onenand_base.c 66.7 KB
Newer Older
1 2 3
/*
 *  linux/drivers/mtd/onenand/onenand_base.c
 *
4
 *  Copyright (C) 2005-2007 Samsung Electronics
5 6
 *  Kyungmin Park <kyungmin.park@samsung.com>
 *
7 8 9 10 11
 *  Credits:
 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
 *	auto-placement support, read-while load support, various fixes
 *	Copyright (C) Nokia Corporation, 2007
 *
12 13 14 15 16 17 18 19
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/sched.h>
21
#include <linux/interrupt.h>
22
#include <linux/jiffies.h>
23 24 25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

/**
 * onenand_oob_64 - oob info for large (2KB) page
 */
32
static struct nand_ecclayout onenand_oob_64 = {
33 34 35 36 37 38 39 40 41
	.eccbytes	= 20,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		40, 41, 42, 43, 44,
		56, 57, 58, 59, 60,
		},
	.oobfree	= {
		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42 43
		{34, 3}, {46, 2}, {50, 3}, {62, 2}
	}
44 45 46 47 48
};

/**
 * onenand_oob_32 - oob info for middle (1KB) page
 */
49
static struct nand_ecclayout onenand_oob_32 = {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	.eccbytes	= 10,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		},
	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};

static const unsigned char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
};

/**
 * onenand_readw - [OneNAND Interface] Read OneNAND register
 * @param addr		address to read
 *
 * Read OneNAND register
 */
static unsigned short onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

/**
 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 * @param value		value to write
 * @param addr		address to write
 *
 * Write OneNAND register with value
 */
static void onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

/**
 * onenand_block_address - [DEFAULT] Get block address
94
 * @param this		onenand chip data structure
95 96 97 98 99
 * @param block		the block
 * @return		translated block address if DDP, otherwise same
 *
 * Setup Start Address 1 Register (F100h)
 */
100
static int onenand_block_address(struct onenand_chip *this, int block)
101
{
102 103 104
	/* Device Flash Core select, NAND Flash Block Address */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105 106 107 108 109 110

	return block;
}

/**
 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111
 * @param this		onenand chip data structure
112 113 114 115 116
 * @param block		the block
 * @return		set DBS value if DDP, otherwise 0
 *
 * Setup Start Address 2 Register (F101h) for DDP
 */
117
static int onenand_bufferram_address(struct onenand_chip *this, int block)
118
{
119 120 121
	/* Device BufferRAM Select */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1;
122

123
	return ONENAND_DDP_CHIP0;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

/**
 * onenand_page_address - [DEFAULT] Get page address
 * @param page		the page address
 * @param sector	the sector address
 * @return		combined page and sector address
 *
 * Setup Start Address 8 Register (F107h)
 */
static int onenand_page_address(int page, int sector)
{
	/* Flash Page Address, Flash Sector Address */
	int fpa, fsa;

	fpa = page & ONENAND_FPA_MASK;
	fsa = sector & ONENAND_FSA_MASK;

	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}

/**
 * onenand_buffer_address - [DEFAULT] Get buffer address
 * @param dataram1	DataRAM index
 * @param sectors	the sector address
 * @param count		the number of sectors
 * @return		the start buffer value
 *
 * Setup Start Buffer Register (F200h)
 */
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
	int bsa, bsc;

	/* BufferRAM Sector Address */
	bsa = sectors & ONENAND_BSA_MASK;

	if (dataram1)
		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
	else
		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */

	/* BufferRAM Sector Count */
	bsc = count & ONENAND_BSC_MASK;

	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}

/**
 * onenand_command - [DEFAULT] Send command to OneNAND device
 * @param mtd		MTD device structure
 * @param cmd		the command to be sent
 * @param addr		offset to read from or write to
 * @param len		number of bytes to read or write
 *
 * Send command to OneNAND device. This function is used for middle/large page
 * devices (1KB/2KB Bytes per page)
 */
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
	struct onenand_chip *this = mtd->priv;
185
	int value, readcmd = 0, block_cmd = 0;
186 187 188 189 190 191 192
	int block, page;

	/* Address translation */
	switch (cmd) {
	case ONENAND_CMD_UNLOCK:
	case ONENAND_CMD_LOCK:
	case ONENAND_CMD_LOCK_TIGHT:
193
	case ONENAND_CMD_UNLOCK_ALL:
194 195 196 197 198 199
		block = -1;
		page = -1;
		break;

	case ONENAND_CMD_ERASE:
	case ONENAND_CMD_BUFFERRAM:
200 201
	case ONENAND_CMD_OTP_ACCESS:
		block_cmd = 1;
202 203 204 205 206 207 208
		block = (int) (addr >> this->erase_shift);
		page = -1;
		break;

	default:
		block = (int) (addr >> this->erase_shift);
		page = (int) (addr >> this->page_shift);
209 210 211 212 213 214 215 216 217

		if (ONENAND_IS_2PLANE(this)) {
			/* Make the even block number */
			block &= ~1;
			/* Is it the odd plane? */
			if (addr & this->writesize)
				block++;
			page >>= 1;
		}
218 219 220 221 222 223 224
		page &= this->page_mask;
		break;
	}

	/* NOTE: The setting order of the registers is very important! */
	if (cmd == ONENAND_CMD_BUFFERRAM) {
		/* Select DataRAM for DDP */
225
		value = onenand_bufferram_address(this, block);
226 227
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);

228 229 230 231 232 233
		if (ONENAND_IS_2PLANE(this))
			/* It is always BufferRAM0 */
			ONENAND_SET_BUFFERRAM0(this);
		else
			/* Switch to the next data buffer */
			ONENAND_SET_NEXT_BUFFERRAM(this);
234 235 236 237 238 239

		return 0;
	}

	if (block != -1) {
		/* Write 'DFS, FBA' of Flash */
240
		value = onenand_block_address(this, block);
241
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
242

K
Kyungmin Park 已提交
243
		if (block_cmd) {
244 245 246 247
			/* Select DataRAM for DDP */
			value = onenand_bufferram_address(this, block);
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
248 249 250
	}

	if (page != -1) {
251 252
		/* Now we use page size operation */
		int sectors = 4, count = 4;
253 254 255 256 257 258 259 260 261 262
		int dataram;

		switch (cmd) {
		case ONENAND_CMD_READ:
		case ONENAND_CMD_READOOB:
			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
			readcmd = 1;
			break;

		default:
263 264
			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
				cmd = ONENAND_CMD_2X_PROG;
265 266 267 268 269 270 271 272 273 274 275
			dataram = ONENAND_CURRENT_BUFFERRAM(this);
			break;
		}

		/* Write 'FPA, FSA' of Flash */
		value = onenand_page_address(page, sectors);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);

		/* Write 'BSA, BSC' of DataRAM */
		value = onenand_buffer_address(dataram, sectors, count);
		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
276

