 641 642 643 644 645 646
		found = 1;
	else {
		/* Check another BufferRAM */
		i = ONENAND_NEXT_BUFFERRAM(this);
		if (this->bufferram[i].blockpage == blockpage) {
			ONENAND_SET_NEXT_BUFFERRAM(this);
			found = 1;
		}
	}
647

648 649 650 651 652
	if (found && ONENAND_IS_DDP(this)) {
		/* Select DataRAM for DDP */
		int block = (int) (addr >> this->erase_shift);
		int value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
653
	}
654

655
	return found;
656 657 658 659 660 661 662 663 664 665
}

/**
 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to update
 * @param valid		valid flag
 *
 * Update BufferRAM information
 */
666
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
667 668 669
		int valid)
{
	struct onenand_chip *this = mtd->priv;
670 671
	int blockpage;
	unsigned int i;
672

673 674 675 676
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
677

678 679
	/* Invalidate another BufferRAM */
	i = ONENAND_NEXT_BUFFERRAM(this);
680
	if (this->bufferram[i].blockpage == blockpage)
681
		this->bufferram[i].blockpage = -1;
682 683 684

	/* Update BufferRAM */
	i = ONENAND_CURRENT_BUFFERRAM(this);
685 686 687 688
	if (valid)
		this->bufferram[i].blockpage = blockpage;
	else
		this->bufferram[i].blockpage = -1;
689 690
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
/**
 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		start address to invalidate
 * @param len		length to invalidate
 *
 * Invalidate BufferRAM information
 */
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
		unsigned int len)
{
	struct onenand_chip *this = mtd->priv;
	int i;
	loff_t end_addr = addr + len;

	/* Invalidate BufferRAM */
	for (i = 0; i < MAX_BUFFERRAM; i++) {
		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
		if (buf_addr >= addr && buf_addr < end_addr)
			this->bufferram[i].blockpage = -1;
	}
}

714 715 716 717 718 719 720
/**
 * onenand_get_device - [GENERIC] Get chip for selected access
 * @param mtd		MTD device structure
 * @param new_state	the state which is requested
 *
 * Get the device and lock it for exclusive access
 */
721
static int onenand_get_device(struct mtd_info *mtd, int new_state)
722 723 724 725 726 727 728 729 730 731 732 733 734 735
{
	struct onenand_chip *this = mtd->priv;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * Grab the lock and see if the device is available
	 */
	while (1) {
		spin_lock(&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock(&this->chip_lock);
			break;
		}
736 737 738 739
		if (new_state == FL_PM_SUSPENDED) {
			spin_unlock(&this->chip_lock);
			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
		}
740 741 742 743 744 745
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&this->wq, &wait);
		spin_unlock(&this->chip_lock);
		schedule();
		remove_wait_queue(&this->wq, &wait);
	}
746 747

	return 0;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
}

/**
 * onenand_release_device - [GENERIC] release chip
 * @param mtd		MTD device structure
 *
 * Deselect, release chip lock and wake up anyone waiting on the device
 */
static void onenand_release_device(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	/* Release the chip */
	spin_lock(&this->chip_lock);
	this->state = FL_READY;
	wake_up(&this->wq);
	spin_unlock(&this->chip_lock);
}

/**
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param buf		destination address
 * @param column	oob offset to read from
 * @param thislen	oob length to read
 */
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
				int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int readcol = column;
	int readend = column + thislen;
	int lastgap = 0;
	unsigned int i;
	uint8_t *oob_buf = this->oob_buf;

	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		if (readcol >= lastgap)
			readcol += free->offset - lastgap;
		if (readend >= lastgap)
			readend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		int free_end = free->offset + free->length;
		if (free->offset < readend && free_end > readcol) {
			int st = max_t(int,free->offset,readcol);
			int ed = min_t(int,free_end,readend);
			int n = ed - st;
			memcpy(buf, oob_buf + st, n);
			buf += n;
		} else if (column == 0)
			break;
	}
	return 0;
}

/**
810
 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
811 812
 * @param mtd		MTD device structure
 * @param from		offset to read from
813
 * @param ops:		oob operation description structure
814
 *
815 816
 * OneNAND read main and/or out-of-band data
 */
817
static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
818
				struct mtd_oob_ops *ops)
819 820
{
	struct onenand_chip *this = mtd->priv;
821
	struct mtd_ecc_stats stats;
822 823 824 825 826 827
	size_t len = ops->len;
	size_t ooblen = ops->ooblen;
	u_char *buf = ops->datbuf;
	u_char *oobbuf = ops->oobbuf;
	int read = 0, column, thislen;
	int oobread = 0, oobcolumn, thisooblen, oobsize;
828
	int ret = 0, boundary = 0;
829
	int writesize = this->writesize;
830

831
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
832 833 834 835 836 837 838

	if (ops->mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	oobcolumn = from & (mtd->oobsize - 1);
839 840 841

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
842
		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
843 844
		ops->retlen = 0;
		ops->oobretlen = 0;
845 846 847
		return -EINVAL;
	}

848
	stats = mtd->ecc_stats;
849

850 851 852 853 854
 	/* Read-while-load method */

 	/* Do first load to bufferRAM */
 	if (read < len) {
 		if (!onenand_check_bufferram(mtd, from)) {
855
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
856 857 858 859 860
 			ret = this->wait(mtd, FL_READING);
 			onenand_update_bufferram(mtd, from, !ret);
 		}
 	}