277 278
		if (readcmd) {
			/* Select DataRAM for DDP */
279
			value = onenand_bufferram_address(this, block);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
	}

	/* Interrupt clear */
	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);

	/* Write command */
	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);

	return 0;
}

/**
 * onenand_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done. This applies to all OneNAND command
 * Read can take up to 30us, erase up to 2ms and program up to 350us
 * according to general OneNAND specs
 */
static int onenand_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip * this = mtd->priv;
	unsigned long timeout;
	unsigned int flags = ONENAND_INT_MASTER;
	unsigned int interrupt = 0;
308
	unsigned int ctrl;
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

		if (interrupt & flags)
			break;

		if (state != FL_READING)
			cond_resched();
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
327
		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
328
		if (ctrl & ONENAND_CTRL_LOCK)
329
			printk(KERN_ERR "onenand_wait: it's locked error.\n");
330
		return ctrl;
331 332 333
	}

	if (interrupt & ONENAND_INT_READ) {
334
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
335
		if (ecc) {
336
			printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
337
			if (ecc & ONENAND_ECC_2BIT_ALL) {
338
				mtd->ecc_stats.failed++;
339 340
				return ecc;
			} else if (ecc & ONENAND_ECC_1BIT_ALL)
341
				mtd->ecc_stats.corrected++;
342
		}
343 344 345
	} else if (state == FL_READING) {
		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return -EIO;
346 347 348 349 350
	}

	return 0;
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 * @param irq		onenand interrupt number
 * @param dev_id	interrupt data
 *
 * complete the work
 */
static irqreturn_t onenand_interrupt(int irq, void *data)
{
	struct onenand_chip *this = (struct onenand_chip *) data;

	/* To handle shared interrupt */
	if (!this->complete.done)
		complete(&this->complete);

	return IRQ_HANDLED;
}

/*
 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;

	wait_for_completion(&this->complete);

	return onenand_wait(mtd, state);
}

/*
 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Try interrupt based wait (It is used one-time)
 */
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long remain, timeout;

	/* We use interrupt wait first */
	this->wait = onenand_interrupt_wait;

	timeout = msecs_to_jiffies(100);
	remain = wait_for_completion_timeout(&this->complete, timeout);
	if (!remain) {
		printk(KERN_INFO "OneNAND: There's no interrupt. "
				"We use the normal wait\n");

		/* Release the irq */
		free_irq(this->irq, this);
D
David Woodhouse 已提交
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
		this->wait = onenand_wait;
	}

	return onenand_wait(mtd, state);
}

/*
 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 * @param mtd		MTD device structure
 *
 * There's two method to wait onenand work
 * 1. polling - read interrupt status register
 * 2. interrupt - use the kernel interrupt method
 */
static void onenand_setup_wait(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	int syscfg;

	init_completion(&this->complete);

	if (this->irq <= 0) {
		this->wait = onenand_wait;
		return;
	}

	if (request_irq(this->irq, &onenand_interrupt,
				IRQF_SHARED, "onenand", this)) {
		/* If we can't get irq, use the normal wait */
		this->wait = onenand_wait;
		return;
	}

	/* Enable interrupt */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	syscfg |= ONENAND_SYS_CFG1_IOBE;
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

	this->wait = onenand_try_interrupt_wait;
}

450 451 452 453 454 455 456 457 458 459 460 461 462
/**
 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @return		offset given area
 *
 * Return BufferRAM offset given area
 */
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
463
		/* Note: the 'this->writesize' is a real page size */
464
		if (area == ONENAND_DATARAM)
465
			return this->writesize;
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

/**
 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area
 */
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

493 494 495 496 497 498 499 500 501 502 503
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

504 505 506 507 508
	memcpy(buffer, bufferram + offset, count);

	return 0;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/**
 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area with Sync. Burst Mode
 */
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);

531 532 533 534 535 536 537 538 539 540 541
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

542 543 544 545 546 547 548
	memcpy(buffer, bufferram + offset, count);

	this->mmcontrol(mtd, 0);

	return 0;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/**
 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Write the BufferRAM area
 */
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
		const unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;
		int byte_offset;

		/* Align with word(16-bit) size */
		count--;

		/* Calculate byte access offset */
		byte_offset = offset + count;

		/* Read word and save byte */
		word = this->read_word(bufferram + byte_offset);
		word = (word & ~0xff) | buffer[count];
		this->write_word(word, bufferram + byte_offset);
	}

585 586 587 588 589
	memcpy(bufferram + offset, buffer, count);

	return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/**
 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 * @param mtd		MTD data structure
 * @param addr		address to check
 * @return		blockpage address
 *
 * Get blockpage address at 2x program mode
 */
static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
	int blockpage, block, page;

	/* Calculate the even block number */
	block = (int) (addr >> this->erase_shift) & ~1;
	/* Is it the odd plane? */
	if (addr & this->writesize)
		block++;
	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
	blockpage = (block << 7) | page;

	return blockpage;
}

614 615 616 617
/**
 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to check
618
 * @return		1 if there are valid data, otherwise 0
619 620 621 622 623 624
 *
 * Check bufferram if there is data we required
 */
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
625
	int blockpage, found = 0;
626
	unsigned int i;
627

628 629 630 631
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
632

633
	/* Is there valid data? */
634
	i = ONENAND_CURRENT_BUFFERRAM(this);
635
	if (this->bufferram[i].blockpage == blockpage)
636 637 638 639 640 641 642 643 644
		found = 1;
	else {
		/* Check another BufferRAM */
		i = ONENAND_NEXT_BUFFERRAM(this);
		if (this->bufferram[i].blockpage == blockpage) {
			ONENAND_SET_NEXT_BUFFERRAM(this);
			found = 1;
		}
	}
645

646 647 648 649 650
	if (found && ONENAND_IS_DDP(this)) {
		/* Select DataRAM for DDP */
		int block = (int) (addr >> this->erase_shift);
		int value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
651
	}
652

653
	return found;
654 655 656 657 658 659 660 661 662 663
}

/**
 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to update
 * @param valid		valid flag
 *
 * Update BufferRAM information
 */
664
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
665 666 667
		int valid)
{
	struct onenand_chip *this = mtd->priv;
668 669
	int blockpage;
	unsigned int i;
670

671 672 673 674
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
675

676 677
	/* Invalidate another BufferRAM */
	i = ONENAND_NEXT_BUFFERRAM(this);
678
	if (this->bufferram[i].blockpage == blockpage)
679
		this->bufferram[i].blockpage = -1;
680 681 682

	/* Update BufferRAM */
	i = ONENAND_CURRENT_BUFFERRAM(this);
683 684 685 686
	if (valid)
		this->bufferram[i].blockpage = blockpage;
	else
		this->bufferram[i].blockpage = -1;
687 688
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
/**
 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		start address to invalidate
 * @param len		length to invalidate
 *
 * Invalidate BufferRAM information
 */
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
		unsigned int len)
{
	struct onenand_chip *this = mtd->priv;
	int i;
	loff_t end_addr = addr + len;