861 862 863 864
	thislen = min_t(int, writesize, len - read);
	column = from & (writesize - 1);
	if (column + thislen > writesize)
		thislen = writesize - column;
865 866 867 868 869

 	while (!ret) {
 		/* If there is more to load then start next load */
 		from += thislen;
 		if (read + thislen < len) {
870
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
871 872 873 874 875
 			/*
 			 * Chip boundary handling in DDP
 			 * Now we issued chip 1 read and pointed chip 1
 			 * bufferam so we have to point chip 0 bufferam.
 			 */
876 877 878
 			if (ONENAND_IS_DDP(this) &&
 			    unlikely(from == (this->chipsize >> 1))) {
 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
879 880 881
 				boundary = 1;
 			} else
 				boundary = 0;
882 883 884 885
 			ONENAND_SET_PREV_BUFFERRAM(this);
 		}
 		/* While load is going, read from last bufferRAM */
 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

		/* Read oob area if needed */
		if (oobbuf) {
			thisooblen = oobsize - oobcolumn;
			thisooblen = min_t(int, thisooblen, ooblen - oobread);

			if (ops->mode == MTD_OOB_AUTO)
				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
			else
				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
			oobread += thisooblen;
			oobbuf += thisooblen;
			oobcolumn = 0;
		}

901 902 903 904 905
 		/* See if we are done */
 		read += thislen;
 		if (read == len)
 			break;
 		/* Set up for next read from bufferRAM */
906
 		if (unlikely(boundary))
907
 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
908 909
 		ONENAND_SET_NEXT_BUFFERRAM(this);
 		buf += thislen;
910
		thislen = min_t(int, writesize, len - read);
911 912 913 914 915 916
 		column = 0;
 		cond_resched();
 		/* Now wait for load */
 		ret = this->wait(mtd, FL_READING);
 		onenand_update_bufferram(mtd, from, !ret);
 	}
917 918 919 920 921 922

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
923 924
	ops->retlen = read;
	ops->oobretlen = oobread;
925 926 927 928

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

929 930 931
	if (ret)
		return ret;

932
	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
933 934 935
}

/**
936
 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
937 938
 * @param mtd		MTD device structure
 * @param from		offset to read from
939
 * @param ops:		oob operation description structure
940 941 942
 *
 * OneNAND read out-of-band data from the spare area
 */
943
static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
944
			struct mtd_oob_ops *ops)
945 946
{
	struct onenand_chip *this = mtd->priv;
947
	int read = 0, thislen, column, oobsize;
948 949 950
	size_t len = ops->ooblen;
	mtd_oob_mode_t mode = ops->mode;
	u_char *buf = ops->oobbuf;
951 952
	int ret = 0;

953 954
	from += ops->ooboffs;

955
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
956 957

	/* Initialize return length value */
958
	ops->oobretlen = 0;
959

960 961 962 963 964 965 966 967
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = from & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
968
		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
969 970 971
		return -EINVAL;
	}

972
	/* Do not allow reads past end of device */
973 974 975
	if (unlikely(from >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (from >> this->page_shift)) * oobsize)) {
976
		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
977 978 979 980
		return -EINVAL;
	}

	while (read < len) {
981 982
		cond_resched();

983
		thislen = oobsize - column;
984 985 986 987 988 989 990 991 992
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = this->wait(mtd, FL_READING);
		/* First copy data and check return value for ECC handling */

993 994 995 996
		if (mode == MTD_OOB_AUTO)
			onenand_transfer_auto_oob(mtd, buf, column, thislen);
		else
			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
997

998
		if (ret) {
999
			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1000
			break;
1001 1002
		}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		read += thislen;

		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Page size */
J
Joern Engel 已提交
1013
			from += mtd->writesize;
1014 1015 1016 1017
			column = 0;
		}
	}

1018
	ops->oobretlen = read;
1019 1020 1021
	return ret;
}

1022
/**
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
 * onenand_read - [MTD Interface] Read data from flash
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
 * Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= buf,
		.oobbuf	= NULL,
	};
	int ret;

1043 1044 1045
	onenand_get_device(mtd, FL_READING);
	ret = onenand_read_ops_nolock(mtd, from, &ops);
	onenand_release_device(mtd);
1046

1047
	*retlen = ops.retlen;
1048 1049 1050 1051 1052
	return ret;
}

/**
 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1053 1054 1055
 * @param mtd:		MTD device structure
 * @param from:		offset to read from
 * @param ops:		oob operation description structure
1056 1057

 * Read main and/or out-of-band
1058 1059 1060 1061
 */
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
1062 1063
	int ret;

1064
	switch (ops->mode) {
1065 1066 1067 1068
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1069
		/* Not implemented yet */
1070 1071 1072
	default:
		return -EINVAL;
	}
1073

1074
	onenand_get_device(mtd, FL_READING);
1075
	if (ops->datbuf)
1076 1077 1078 1079
		ret = onenand_read_ops_nolock(mtd, from, ops);
	else
		ret = onenand_read_oob_nolock(mtd, from, ops);
	onenand_release_device(mtd);
1080

1081
	return ret;
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/**
 * onenand_bbt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long timeout;
	unsigned int interrupt;
	unsigned int ctrl;

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
		if (interrupt & ONENAND_INT_MASTER)
			break;
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
		/* Initial bad block case */
		if (ctrl & ONENAND_CTRL_LOAD)
			return ONENAND_BBT_READ_ERROR;
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	if (interrupt & ONENAND_INT_READ) {
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
		if (ecc & ONENAND_ECC_2BIT_ALL)
			return ONENAND_BBT_READ_ERROR;
	} else {
		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	return 0;
}

/**
 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
 * @param mtd		MTD device structure
 * @param from		offset to read from
1134
 * @param ops		oob operation description structure
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
 *
 * OneNAND read out-of-band data from the spare area for bbt scan
 */
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
			    struct mtd_oob_ops *ops)
{
	struct onenand_chip *this = mtd->priv;
	int read = 0, thislen, column;
	int ret = 0;
	size_t len = ops->ooblen;
	u_char *buf = ops->oobbuf;

1147
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	/* Initialize return value */
	ops->oobretlen = 0;

	/* Do not allow reads past end of device */
	if (unlikely((from + len) > mtd->size)) {
		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	column = from & (mtd->oobsize - 1);

	while (read < len) {
		cond_resched();

		thislen = mtd->oobsize - column;
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = onenand_bbt_wait(mtd, FL_READING);
		if (ret)
			break;

		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
		read += thislen;
		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Update Page size */
1187
			from += this->writesize;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	ops->oobretlen = read;
	return ret;
}

1199
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1200 1201 1202 1203 1204 1205
/**
 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 * @param to		offset to read from
 */
1206
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1207 1208
{
	struct onenand_chip *this = mtd->priv;
1209
	char oobbuf[64];
1210 1211 1212 1213 1214 1215 1216 1217
	int status, i;

	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
	onenand_update_bufferram(mtd, to, 0);
	status = this->wait(mtd, FL_READING);
	if (status)
		return status;

1218 1219 1220
	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
	for (i = 0; i < mtd->oobsize; i++)
		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1221 1222 1223 1224 1225
			return -EBADMSG;

	return 0;
}

1226
/**
1227 1228 1229 1230 1231
 * onenand_verify - [GENERIC] verify the chip contents after a write
 * @param mtd          MTD device structure
 * @param buf          the databuffer to verify
 * @param addr         offset to read from
 * @param len          number of bytes to read and compare
1232
 */
1233
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1234 1235
{
	struct onenand_chip *this = mtd->priv;
1236
	void __iomem *dataram;
1237
	int ret = 0;
1238
	int thislen, column;
1239

1240
	while (len != 0) {
1241 1242 1243 1244
		thislen = min_t(int, this->writesize, len);
		column = addr & (this->writesize - 1);
		if (column + thislen > this->writesize)
			thislen = this->writesize - column;
1245

1246
		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1247

1248 1249 1250 1251 1252
		onenand_update_bufferram(mtd, addr, 0);

		ret = this->wait(mtd, FL_READING);
		if (ret)
			return ret;
1253

1254
		onenand_update_bufferram(mtd, addr, 1);
1255

1256 1257
		dataram = this->base + ONENAND_DATARAM;
		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1258

1259 1260 1261 1262 1263 1264 1265
		if (memcmp(buf, dataram + column, thislen))
			return -EBADMSG;

		len -= thislen;
		buf += thislen;
		addr += thislen;
	}
1266

1267 1268 1269
	return 0;
}
#else
1270
#define onenand_verify(...)		(0)
1271
#define onenand_verify_oob(...)		(0)
1272 1273
#endif

1274
#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1275 1276

/**
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param oob_buf	oob buffer
 * @param buf		source address
 * @param column	oob offset to write to
 * @param thislen	oob length to write
 */
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
				  const u_char *buf, int column, int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int writecol = column;
	int writeend = column + thislen;
	int lastgap = 0;
	unsigned int i;

	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		if (writecol >= lastgap)
			writecol += free->offset - lastgap;
		if (writeend >= lastgap)
			writeend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		int free_end = free->offset + free->length;
		if (free->offset < writeend && free_end > writecol) {
			int st = max_t(int,free->offset,writecol);
			int ed = min_t(int,free_end,writeend);
			int n = ed - st;
			memcpy(oob_buf + st, buf, n);
			buf += n;
		} else if (column == 0)
			break;
	}
	return 0;
}

/**
1318
 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1319 1320
 * @param mtd		MTD device structure
 * @param to		offset to write to
1321
 * @param ops		oob operation description structure
1322
 *
1323
 * Write main and/or oob with ECC
1324
 */
1325
static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1326
				struct mtd_oob_ops *ops)
1327 1328
{
	struct onenand_chip *this = mtd->priv;
1329 1330 1331 1332 1333 1334 1335
	int written = 0, column, thislen, subpage;
	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
	size_t len = ops->len;
	size_t ooblen = ops->ooblen;
	const u_char *buf = ops->datbuf;
	const u_char *oob = ops->oobbuf;
	u_char *oobbuf;
1336 1337
	int ret = 0;

1338
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1339 1340

	/* Initialize retlen, in case of early exit */
1341 1342
	ops->retlen = 0;
	ops->oobretlen = 0;
1343 1344 1345

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
1346
		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1347 1348 1349 1350 1351
		return -EINVAL;
	}

	/* Reject writes, which are not page aligned */
        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1352
                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1353 1354 1355
                return -EINVAL;
        }

1356 1357 1358 1359 1360 1361 1362
	if (ops->mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	oobcolumn = to & (mtd->oobsize - 1);

1363 1364
	column = to & (mtd->writesize - 1);

1365 1366
	/* Loop until all data write */
	while (written < len) {
1367 1368
		u_char *wbuf = (u_char *) buf;

1369 1370 1371
		thislen = min_t(int, mtd->writesize - column, len - written);
		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);

1372 1373
		cond_resched();

1374
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1375 1376

		/* Partial page write */
1377
		subpage = thislen < mtd->writesize;
1378 1379
		if (subpage) {
			memset(this->page_buf, 0xff, mtd->writesize);
1380
			memcpy(this->page_buf + column, buf, thislen);
1381 1382
			wbuf = this->page_buf;
		}
1383

1384
		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

		if (oob) {
			oobbuf = this->oob_buf;

			/* We send data to spare ram with oobsize
			 * to prevent byte access */
			memset(oobbuf, 0xff, mtd->oobsize);
			if (ops->mode == MTD_OOB_AUTO)
				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
			else
				memcpy(oobbuf + oobcolumn, oob, thisooblen);

			oobwritten += thisooblen;
			oob += thisooblen;
			oobcolumn = 0;
		} else
			oobbuf = (u_char *) ffchars;

		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1404

J
Joern Engel 已提交
1405
		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1406

1407 1408
		ret = this->wait(mtd, FL_WRITING);