	/* Invalidate BufferRAM */
	for (i = 0; i < MAX_BUFFERRAM; i++) {
		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
		if (buf_addr >= addr && buf_addr < end_addr)
			this->bufferram[i].blockpage = -1;
	}
}

712 713 714 715 716 717 718
/**
 * onenand_get_device - [GENERIC] Get chip for selected access
 * @param mtd		MTD device structure
 * @param new_state	the state which is requested
 *
 * Get the device and lock it for exclusive access
 */
719
static int onenand_get_device(struct mtd_info *mtd, int new_state)
720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	struct onenand_chip *this = mtd->priv;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * Grab the lock and see if the device is available
	 */
	while (1) {
		spin_lock(&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock(&this->chip_lock);
			break;
		}
734 735 736 737
		if (new_state == FL_PM_SUSPENDED) {
			spin_unlock(&this->chip_lock);
			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
		}
738 739 740 741 742 743
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&this->wq, &wait);
		spin_unlock(&this->chip_lock);
		schedule();
		remove_wait_queue(&this->wq, &wait);
	}
744 745

	return 0;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/**
 * onenand_release_device - [GENERIC] release chip
 * @param mtd		MTD device structure
 *
 * Deselect, release chip lock and wake up anyone waiting on the device
 */
static void onenand_release_device(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	/* Release the chip */
	spin_lock(&this->chip_lock);
	this->state = FL_READY;
	wake_up(&this->wq);
	spin_unlock(&this->chip_lock);
}

/**
766
 * onenand_read - [MTD Interface] Read data from flash
767 768 769 770 771 772
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
773 774 775 776
 * Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
777 778
{
	struct onenand_chip *this = mtd->priv;
779
	struct mtd_ecc_stats stats;
780 781
	int read = 0, column;
	int thislen;
782
	int ret = 0, boundary = 0;
783
	int writesize = this->writesize;
784

785
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
786 787 788

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
789
		printk(KERN_ERR "onenand_read: Attempt read beyond end of device\n");
790 791 792 793 794 795 796
		*retlen = 0;
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

797
	stats = mtd->ecc_stats;
798

799 800 801 802 803
 	/* Read-while-load method */

 	/* Do first load to bufferRAM */
 	if (read < len) {
 		if (!onenand_check_bufferram(mtd, from)) {
804
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
805 806 807 808 809
 			ret = this->wait(mtd, FL_READING);
 			onenand_update_bufferram(mtd, from, !ret);
 		}
 	}

810 811 812 813
	thislen = min_t(int, writesize, len - read);
	column = from & (writesize - 1);
	if (column + thislen > writesize)
		thislen = writesize - column;
814 815 816 817 818

 	while (!ret) {
 		/* If there is more to load then start next load */
 		from += thislen;
 		if (read + thislen < len) {
819
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
820 821 822 823 824
 			/*
 			 * Chip boundary handling in DDP
 			 * Now we issued chip 1 read and pointed chip 1
 			 * bufferam so we have to point chip 0 bufferam.
 			 */
825 826 827
 			if (ONENAND_IS_DDP(this) &&
 			    unlikely(from == (this->chipsize >> 1))) {
 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
828 829 830
 				boundary = 1;
 			} else
 				boundary = 0;
831 832 833 834 835 836 837 838 839
 			ONENAND_SET_PREV_BUFFERRAM(this);
 		}
 		/* While load is going, read from last bufferRAM */
 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
 		/* See if we are done */
 		read += thislen;
 		if (read == len)
 			break;
 		/* Set up for next read from bufferRAM */
840
 		if (unlikely(boundary))
841
 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
842 843
 		ONENAND_SET_NEXT_BUFFERRAM(this);
 		buf += thislen;
844
		thislen = min_t(int, writesize, len - read);
845 846 847 848 849 850
 		column = 0;
 		cond_resched();
 		/* Now wait for load */
 		ret = this->wait(mtd, FL_READING);
 		onenand_update_bufferram(mtd, from, !ret);
 	}
851 852 853 854 855 856 857 858 859 860

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
	*retlen = read;
861 862 863 864

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

865 866 867
	if (ret)
		return ret;

868
	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
869 870
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param buf		destination address
 * @param column	oob offset to read from
 * @param thislen	oob length to read
 */
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
				int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int readcol = column;
	int readend = column + thislen;
	int lastgap = 0;
886
	unsigned int i;
887
	uint8_t *oob_buf = this->oob_buf;
888

889 890
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
891 892 893 894 895 896
		if (readcol >= lastgap)
			readcol += free->offset - lastgap;
		if (readend >= lastgap)
			readend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
897
	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
898 899
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
900 901 902 903 904 905 906
		int free_end = free->offset + free->length;
		if (free->offset < readend && free_end > readcol) {
			int st = max_t(int,free->offset,readcol);
			int ed = min_t(int,free_end,readend);
			int n = ed - st;
			memcpy(buf, oob_buf + st, n);
			buf += n;
907
		} else if (column == 0)
908
			break;
909 910 911 912
	}
	return 0;
}

913
/**
914
 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
915 916 917 918 919
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
920
 * @param mode		operation mode
921 922 923
 *
 * OneNAND read out-of-band data from the spare area
 */
924 925
static int onenand_do_read_oob(struct mtd_info *mtd, loff_t from,
			struct mtd_oob_ops *ops)
926 927
{
	struct onenand_chip *this = mtd->priv;
928
	int read = 0, thislen, column, oobsize;
929 930 931
	size_t len = ops->ooblen;
	mtd_oob_mode_t mode = ops->mode;
	u_char *buf = ops->oobbuf;
932 933
	int ret = 0;

934 935
	from += ops->ooboffs;

936 937 938
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);

	/* Initialize return length value */
939
	ops->oobretlen = 0;
940

941 942 943 944 945 946 947 948
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = from & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
949
		printk(KERN_ERR "onenand_read_oob: Attempted to start read outside oob\n");
950 951 952
		return -EINVAL;
	}

953
	/* Do not allow reads past end of device */
954 955 956
	if (unlikely(from >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (from >> this->page_shift)) * oobsize)) {
957
		printk(KERN_ERR "onenand_read_oob: Attempted to read beyond end of device\n");
958 959 960 961 962 963 964
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	while (read < len) {
965 966
		cond_resched();

967
		thislen = oobsize - column;
968 969 970 971 972 973 974 975 976
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = this->wait(mtd, FL_READING);
		/* First copy data and check return value for ECC handling */

977 978 979 980
		if (mode == MTD_OOB_AUTO)
			onenand_transfer_auto_oob(mtd, buf, column, thislen);
		else
			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
981

982
		if (ret) {
983
			printk(KERN_ERR "onenand_read_oob: read failed = 0x%x\n", ret);
984
			break;
985 986
		}