1409
		/* In partial page write we don't update bufferram */
1410
		onenand_update_bufferram(mtd, to, !ret && !subpage);
1411 1412 1413 1414
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
		}
1415 1416

		if (ret) {
1417
			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1418
			break;
1419 1420 1421
		}

		/* Only check verify write turn on */
1422
		ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1423
		if (ret) {
1424
			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1425
			break;
1426 1427
		}

1428
		written += thislen;
1429

1430 1431 1432
		if (written == len)
			break;

1433
		column = 0;
1434 1435 1436 1437 1438 1439 1440
		to += thislen;
		buf += thislen;
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

1441
	ops->retlen = written;
1442

1443 1444 1445
	return ret;
}

1446

1447
/**
1448
 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1449 1450 1451 1452 1453
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
1454
 * @param mode		operation mode
1455 1456 1457
 *
 * OneNAND write out-of-band
 */
1458 1459
static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
				    struct mtd_oob_ops *ops)
1460 1461
{
	struct onenand_chip *this = mtd->priv;
1462
	int column, ret = 0, oobsize;
1463
	int written = 0;
1464
	u_char *oobbuf;
1465 1466 1467 1468 1469
	size_t len = ops->ooblen;
	const u_char *buf = ops->oobbuf;
	mtd_oob_mode_t mode = ops->mode;

	to += ops->ooboffs;
1470

1471
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1472 1473

	/* Initialize retlen, in case of early exit */
1474
	ops->oobretlen = 0;
1475

1476 1477 1478 1479 1480 1481 1482 1483
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = to & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
1484
		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1485 1486 1487
		return -EINVAL;
	}

1488
	/* For compatibility with NAND: Do not allow write past end of page */
1489
	if (unlikely(column + len > oobsize)) {
1490
		printk(KERN_ERR "onenand_write_oob_nolock: "
1491 1492 1493 1494
		      "Attempt to write past end of page\n");
		return -EINVAL;
	}

1495 1496 1497 1498
	/* Do not allow reads past end of device */
	if (unlikely(to >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (to >> this->page_shift)) * oobsize)) {
1499
		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1500 1501 1502
		return -EINVAL;
	}

1503
	oobbuf = this->oob_buf;
1504

1505 1506
	/* Loop until all data write */
	while (written < len) {
1507
		int thislen = min_t(int, oobsize, len - written);
1508

1509 1510
		cond_resched();

1511 1512
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);

1513 1514
		/* We send data to spare ram with oobsize
		 * to prevent byte access */
1515
		memset(oobbuf, 0xff, mtd->oobsize);
1516
		if (mode == MTD_OOB_AUTO)
1517
			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1518
		else
1519 1520
			memcpy(oobbuf + column, buf, thislen);
		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1521 1522 1523 1524

		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);

		onenand_update_bufferram(mtd, to, 0);
1525 1526 1527 1528
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, 0);
		}
1529

1530 1531
		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
1532
			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1533
			break;
1534 1535
		}

1536
		ret = onenand_verify_oob(mtd, oobbuf, to);
1537
		if (ret) {
1538
			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1539
			break;
1540
		}
1541 1542 1543 1544 1545

		written += thislen;
		if (written == len)
			break;

1546
		to += mtd->writesize;
1547
		buf += thislen;
1548
		column = 0;
1549 1550
	}

1551
	ops->oobretlen = written;
1552

1553
	return ret;
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/**
 * onenand_write - [MTD Interface] write buffer to FLASH
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
 * Write with ECC
 */
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= (u_char *) buf,
		.oobbuf	= NULL,
	};
	int ret;

1577 1578 1579
	onenand_get_device(mtd, FL_WRITING);
	ret = onenand_write_ops_nolock(mtd, to, &ops);
	onenand_release_device(mtd);
1580

1581
	*retlen = ops.retlen;
1582 1583 1584
	return ret;
}

1585 1586
/**
 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1587 1588 1589
 * @param mtd:		MTD device structure
 * @param to:		offset to write
 * @param ops:		oob operation description structure
1590 1591 1592 1593
 */
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
1594 1595
	int ret;

1596
	switch (ops->mode) {
1597 1598 1599 1600
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1601
		/* Not implemented yet */
1602 1603 1604
	default:
		return -EINVAL;
	}
1605

1606
	onenand_get_device(mtd, FL_WRITING);
1607
	if (ops->datbuf)
1608 1609 1610 1611
		ret = onenand_write_ops_nolock(mtd, to, ops);
	else
		ret = onenand_write_oob_nolock(mtd, to, ops);
	onenand_release_device(mtd);
1612

1613
	return ret;
1614 1615
}

1616
/**
1617
 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1618 1619 1620 1621 1622 1623 1624
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 * @param allowbbt	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
1625
static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1626 1627 1628 1629 1630 1631 1632 1633
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;

	/* Return info from the table */
	return bbm->isbad_bbt(mtd, ofs, allowbbt);
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/**
 * onenand_erase - [MTD Interface] erase block(s)
 * @param mtd		MTD device structure
 * @param instr		erase instruction
 *
 * Erase one ore more blocks
 */
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int block_size;
	loff_t addr;
	int len;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	block_size = (1 << this->erase_shift);

	/* Start address must align on block boundary */
	if (unlikely(instr->addr & (block_size - 1))) {
1655
		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1656 1657 1658 1659 1660
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (unlikely(instr->len & (block_size - 1))) {
1661
		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1662 1663 1664 1665 1666
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1667
		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_ERASING);

	/* Loop throught the pages */
	len = instr->len;
	addr = instr->addr;

	instr->state = MTD_ERASING;

	while (len) {
1683
		cond_resched();
1684

1685
		/* Check if we have a bad block, we do not erase bad blocks */
1686
		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1687 1688 1689 1690
			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
1691 1692 1693

		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);

1694 1695
		onenand_invalidate_bufferram(mtd, addr, block_size);

1696 1697 1698
		ret = this->wait(mtd, FL_ERASING);
		/* Check, if it is write protected */
		if (ret) {
1699
			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = addr;
			goto erase_exit;
		}

		len -= block_size;
		addr += block_size;
	}

	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	return ret;
}

/**
 * onenand_sync - [MTD Interface] sync
 * @param mtd		MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void onenand_sync(struct mtd_info *mtd)
{
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_SYNCING);

	/* Release it and go back */
	onenand_release_device(mtd);
}

/**
 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1745 1746
 *
 * Check whether the block is bad
1747 1748 1749
 */
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1750 1751
	int ret;

1752 1753 1754 1755
	/* Check for invalid offset */
	if (ofs > mtd->size)
		return -EINVAL;

1756 1757 1758 1759
	onenand_get_device(mtd, FL_READING);
	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
	onenand_release_device(mtd);
	return ret;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
}

/**
 * onenand_default_block_markbad - [DEFAULT] mark a block bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
 */
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;
	u_char buf[2] = {0, 0};
1775 1776 1777 1778 1779 1780
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = 2,
		.oobbuf = buf,
		.ooboffs = 0,
	};
1781 1782 1783 1784 1785 1786 1787 1788 1789
	int block;

	/* Get block number */
	block = ((int) ofs) >> bbm->bbt_erase_shift;
        if (bbm->bbt)
                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

        /* We write two bytes, so we dont have to mess with 16 bit access */
        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1790
        return onenand_write_oob_nolock(mtd, ofs, &ops);
1791 1792 1793 1794 1795 1796
}

/**
 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1797 1798
 *
 * Mark the block as bad
1799 1800 1801
 */
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	struct onenand_chip *this = mtd->priv;
	int ret;

	ret = onenand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

1813 1814 1815 1816
	onenand_get_device(mtd, FL_WRITING);
	ret = this->block_markbad(mtd, ofs);
	onenand_release_device(mtd);
	return ret;
1817 1818 1819
}

/**
K
Kyungmin Park 已提交
1820
 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1821 1822
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
K
Kyungmin Park 已提交
1823
 * @param len		number of bytes to lock or unlock
1824
 * @param cmd		lock or unlock command
1825
 *
K
Kyungmin Park 已提交
1826
 * Lock or unlock one or more blocks
1827
 */
K
Kyungmin Park 已提交
1828
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1829 1830 1831
{
	struct onenand_chip *this = mtd->priv;
	int start, end, block, value, status;
K
Kyungmin Park 已提交
1832
	int wp_status_mask;
1833 1834 1835 1836

	start = ofs >> this->erase_shift;
	end = len >> this->erase_shift;

K
Kyungmin Park 已提交
1837 1838 1839 1840 1841
	if (cmd == ONENAND_CMD_LOCK)
		wp_status_mask = ONENAND_WP_LS;
	else
		wp_status_mask = ONENAND_WP_US;

1842
	/* Continuous lock scheme */
1843
	if (this->options & ONENAND_HAS_CONT_LOCK) {
1844 1845 1846
		/* Set start block address */
		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
		/* Set end block address */
1847
		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1848 1849
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1850 1851

		/* There's no return value */
K
Kyungmin Park 已提交
1852
		this->wait(mtd, FL_LOCKING);
1853 1854 1855 1856 1857 1858 1859 1860

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1861
		if (!(status & wp_status_mask))
1862 1863 1864 1865 1866 1867
			printk(KERN_ERR "wp status = 0x%x\n", status);

		return 0;
	}

	/* Block lock scheme */
1868
	for (block = start; block < start + end; block++) {
1869 1870 1871 1872 1873 1874
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1875 1876
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1877 1878
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1879 1880

		/* There's no return value */
K
Kyungmin Park 已提交
1881
		this->wait(mtd, FL_LOCKING);
1882 1883 1884 1885 1886 1887 1888 1889

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1890
		if (!(status & wp_status_mask))
1891 1892
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
1893

1894 1895 1896
	return 0;
}

K
Kyungmin Park 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
/**
 * onenand_lock - [MTD Interface] Lock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Lock one or more blocks
 */
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
1907 1908 1909 1910 1911 1912
	int ret;

	onenand_get_device(mtd, FL_LOCKING);
	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
	onenand_release_device(mtd);
	return ret;
K
Kyungmin Park 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
}

/**
 * onenand_unlock - [MTD Interface] Unlock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Unlock one or more blocks
 */
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
1925 1926 1927 1928 1929 1930
	int ret;

	onenand_get_device(mtd, FL_LOCKING);
	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
	onenand_release_device(mtd);
	return ret;
K
Kyungmin Park 已提交
1931 1932
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/**
 * onenand_check_lock_status - [OneNAND Interface] Check lock status
 * @param this		onenand chip data structure
 *
 * Check lock status
 */
static void onenand_check_lock_status(struct onenand_chip *this)
{
	unsigned int value, block, status;
	unsigned int end;

	end = this->chipsize >> this->erase_shift;
	for (block = 0; block < end; block++) {
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
		if (!(status & ONENAND_WP_US))
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
}

/**
 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
 * @param mtd		MTD device structure
 *
 * Unlock all blocks
 */
static int onenand_unlock_all(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1973 1974
		/* Set start block address */
		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1975 1976 1977 1978
		/* Write unlock command */
		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);

		/* There's no return value */
K
Kyungmin Park 已提交
1979
		this->wait(mtd, FL_LOCKING);
1980 1981 1982 1983 1984 1985 1986

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Workaround for all block unlock in DDP */
1987
		if (ONENAND_IS_DDP(this)) {
1988
			/* 1st block on another chip */
1989 1990
			loff_t ofs = this->chipsize >> 1;
			size_t len = mtd->erasesize;
1991