987 988 989 990 991 992 993 994 995 996
		read += thislen;

		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Page size */
J
Joern Engel 已提交
997
			from += mtd->writesize;
998 999 1000 1001 1002 1003 1004
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

1005
	ops->oobretlen = read;
1006 1007 1008
	return ret;
}

1009 1010
/**
 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
1011 1012 1013
 * @param mtd:		MTD device structure
 * @param from:		offset to read from
 * @param ops:		oob operation description structure
1014 1015 1016 1017
 */
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
1018
	switch (ops->mode) {
1019 1020 1021 1022
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1023
		/* Not implemented yet */
1024 1025 1026
	default:
		return -EINVAL;
	}
1027
	return onenand_do_read_oob(mtd, from, ops);
1028 1029
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * onenand_bbt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long timeout;
	unsigned int interrupt;
	unsigned int ctrl;

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
		if (interrupt & ONENAND_INT_MASTER)
			break;
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
		/* Initial bad block case */
		if (ctrl & ONENAND_CTRL_LOAD)
			return ONENAND_BBT_READ_ERROR;
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	if (interrupt & ONENAND_INT_READ) {
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
		if (ecc & ONENAND_ECC_2BIT_ALL)
			return ONENAND_BBT_READ_ERROR;
	} else {
		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	return 0;
}

/**
 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
 * @param mtd		MTD device structure
 * @param from		offset to read from
1080
 * @param ops		oob operation description structure
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
 *
 * OneNAND read out-of-band data from the spare area for bbt scan
 */
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
			    struct mtd_oob_ops *ops)
{
	struct onenand_chip *this = mtd->priv;
	int read = 0, thislen, column;
	int ret = 0;
	size_t len = ops->ooblen;
	u_char *buf = ops->oobbuf;

1093
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	/* Initialize return value */
	ops->oobretlen = 0;

	/* Do not allow reads past end of device */
	if (unlikely((from + len) > mtd->size)) {
		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	column = from & (mtd->oobsize - 1);

	while (read < len) {
		cond_resched();

		thislen = mtd->oobsize - column;
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = onenand_bbt_wait(mtd, FL_READING);
		if (ret)
			break;

		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
		read += thislen;
		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Update Page size */
1133
			from += this->writesize;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	ops->oobretlen = read;
	return ret;
}

1145
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1146 1147 1148 1149 1150 1151 1152
/**
 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 * @param to		offset to read from
 *
 */
1153
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1154 1155
{
	struct onenand_chip *this = mtd->priv;
1156
	char oobbuf[64];
1157 1158 1159 1160 1161 1162 1163 1164
	int status, i;

	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
	onenand_update_bufferram(mtd, to, 0);
	status = this->wait(mtd, FL_READING);
	if (status)
		return status;

1165 1166 1167
	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
	for (i = 0; i < mtd->oobsize; i++)
		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1168 1169 1170 1171 1172
			return -EBADMSG;

	return 0;
}

1173
/**
1174 1175 1176 1177 1178
 * onenand_verify - [GENERIC] verify the chip contents after a write
 * @param mtd          MTD device structure
 * @param buf          the databuffer to verify
 * @param addr         offset to read from
 * @param len          number of bytes to read and compare
1179 1180
 *
 */
1181
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1182 1183
{
	struct onenand_chip *this = mtd->priv;
1184
	void __iomem *dataram;
1185
	int ret = 0;
1186
	int thislen, column;
1187

1188
	while (len != 0) {
1189 1190 1191 1192
		thislen = min_t(int, this->writesize, len);
		column = addr & (this->writesize - 1);
		if (column + thislen > this->writesize)
			thislen = this->writesize - column;
1193

1194
		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1195

1196 1197 1198 1199 1200
		onenand_update_bufferram(mtd, addr, 0);

		ret = this->wait(mtd, FL_READING);
		if (ret)
			return ret;
1201

1202
		onenand_update_bufferram(mtd, addr, 1);
1203

1204 1205
		dataram = this->base + ONENAND_DATARAM;
		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1206

1207 1208 1209 1210 1211 1212 1213
		if (memcmp(buf, dataram + column, thislen))
			return -EBADMSG;

		len -= thislen;
		buf += thislen;
		addr += thislen;
	}
1214

1215 1216 1217
	return 0;
}
#else
1218
#define onenand_verify(...)		(0)
1219
#define onenand_verify_oob(...)		(0)
1220 1221
#endif

1222
#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1223 1224

/**
1225
 * onenand_write - [MTD Interface] write buffer to FLASH
1226 1227 1228 1229 1230 1231
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
1232
 * Write with ECC
1233
 */
1234 1235
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
1236 1237 1238 1239
{
	struct onenand_chip *this = mtd->priv;
	int written = 0;
	int ret = 0;
1240
	int column, subpage;
1241

1242
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1243 1244 1245 1246 1247 1248

	/* Initialize retlen, in case of early exit */
	*retlen = 0;

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
1249
		printk(KERN_ERR "onenand_write: Attempt write to past end of device\n");
1250 1251 1252 1253 1254
		return -EINVAL;
	}

	/* Reject writes, which are not page aligned */
        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1255
                printk(KERN_ERR "onenand_write: Attempt to write not page aligned data\n");
1256 1257 1258
                return -EINVAL;
        }

1259 1260
	column = to & (mtd->writesize - 1);

1261 1262 1263 1264 1265
	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_WRITING);

	/* Loop until all data write */
	while (written < len) {
1266
		int thislen = min_t(int, mtd->writesize - column, len - written);
1267 1268
		u_char *wbuf = (u_char *) buf;

1269 1270
		cond_resched();

1271
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1272 1273

		/* Partial page write */
1274
		subpage = thislen < mtd->writesize;
1275 1276
		if (subpage) {
			memset(this->page_buf, 0xff, mtd->writesize);
1277
			memcpy(this->page_buf + column, buf, thislen);
1278 1279
			wbuf = this->page_buf;
		}
1280

1281
		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1282 1283
		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);

J
Joern Engel 已提交
1284
		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1285

1286 1287
		ret = this->wait(mtd, FL_WRITING);

1288
		/* In partial page write we don't update bufferram */
1289
		onenand_update_bufferram(mtd, to, !ret && !subpage);
1290 1291 1292 1293
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
		}
1294 1295

		if (ret) {
1296
			printk(KERN_ERR "onenand_write: write filaed %d\n", ret);
1297
			break;
1298 1299 1300
		}

		/* Only check verify write turn on */
1301
		ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1302
		if (ret) {
1303
			printk(KERN_ERR "onenand_write: verify failed %d\n", ret);
1304
			break;
1305 1306
		}

1307
		written += thislen;
1308

1309 1310 1311
		if (written == len)
			break;

1312
		column = 0;
1313 1314 1315 1316 1317 1318 1319 1320
		to += thislen;
		buf += thislen;
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = written;
1321

1322 1323 1324
	return ret;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/**
 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param oob_buf	oob buffer
 * @param buf		source address
 * @param column	oob offset to write to
 * @param thislen	oob length to write
 */
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
				  const u_char *buf, int column, int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int writecol = column;
	int writeend = column + thislen;
	int lastgap = 0;
1341
	unsigned int i;
1342

1343 1344
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1345 1346 1347 1348 1349 1350
		if (writecol >= lastgap)
			writecol += free->offset - lastgap;
		if (writeend >= lastgap)
			writeend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
1351 1352
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1353 1354 1355 1356 1357 1358 1359
		int free_end = free->offset + free->length;
		if (free->offset < writeend && free_end > writecol) {
			int st = max_t(int,free->offset,writecol);
			int ed = min_t(int,free_end,writeend);
			int n = ed - st;
			memcpy(oob_buf + st, buf, n);
			buf += n;
1360
		} else if (column == 0)
1361
			break;
1362 1363 1364 1365
	}
	return 0;
}

1366
/**
1367
 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1368 1369 1370 1371 1372
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
1373
 * @param mode		operation mode
1374 1375 1376
 *
 * OneNAND write out-of-band
 */
1377 1378
static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to,
				struct mtd_oob_ops *ops)
1379 1380
{
	struct onenand_chip *this = mtd->priv;
1381
	int column, ret = 0, oobsize;
1382
	int written = 0;
1383
	u_char *oobbuf;
1384 1385 1386 1387 1388
	size_t len = ops->ooblen;
	const u_char *buf = ops->oobbuf;
	mtd_oob_mode_t mode = ops->mode;

	to += ops->ooboffs;
1389 1390 1391 1392

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);

	/* Initialize retlen, in case of early exit */
1393
	ops->oobretlen = 0;
1394

1395 1396 1397 1398 1399 1400 1401 1402
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = to & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
1403
		printk(KERN_ERR "onenand_write_oob: Attempted to start write outside oob\n");
1404 1405 1406
		return -EINVAL;
	}

1407
	/* For compatibility with NAND: Do not allow write past end of page */
1408
	if (unlikely(column + len > oobsize)) {
1409
		printk(KERN_ERR "onenand_write_oob: "
1410 1411 1412 1413
		      "Attempt to write past end of page\n");
		return -EINVAL;
	}

1414 1415 1416 1417
	/* Do not allow reads past end of device */
	if (unlikely(to >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (to >> this->page_shift)) * oobsize)) {
1418
		printk(KERN_ERR "onenand_write_oob: Attempted to write past end of device\n");
1419 1420 1421 1422 1423 1424
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_WRITING);

1425
	oobbuf = this->oob_buf;
1426

1427 1428
	/* Loop until all data write */
	while (written < len) {
1429
		int thislen = min_t(int, oobsize, len - written);
1430

1431 1432
		cond_resched();

1433 1434
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);

1435 1436
		/* We send data to spare ram with oobsize
		 * to prevent byte access */
1437
		memset(oobbuf, 0xff, mtd->oobsize);
1438
		if (mode == MTD_OOB_AUTO)
1439
			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1440
		else
1441 1442
			memcpy(oobbuf + column, buf, thislen);
		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1443 1444 1445 1446

		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);

		onenand_update_bufferram(mtd, to, 0);
1447 1448 1449 1450
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, 0);
		}
1451

1452 1453
		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
1454
			printk(KERN_ERR "onenand_write_oob: write failed %d\n", ret);
1455
			break;
1456 1457
		}

1458
		ret = onenand_verify_oob(mtd, oobbuf, to);
1459
		if (ret) {
1460
			printk(KERN_ERR "onenand_write_oob: verify failed %d\n", ret);
1461
			break;
1462
		}
1463 1464 1465 1466 1467

		written += thislen;
		if (written == len)
			break;

1468
		to += mtd->writesize;
1469
		buf += thislen;
1470
		column = 0;
1471 1472 1473 1474 1475
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

1476
	ops->oobretlen = written;
1477

1478
	return ret;
1479 1480
}

1481 1482
/**
 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1483 1484 1485
 * @param mtd:		MTD device structure
 * @param to:		offset to write
 * @param ops:		oob operation description structure
1486 1487 1488 1489
 */
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
1490
	switch (ops->mode) {
1491 1492 1493 1494
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1495
		/* Not implemented yet */
1496 1497 1498
	default:
		return -EINVAL;
	}
1499
	return onenand_do_write_oob(mtd, to, ops);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/**
 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 * @param getchip	0, if the chip is already selected
 * @param allowbbt	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;

	/* Return info from the table */
	return bbm->isbad_bbt(mtd, ofs, allowbbt);
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/**
 * onenand_erase - [MTD Interface] erase block(s)
 * @param mtd		MTD device structure
 * @param instr		erase instruction
 *
 * Erase one ore more blocks
 */
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int block_size;
	loff_t addr;
	int len;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	block_size = (1 << this->erase_shift);

	/* Start address must align on block boundary */
	if (unlikely(instr->addr & (block_size - 1))) {
1542
		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1543 1544 1545 1546 1547
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (unlikely(instr->len & (block_size - 1))) {
1548
		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1549 1550 1551 1552 1553
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1554
		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_ERASING);

	/* Loop throught the pages */
	len = instr->len;
	addr = instr->addr;

	instr->state = MTD_ERASING;

	while (len) {
1570
		cond_resched();
1571

1572 1573 1574 1575 1576 1577
		/* Check if we have a bad block, we do not erase bad blocks */
		if (onenand_block_checkbad(mtd, addr, 0, 0)) {
			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
1578 1579 1580

		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);

1581 1582
		onenand_invalidate_bufferram(mtd, addr, block_size);

1583 1584 1585
		ret = this->wait(mtd, FL_ERASING);
		/* Check, if it is write protected */
		if (ret) {
1586
			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = addr;
			goto erase_exit;
		}

		len -= block_size;
		addr += block_size;
	}

	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	return ret;
}

/**
 * onenand_sync - [MTD Interface] sync
 * @param mtd		MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void onenand_sync(struct mtd_info *mtd)
{
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_SYNCING);

	/* Release it and go back */
	onenand_release_device(mtd);
}

/**
 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1632 1633
 *
 * Check whether the block is bad
1634 1635 1636
 */
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	/* Check for invalid offset */
	if (ofs > mtd->size)
		return -EINVAL;

	return onenand_block_checkbad(mtd, ofs, 1, 0);
}

/**
 * onenand_default_block_markbad - [DEFAULT] mark a block bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
 */
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;
	u_char buf[2] = {0, 0};
1657 1658 1659 1660 1661 1662
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = 2,
		.oobbuf = buf,
		.ooboffs = 0,
	};
1663 1664 1665 1666 1667 1668 1669 1670 1671
	int block;