1992
			onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1993 1994 1995 1996 1997 1998 1999
		}

		onenand_check_lock_status(this);

		return 0;
	}

2000
	onenand_do_lock_cmd(mtd, 0x0, this->chipsize, ONENAND_CMD_UNLOCK);
2001 2002 2003 2004

	return 0;
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
#ifdef CONFIG_MTD_ONENAND_OTP

/* Interal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
		size_t *retlen, u_char *buf);

/**
 * do_otp_read - [DEFAULT] Read OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of readbytes
 * @param buf		the databuffer to put/get data
 *
 * Read OTP block area.
 */
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
2025 2026 2027 2028 2029 2030
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= buf,
		.oobbuf	= NULL,
	};
2031 2032 2033 2034 2035 2036
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2037
	ret = onenand_read_ops_nolock(mtd, from, &ops);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_write - [DEFAULT] Write OTP block area
 * @param mtd		MTD device structure
2049
 * @param to		The offset to write
2050 2051 2052 2053 2054 2055
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write OTP block area.
 */
2056
static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2057 2058 2059 2060 2061
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	unsigned char *pbuf = buf;
	int ret;
2062
	struct mtd_oob_ops ops;
2063 2064

	/* Force buffer page aligned */
J
Joern Engel 已提交
2065
	if (len < mtd->writesize) {
2066
		memcpy(this->page_buf, buf, len);
J
Joern Engel 已提交
2067
		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2068
		pbuf = this->page_buf;
J
Joern Engel 已提交
2069
		len = mtd->writesize;
2070 2071 2072 2073 2074 2075
	}

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2076 2077
	ops.len = len;
	ops.ooblen = 0;
2078
	ops.datbuf = pbuf;
2079 2080 2081
	ops.oobbuf = NULL;
	ret = onenand_write_ops_nolock(mtd, to, &ops);
	*retlen = ops.retlen;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_lock - [DEFAULT] Lock OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to lock
 * @param retlen	pointer to variable to store the number of lock bytes
 * @param buf		the databuffer to put/get data
 *
 * Lock OTP block area.
 */
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
2104 2105 2106 2107 2108 2109
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = len,
		.oobbuf = buf,
		.ooboffs = 0,
	};
2110 2111 2112 2113 2114 2115
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2116
	ret = onenand_write_oob_nolock(mtd, from, &ops);
2117 2118

	*retlen = ops.oobretlen;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * onenand_otp_walk - [DEFAULT] Handle OTP operation
 * @param mtd		MTD device structure
 * @param from		The offset to read/write
 * @param len		number of bytes to read/write
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 * @param action	do given action
 * @param mode		specify user and factory
 *
 * Handle OTP operation.
 */
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf,
			otp_op_t action, int mode)
{
	struct onenand_chip *this = mtd->priv;
	int otp_pages;
	int density;
	int ret = 0;

	*retlen = 0;

	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	if (density < ONENAND_DEVICE_DENSITY_512Mb)
		otp_pages = 20;
	else
		otp_pages = 10;

	if (mode == MTD_OTP_FACTORY) {
J
Joern Engel 已提交
2157
		from += mtd->writesize * otp_pages;
2158 2159 2160 2161
		otp_pages = 64 - otp_pages;
	}

	/* Check User/Factory boundary */
J
Joern Engel 已提交
2162
	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2163 2164
		return 0;

2165
	onenand_get_device(mtd, FL_OTPING);
2166 2167 2168 2169 2170
	while (len > 0 && otp_pages > 0) {
		if (!action) {	/* OTP Info functions */
			struct otp_info *otpinfo;

			len -= sizeof(struct otp_info);
2171 2172 2173 2174
			if (len <= 0) {
				ret = -ENOSPC;
				break;
			}
2175 2176 2177

			otpinfo = (struct otp_info *) buf;
			otpinfo->start = from;
J
Joern Engel 已提交
2178
			otpinfo->length = mtd->writesize;
2179 2180
			otpinfo->locked = 0;

J
Joern Engel 已提交
2181
			from += mtd->writesize;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
			buf += sizeof(struct otp_info);
			*retlen += sizeof(struct otp_info);
		} else {
			size_t tmp_retlen;
			int size = len;

			ret = action(mtd, from, len, &tmp_retlen, buf);

			buf += size;
			len -= size;
			*retlen += size;

2194 2195
			if (ret)
				break;
2196 2197 2198
		}
		otp_pages--;
	}
2199
	onenand_release_device(mtd);
2200

2201
	return ret;
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
}

/**
 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read factory OTP info.
 */
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);

	return ret ? : retlen;
}

/**
 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read factory OTP area.
 */
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}

/**
 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read user OTP info.
 */
static int onenand_get_user_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);

	return ret ? : retlen;
}

/**
 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read user OTP area.
 */
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}

/**
 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write user OTP area.
 */
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}

/**
 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to unlock
 *
 * Write lock mark on spare area in page 0 in OTP block
 */
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len)
{
	unsigned char oob_buf[64];
	size_t retlen;
	int ret;

	memset(oob_buf, 0xff, mtd->oobsize);
	/*
	 * Note: OTP lock operation
	 *       OTP block : 0xXXFC
	 *       1st block : 0xXXF3 (If chip support)
	 *       Both      : 0xXXF0 (If chip support)
	 */
	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;

	/*
	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
	 * We write 16 bytes spare area instead of 2 bytes.
	 */
	from = 0;
	len = 16;

	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);

	return ret ? : retlen;
}
#endif	/* CONFIG_MTD_ONENAND_OTP */

2327
/**
2328
 * onenand_check_features - Check and set OneNAND features
2329 2330
 * @param mtd		MTD data structure
 *
2331 2332
 * Check and set OneNAND features
 * - lock scheme
2333
 * - two plane
2334
 */
2335
static void onenand_check_features(struct mtd_info *mtd)
2336 2337 2338 2339 2340 2341 2342 2343 2344
{
	struct onenand_chip *this = mtd->priv;
	unsigned int density, process;