	/* Get block number */
	block = ((int) ofs) >> bbm->bbt_erase_shift;
        if (bbm->bbt)
                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

        /* We write two bytes, so we dont have to mess with 16 bit access */
        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1672
        return onenand_do_write_oob(mtd, ofs, &ops);
1673 1674 1675 1676 1677 1678
}

/**
 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1679 1680
 *
 * Mark the block as bad
1681 1682 1683
 */
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	struct onenand_chip *this = mtd->priv;
	int ret;

	ret = onenand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

	return this->block_markbad(mtd, ofs);
1696 1697 1698
}

/**
K
Kyungmin Park 已提交
1699
 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1700 1701
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
K
Kyungmin Park 已提交
1702
 * @param len		number of bytes to lock or unlock
1703
 * @param cmd		lock or unlock command
1704
 *
K
Kyungmin Park 已提交
1705
 * Lock or unlock one or more blocks
1706
 */
K
Kyungmin Park 已提交
1707
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1708 1709 1710
{
	struct onenand_chip *this = mtd->priv;
	int start, end, block, value, status;
K
Kyungmin Park 已提交
1711
	int wp_status_mask;
1712 1713 1714 1715

	start = ofs >> this->erase_shift;
	end = len >> this->erase_shift;

K
Kyungmin Park 已提交
1716 1717 1718 1719 1720
	if (cmd == ONENAND_CMD_LOCK)
		wp_status_mask = ONENAND_WP_LS;
	else
		wp_status_mask = ONENAND_WP_US;

1721
	/* Continuous lock scheme */
1722
	if (this->options & ONENAND_HAS_CONT_LOCK) {
1723 1724 1725
		/* Set start block address */
		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
		/* Set end block address */
1726
		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1727 1728
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1729 1730

		/* There's no return value */
K
Kyungmin Park 已提交
1731
		this->wait(mtd, FL_LOCKING);
1732 1733 1734 1735 1736 1737 1738 1739

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1740
		if (!(status & wp_status_mask))
1741 1742 1743 1744 1745 1746
			printk(KERN_ERR "wp status = 0x%x\n", status);

		return 0;
	}

	/* Block lock scheme */
1747
	for (block = start; block < start + end; block++) {
1748 1749 1750 1751 1752 1753
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1754 1755
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1756 1757
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1758 1759

		/* There's no return value */
K
Kyungmin Park 已提交
1760
		this->wait(mtd, FL_LOCKING);
1761 1762 1763 1764 1765 1766 1767 1768

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1769
		if (!(status & wp_status_mask))
1770 1771
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
1772

1773 1774 1775
	return 0;
}

K
Kyungmin Park 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
/**
 * onenand_lock - [MTD Interface] Lock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Lock one or more blocks
 */
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
}

/**
 * onenand_unlock - [MTD Interface] Unlock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Unlock one or more blocks
 */
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
/**
 * onenand_check_lock_status - [OneNAND Interface] Check lock status
 * @param this		onenand chip data structure
 *
 * Check lock status
 */
static void onenand_check_lock_status(struct onenand_chip *this)
{
	unsigned int value, block, status;
	unsigned int end;

	end = this->chipsize >> this->erase_shift;
	for (block = 0; block < end; block++) {
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
		if (!(status & ONENAND_WP_US))
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
}

/**
 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
 * @param mtd		MTD device structure
 *
 * Unlock all blocks
 */
static int onenand_unlock_all(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1842 1843
		/* Set start block address */
		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1844 1845 1846 1847
		/* Write unlock command */
		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);

		/* There's no return value */
K
Kyungmin Park 已提交
1848
		this->wait(mtd, FL_LOCKING);
1849 1850 1851 1852 1853 1854 1855

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Workaround for all block unlock in DDP */
1856
		if (ONENAND_IS_DDP(this)) {
1857
			/* 1st block on another chip */
1858 1859
			loff_t ofs = this->chipsize >> 1;
			size_t len = mtd->erasesize;
1860 1861 1862 1863 1864 1865 1866 1867 1868

			onenand_unlock(mtd, ofs, len);
		}

		onenand_check_lock_status(this);

		return 0;
	}

K
Kyungmin Park 已提交
1869
	onenand_unlock(mtd, 0x0, this->chipsize);
1870 1871 1872 1873

	return 0;
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
#ifdef CONFIG_MTD_ONENAND_OTP

/* Interal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
		size_t *retlen, u_char *buf);

/**
 * do_otp_read - [DEFAULT] Read OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of readbytes
 * @param buf		the databuffer to put/get data
 *
 * Read OTP block area.
 */
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

	ret = mtd->read(mtd, from, len, retlen, buf);

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_write - [DEFAULT] Write OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write OTP block area.
 */
static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	unsigned char *pbuf = buf;
	int ret;

	/* Force buffer page aligned */
J
Joern Engel 已提交
1927
	if (len < mtd->writesize) {
1928
		memcpy(this->page_buf, buf, len);
J
Joern Engel 已提交
1929
		memset(this->page_buf + len, 0xff, mtd->writesize - len);
1930
		pbuf = this->page_buf;
J
Joern Engel 已提交
1931
		len = mtd->writesize;
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	}

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

	ret = mtd->write(mtd, from, len, retlen, pbuf);

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_lock - [DEFAULT] Lock OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to lock
 * @param retlen	pointer to variable to store the number of lock bytes
 * @param buf		the databuffer to put/get data
 *
 * Lock OTP block area.
 */
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
1961 1962 1963 1964 1965 1966
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = len,
		.oobbuf = buf,
		.ooboffs = 0,
	};
1967 1968 1969 1970 1971 1972
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

1973 1974 1975
	ret = onenand_do_write_oob(mtd, from, &ops);

	*retlen = ops.oobretlen;
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * onenand_otp_walk - [DEFAULT] Handle OTP operation
 * @param mtd		MTD device structure
 * @param from		The offset to read/write
 * @param len		number of bytes to read/write
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 * @param action	do given action
 * @param mode		specify user and factory
 *
 * Handle OTP operation.
 */
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf,
			otp_op_t action, int mode)
{
	struct onenand_chip *this = mtd->priv;
	int otp_pages;
	int density;
	int ret = 0;

	*retlen = 0;

	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	if (density < ONENAND_DEVICE_DENSITY_512Mb)
		otp_pages = 20;
	else
		otp_pages = 10;

	if (mode == MTD_OTP_FACTORY) {
J
Joern Engel 已提交
2014
		from += mtd->writesize * otp_pages;
2015 2016 2017 2018
		otp_pages = 64 - otp_pages;
	}

	/* Check User/Factory boundary */
J
Joern Engel 已提交
2019
	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		return 0;

	while (len > 0 && otp_pages > 0) {
		if (!action) {	/* OTP Info functions */
			struct otp_info *otpinfo;

			len -= sizeof(struct otp_info);
			if (len <= 0)
				return -ENOSPC;

			otpinfo = (struct otp_info *) buf;
			otpinfo->start = from;
J
Joern Engel 已提交
2032
			otpinfo->length = mtd->writesize;
2033 2034
			otpinfo->locked = 0;