	/* Lock scheme depends on density and process */
	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;

	/* Lock scheme */
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	switch (density) {
	case ONENAND_DEVICE_DENSITY_4Gb:
		this->options |= ONENAND_HAS_2PLANE;

	case ONENAND_DEVICE_DENSITY_2Gb:
		/* 2Gb DDP don't have 2 plane */
		if (!ONENAND_IS_DDP(this))
			this->options |= ONENAND_HAS_2PLANE;
		this->options |= ONENAND_HAS_UNLOCK_ALL;

	case ONENAND_DEVICE_DENSITY_1Gb:
2356
		/* A-Die has all block unlock */
2357
		if (process)
2358
			this->options |= ONENAND_HAS_UNLOCK_ALL;
2359 2360 2361 2362 2363
		break;

	default:
		/* Some OneNAND has continuous lock scheme */
		if (!process)
2364
			this->options |= ONENAND_HAS_CONT_LOCK;
2365
		break;
2366
	}
2367 2368 2369 2370 2371 2372 2373

	if (this->options & ONENAND_HAS_CONT_LOCK)
		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
	if (this->options & ONENAND_HAS_UNLOCK_ALL)
		printk(KERN_DEBUG "Chip support all block unlock\n");
	if (this->options & ONENAND_HAS_2PLANE)
		printk(KERN_DEBUG "Chip has 2 plane\n");
2374 2375
}

2376
/**
2377
 * onenand_print_device_info - Print device & version ID
2378
 * @param device        device ID
2379
 * @param version	version ID
2380
 *
2381
 * Print device & version ID
2382
 */
2383
static void onenand_print_device_info(int device, int version)
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
{
        int vcc, demuxed, ddp, density;

        vcc = device & ONENAND_DEVICE_VCC_MASK;
        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
        ddp = device & ONENAND_DEVICE_IS_DDP;
        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
                demuxed ? "" : "Muxed ",
                ddp ? "(DDP)" : "",
                (16 << density),
                vcc ? "2.65/3.3" : "1.8",
                device);
2397
	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
}

static const struct onenand_manufacturers onenand_manuf_ids[] = {
        {ONENAND_MFR_SAMSUNG, "Samsung"},
};

/**
 * onenand_check_maf - Check manufacturer ID
 * @param manuf         manufacturer ID
 *
 * Check manufacturer ID
 */
static int onenand_check_maf(int manuf)
{
2412 2413
	int size = ARRAY_SIZE(onenand_manuf_ids);
	char *name;
2414 2415
        int i;

2416
	for (i = 0; i < size; i++)
2417 2418 2419
                if (manuf == onenand_manuf_ids[i].id)
                        break;

2420 2421 2422 2423 2424 2425
	if (i < size)
		name = onenand_manuf_ids[i].name;
	else
		name = "Unknown";

	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2426

2427
	return (i == size);
2428 2429 2430 2431 2432 2433 2434
}

/**
 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
 * @param mtd		MTD device structure
 *
 * OneNAND detection method:
2435
 *   Compare the values from command with ones from register
2436 2437 2438 2439
 */
static int onenand_probe(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
2440
	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2441
	int density;
K
Kyungmin Park 已提交
2442 2443 2444 2445 2446 2447
	int syscfg;

	/* Save system configuration 1 */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	/* Clear Sync. Burst Read mode to read BootRAM */
	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2448 2449 2450 2451 2452 2453 2454 2455

	/* Send the command for reading device ID from BootRAM */
	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);

	/* Read manufacturer and device IDs from BootRAM */
	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);

K
Kyungmin Park 已提交
2456 2457 2458 2459 2460 2461 2462 2463
	/* Reset OneNAND to read default register values */
	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
	/* Wait reset */
	this->wait(mtd, FL_RESETING);

	/* Restore system configuration 1 */
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

2464 2465 2466 2467 2468 2469 2470
	/* Check manufacturer ID */
	if (onenand_check_maf(bram_maf_id))
		return -ENXIO;

	/* Read manufacturer and device IDs from Register */
	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2471
	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2472 2473 2474 2475 2476 2477

	/* Check OneNAND device */
	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
		return -ENXIO;

	/* Flash device information */
2478
	onenand_print_device_info(dev_id, ver_id);
2479
	this->device_id = dev_id;
2480
	this->version_id = ver_id;
2481 2482 2483

	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	this->chipsize = (16 << density) << 20;
2484
	/* Set density mask. it is used for DDP */
2485 2486 2487 2488
	if (ONENAND_IS_DDP(this))
		this->density_mask = (1 << (density + 6));
	else
		this->density_mask = 0;
2489 2490 2491

	/* OneNAND page size & block size */
	/* The data buffer size is equal to page size */
J
Joern Engel 已提交
2492 2493
	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
	mtd->oobsize = mtd->writesize >> 5;
2494
	/* Pages per a block are always 64 in OneNAND */
J
Joern Engel 已提交
2495
	mtd->erasesize = mtd->writesize << 6;
2496 2497

	this->erase_shift = ffs(mtd->erasesize) - 1;
J
Joern Engel 已提交
2498
	this->page_shift = ffs(mtd->writesize) - 1;
2499
	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2500 2501
	/* It's real page size */
	this->writesize = mtd->writesize;
2502 2503 2504 2505 2506

	/* REVIST: Multichip handling */

	mtd->size = this->chipsize;

2507 2508
	/* Check OneNAND features */
	onenand_check_features(mtd);
2509

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * We emulate the 4KiB page and 256KiB erase block size
	 * But oobsize is still 64 bytes.
	 * It is only valid if you turn on 2X program support,
	 * Otherwise it will be ignored by compiler.
	 */
	if (ONENAND_IS_2PLANE(this)) {
		mtd->writesize <<= 1;
		mtd->erasesize <<= 1;
	}