J
Joern Engel 已提交
2035
			from += mtd->writesize;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
			buf += sizeof(struct otp_info);
			*retlen += sizeof(struct otp_info);
		} else {
			size_t tmp_retlen;
			int size = len;

			ret = action(mtd, from, len, &tmp_retlen, buf);

			buf += size;
			len -= size;
			*retlen += size;

			if (ret < 0)
				return ret;
		}
		otp_pages--;
	}

	return 0;
}

/**
 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read factory OTP info.
 */
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);

	return ret ? : retlen;
}

/**
 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read factory OTP area.
 */
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}

/**
 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read user OTP info.
 */
static int onenand_get_user_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);

	return ret ? : retlen;
}

/**
 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read user OTP area.
 */
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}

/**
 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write user OTP area.
 */
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}

/**
 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to unlock
 *
 * Write lock mark on spare area in page 0 in OTP block
 */
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len)
{
	unsigned char oob_buf[64];
	size_t retlen;
	int ret;

	memset(oob_buf, 0xff, mtd->oobsize);
	/*
	 * Note: OTP lock operation
	 *       OTP block : 0xXXFC
	 *       1st block : 0xXXF3 (If chip support)
	 *       Both      : 0xXXF0 (If chip support)
	 */
	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;

	/*
	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
	 * We write 16 bytes spare area instead of 2 bytes.
	 */
	from = 0;
	len = 16;

	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);

	return ret ? : retlen;
}
#endif	/* CONFIG_MTD_ONENAND_OTP */

2180
/**
2181
 * onenand_check_features - Check and set OneNAND features
2182 2183
 * @param mtd		MTD data structure
 *
2184 2185
 * Check and set OneNAND features
 * - lock scheme
2186
 * - two plane
2187
 */
2188
static void onenand_check_features(struct mtd_info *mtd)
2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	struct onenand_chip *this = mtd->priv;
	unsigned int density, process;

	/* Lock scheme depends on density and process */
	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;

	/* Lock scheme */
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	switch (density) {
	case ONENAND_DEVICE_DENSITY_4Gb:
		this->options |= ONENAND_HAS_2PLANE;

	case ONENAND_DEVICE_DENSITY_2Gb:
		/* 2Gb DDP don't have 2 plane */
		if (!ONENAND_IS_DDP(this))
			this->options |= ONENAND_HAS_2PLANE;
		this->options |= ONENAND_HAS_UNLOCK_ALL;

	case ONENAND_DEVICE_DENSITY_1Gb:
2209
		/* A-Die has all block unlock */
2210
		if (process)
2211
			this->options |= ONENAND_HAS_UNLOCK_ALL;
2212 2213 2214 2215 2216
		break;

	default:
		/* Some OneNAND has continuous lock scheme */
		if (!process)
2217
			this->options |= ONENAND_HAS_CONT_LOCK;
2218
		break;
2219
	}
2220 2221 2222 2223 2224 2225 2226

	if (this->options & ONENAND_HAS_CONT_LOCK)
		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
	if (this->options & ONENAND_HAS_UNLOCK_ALL)
		printk(KERN_DEBUG "Chip support all block unlock\n");
	if (this->options & ONENAND_HAS_2PLANE)
		printk(KERN_DEBUG "Chip has 2 plane\n");
2227 2228
}

2229
/**
2230
 * onenand_print_device_info - Print device & version ID
2231
 * @param device        device ID
2232
 * @param version	version ID
2233
 *
2234
 * Print device & version ID
2235
 */
2236
static void onenand_print_device_info(int device, int version)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
{
        int vcc, demuxed, ddp, density;

        vcc = device & ONENAND_DEVICE_VCC_MASK;
        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
        ddp = device & ONENAND_DEVICE_IS_DDP;
        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
                demuxed ? "" : "Muxed ",
                ddp ? "(DDP)" : "",
                (16 << density),
                vcc ? "2.65/3.3" : "1.8",
                device);
2250
	printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
}

static const struct onenand_manufacturers onenand_manuf_ids[] = {
        {ONENAND_MFR_SAMSUNG, "Samsung"},
};

/**
 * onenand_check_maf - Check manufacturer ID
 * @param manuf         manufacturer ID
 *
 * Check manufacturer ID
 */
static int onenand_check_maf(int manuf)
{
2265 2266
	int size = ARRAY_SIZE(onenand_manuf_ids);
	char *name;
2267 2268
        int i;

2269
	for (i = 0; i < size; i++)
2270 2271 2272
                if (manuf == onenand_manuf_ids[i].id)
                        break;

2273 2274 2275 2276 2277 2278
	if (i < size)
		name = onenand_manuf_ids[i].name;
	else
		name = "Unknown";

	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2279

2280
	return (i == size);
2281 2282 2283 2284 2285 2286 2287
}

/**
 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
 * @param mtd		MTD device structure
 *
 * OneNAND detection method:
2288
 *   Compare the values from command with ones from register
2289 2290 2291 2292
 */
static int onenand_probe(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
2293
	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2294
	int density;
K
Kyungmin Park 已提交
2295 2296 2297 2298 2299 2300
	int syscfg;

	/* Save system configuration 1 */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	/* Clear Sync. Burst Read mode to read BootRAM */
	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2301 2302 2303 2304 2305 2306 2307 2308

	/* Send the command for reading device ID from BootRAM */
	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);

	/* Read manufacturer and device IDs from BootRAM */
	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);

K
Kyungmin Park 已提交
2309 2310 2311 2312 2313 2314 2315 2316
	/* Reset OneNAND to read default register values */
	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
	/* Wait reset */
	this->wait(mtd, FL_RESETING);

	/* Restore system configuration 1 */
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

2317 2318 2319 2320 2321 2322 2323
	/* Check manufacturer ID */
	if (onenand_check_maf(bram_maf_id))
		return -ENXIO;

	/* Read manufacturer and device IDs from Register */
	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2324
	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2325 2326 2327 2328 2329 2330

	/* Check OneNAND device */
	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
		return -ENXIO;

	/* Flash device information */
2331
	onenand_print_device_info(dev_id, ver_id);
2332
	this->device_id = dev_id;
2333
	this->version_id = ver_id;
2334 2335 2336

	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	this->chipsize = (16 << density) << 20;
2337
	/* Set density mask. it is used for DDP */
2338 2339 2340 2341
	if (ONENAND_IS_DDP(this))
		this->density_mask = (1 << (density + 6));
	else
		this->density_mask = 0;
2342 2343 2344