2521 2522 2523
	return 0;
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/**
 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
 * @param mtd		MTD device structure
 */
static int onenand_suspend(struct mtd_info *mtd)
{
	return onenand_get_device(mtd, FL_PM_SUSPENDED);
}

/**
 * onenand_resume - [MTD Interface] Resume the OneNAND flash
 * @param mtd		MTD device structure
 */
static void onenand_resume(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->state == FL_PM_SUSPENDED)
		onenand_release_device(mtd);
	else
		printk(KERN_ERR "resume() called for the chip which is not"
				"in suspended state\n");
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/**
 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
 * @param mtd		MTD device structure
 * @param maxchips	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values.
 */
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
2560
	int i;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	struct onenand_chip *this = mtd->priv;

	if (!this->read_word)
		this->read_word = onenand_readw;
	if (!this->write_word)
		this->write_word = onenand_writew;

	if (!this->command)
		this->command = onenand_command;
	if (!this->wait)
2571
		onenand_setup_wait(mtd);
2572 2573 2574 2575 2576 2577

	if (!this->read_bufferram)
		this->read_bufferram = onenand_read_bufferram;
	if (!this->write_bufferram)
		this->write_bufferram = onenand_write_bufferram;

2578 2579 2580 2581 2582
	if (!this->block_markbad)
		this->block_markbad = onenand_default_block_markbad;
	if (!this->scan_bbt)
		this->scan_bbt = onenand_default_bbt;

2583 2584 2585
	if (onenand_probe(mtd))
		return -ENXIO;

2586 2587 2588 2589 2590 2591
	/* Set Sync. Burst Read after probing */
	if (this->mmcontrol) {
		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
		this->read_bufferram = onenand_sync_read_bufferram;
	}

2592 2593
	/* Allocate buffers, if necessary */
	if (!this->page_buf) {
2594
		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2595 2596 2597 2598 2599 2600
		if (!this->page_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
			return -ENOMEM;
		}
		this->options |= ONENAND_PAGEBUF_ALLOC;
	}
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	if (!this->oob_buf) {
		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
		if (!this->oob_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
			if (this->options & ONENAND_PAGEBUF_ALLOC) {
				this->options &= ~ONENAND_PAGEBUF_ALLOC;
				kfree(this->page_buf);
			}
			return -ENOMEM;
		}
		this->options |= ONENAND_OOBBUF_ALLOC;
	}
2613

2614 2615 2616 2617
	this->state = FL_READY;
	init_waitqueue_head(&this->wq);
	spin_lock_init(&this->chip_lock);

2618 2619 2620
	/*
	 * Allow subpage writes up to oobsize.
	 */
2621 2622
	switch (mtd->oobsize) {
	case 64:
2623
		this->ecclayout = &onenand_oob_64;
2624
		mtd->subpage_sft = 2;
2625 2626 2627
		break;

	case 32:
2628
		this->ecclayout = &onenand_oob_32;
2629
		mtd->subpage_sft = 1;
2630 2631 2632 2633 2634
		break;

	default:
		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
			mtd->oobsize);
2635
		mtd->subpage_sft = 0;
2636
		/* To prevent kernel oops */
2637
		this->ecclayout = &onenand_oob_32;
2638 2639 2640
		break;
	}

2641
	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2642 2643 2644 2645 2646 2647

	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area
	 */
	this->ecclayout->oobavail = 0;
2648 2649
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
	    this->ecclayout->oobfree[i].length; i++)
2650 2651
		this->ecclayout->oobavail +=
			this->ecclayout->oobfree[i].length;
V
Vitaly Wool 已提交
2652
	mtd->oobavail = this->ecclayout->oobavail;
2653

2654
	mtd->ecclayout = this->ecclayout;
2655

2656 2657
	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
J
Joern Engel 已提交
2658
	mtd->flags = MTD_CAP_NANDFLASH;
2659 2660 2661 2662 2663 2664 2665
	mtd->erase = onenand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = onenand_read;
	mtd->write = onenand_write;
	mtd->read_oob = onenand_read_oob;
	mtd->write_oob = onenand_write_oob;
2666 2667 2668 2669 2670 2671 2672 2673
#ifdef CONFIG_MTD_ONENAND_OTP
	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
	mtd->get_user_prot_info = onenand_get_user_prot_info;
	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
2674
	mtd->sync = onenand_sync;
K
Kyungmin Park 已提交
2675
	mtd->lock = onenand_lock;
2676
	mtd->unlock = onenand_unlock;
2677 2678
	mtd->suspend = onenand_suspend;
	mtd->resume = onenand_resume;
2679 2680 2681 2682 2683
	mtd->block_isbad = onenand_block_isbad;
	mtd->block_markbad = onenand_block_markbad;
	mtd->owner = THIS_MODULE;

	/* Unlock whole block */
2684
	onenand_unlock_all(mtd);
2685

2686
	return this->scan_bbt(mtd);
2687 2688 2689 2690 2691 2692 2693 2694
}

/**
 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
 * @param mtd		MTD device structure
 */
void onenand_release(struct mtd_info *mtd)
{
2695 2696
	struct onenand_chip *this = mtd->priv;

2697 2698 2699 2700 2701 2702
#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);
2703 2704

	/* Free bad block table memory, if allocated */
2705 2706 2707
	if (this->bbm) {
		struct bbm_info *bbm = this->bbm;
		kfree(bbm->bbt);
2708
		kfree(this->bbm);
2709
	}
2710
	/* Buffers allocated by onenand_scan */
2711 2712
	if (this->options & ONENAND_PAGEBUF_ALLOC)
		kfree(this->page_buf);
2713 2714
	if (this->options & ONENAND_OOBBUF_ALLOC)
		kfree(this->oob_buf);
2715 2716 2717 2718 2719 2720 2721 2722
}

EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");