	/* OneNAND page size & block size */
	/* The data buffer size is equal to page size */
J
Joern Engel 已提交
2345 2346
	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
	mtd->oobsize = mtd->writesize >> 5;
2347
	/* Pages per a block are always 64 in OneNAND */
J
Joern Engel 已提交
2348
	mtd->erasesize = mtd->writesize << 6;
2349 2350

	this->erase_shift = ffs(mtd->erasesize) - 1;
J
Joern Engel 已提交
2351
	this->page_shift = ffs(mtd->writesize) - 1;
2352
	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2353 2354
	/* It's real page size */
	this->writesize = mtd->writesize;
2355 2356 2357 2358 2359

	/* REVIST: Multichip handling */

	mtd->size = this->chipsize;

2360 2361
	/* Check OneNAND features */
	onenand_check_features(mtd);
2362

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	/*
	 * We emulate the 4KiB page and 256KiB erase block size
	 * But oobsize is still 64 bytes.
	 * It is only valid if you turn on 2X program support,
	 * Otherwise it will be ignored by compiler.
	 */
	if (ONENAND_IS_2PLANE(this)) {
		mtd->writesize <<= 1;
		mtd->erasesize <<= 1;
	}

2374 2375 2376
	return 0;
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
/**
 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
 * @param mtd		MTD device structure
 */
static int onenand_suspend(struct mtd_info *mtd)
{
	return onenand_get_device(mtd, FL_PM_SUSPENDED);
}

/**
 * onenand_resume - [MTD Interface] Resume the OneNAND flash
 * @param mtd		MTD device structure
 */
static void onenand_resume(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->state == FL_PM_SUSPENDED)
		onenand_release_device(mtd);
	else
		printk(KERN_ERR "resume() called for the chip which is not"
				"in suspended state\n");
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
/**
 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
 * @param mtd		MTD device structure
 * @param maxchips	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values.
 */
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
2413
	int i;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	struct onenand_chip *this = mtd->priv;

	if (!this->read_word)
		this->read_word = onenand_readw;
	if (!this->write_word)
		this->write_word = onenand_writew;

	if (!this->command)
		this->command = onenand_command;
	if (!this->wait)
2424
		onenand_setup_wait(mtd);
2425 2426 2427 2428 2429 2430

	if (!this->read_bufferram)
		this->read_bufferram = onenand_read_bufferram;
	if (!this->write_bufferram)
		this->write_bufferram = onenand_write_bufferram;

2431 2432 2433 2434 2435
	if (!this->block_markbad)
		this->block_markbad = onenand_default_block_markbad;
	if (!this->scan_bbt)
		this->scan_bbt = onenand_default_bbt;

2436 2437 2438
	if (onenand_probe(mtd))
		return -ENXIO;

2439 2440 2441 2442 2443 2444
	/* Set Sync. Burst Read after probing */
	if (this->mmcontrol) {
		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
		this->read_bufferram = onenand_sync_read_bufferram;
	}

2445 2446
	/* Allocate buffers, if necessary */
	if (!this->page_buf) {
2447
		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2448 2449 2450 2451 2452 2453
		if (!this->page_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
			return -ENOMEM;
		}
		this->options |= ONENAND_PAGEBUF_ALLOC;
	}
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	if (!this->oob_buf) {
		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
		if (!this->oob_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
			if (this->options & ONENAND_PAGEBUF_ALLOC) {
				this->options &= ~ONENAND_PAGEBUF_ALLOC;
				kfree(this->page_buf);
			}
			return -ENOMEM;
		}
		this->options |= ONENAND_OOBBUF_ALLOC;
	}
2466

2467 2468 2469 2470
	this->state = FL_READY;
	init_waitqueue_head(&this->wq);
	spin_lock_init(&this->chip_lock);

2471 2472 2473
	/*
	 * Allow subpage writes up to oobsize.
	 */
2474 2475
	switch (mtd->oobsize) {
	case 64:
2476
		this->ecclayout = &onenand_oob_64;
2477
		mtd->subpage_sft = 2;
2478 2479 2480
		break;

	case 32:
2481
		this->ecclayout = &onenand_oob_32;
2482
		mtd->subpage_sft = 1;
2483 2484 2485 2486 2487
		break;

	default:
		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
			mtd->oobsize);
2488
		mtd->subpage_sft = 0;
2489
		/* To prevent kernel oops */
2490
		this->ecclayout = &onenand_oob_32;
2491 2492 2493
		break;
	}

2494
	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2495 2496 2497 2498 2499 2500

	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area
	 */
	this->ecclayout->oobavail = 0;
2501 2502
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
	    this->ecclayout->oobfree[i].length; i++)
2503 2504
		this->ecclayout->oobavail +=
			this->ecclayout->oobfree[i].length;
V
Vitaly Wool 已提交
2505
	mtd->oobavail = this->ecclayout->oobavail;
2506

2507
	mtd->ecclayout = this->ecclayout;
2508

2509 2510
	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
J
Joern Engel 已提交
2511
	mtd->flags = MTD_CAP_NANDFLASH;
2512 2513 2514 2515 2516 2517 2518
	mtd->erase = onenand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = onenand_read;
	mtd->write = onenand_write;
	mtd->read_oob = onenand_read_oob;
	mtd->write_oob = onenand_write_oob;
2519 2520 2521 2522 2523 2524 2525 2526
#ifdef CONFIG_MTD_ONENAND_OTP
	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
	mtd->get_user_prot_info = onenand_get_user_prot_info;
	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
2527
	mtd->sync = onenand_sync;
K
Kyungmin Park 已提交
2528
	mtd->lock = onenand_lock;
2529
	mtd->unlock = onenand_unlock;
2530 2531
	mtd->suspend = onenand_suspend;
	mtd->resume = onenand_resume;
2532 2533 2534 2535 2536
	mtd->block_isbad = onenand_block_isbad;
	mtd->block_markbad = onenand_block_markbad;
	mtd->owner = THIS_MODULE;

	/* Unlock whole block */
2537
	onenand_unlock_all(mtd);
2538

2539
	return this->scan_bbt(mtd);
2540 2541 2542 2543 2544 2545 2546 2547
}

/**
 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
 * @param mtd		MTD device structure
 */
void onenand_release(struct mtd_info *mtd)
{
2548 2549
	struct onenand_chip *this = mtd->priv;

2550 2551 2552 2553 2554 2555
#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);
2556 2557

	/* Free bad block table memory, if allocated */
2558 2559 2560
	if (this->bbm) {
		struct bbm_info *bbm = this->bbm;
		kfree(bbm->bbt);
2561
		kfree(this->bbm);
2562
	}
2563
	/* Buffers allocated by onenand_scan */
2564 2565
	if (this->options & ONENAND_PAGEBUF_ALLOC)
		kfree(this->page_buf);
2566 2567
	if (this->options & ONENAND_OOBBUF_ALLOC)
		kfree(this->oob_buf);
2568 2569 2570 2571 2572 2573 2574 2575
}

EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");