disk-io.c 147.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

C
Chris Mason 已提交
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
C
Chris Mason 已提交
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
S
Stefan Behrens 已提交
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <asm/unaligned.h>
21
#include <crypto/hash.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "volumes.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "check-integrity.h"
33
#include "rcu-string.h"
34
#include "dev-replace.h"
D
David Woodhouse 已提交
35
#include "raid56.h"
36
#include "sysfs.h"
J
Josef Bacik 已提交
37
#include "qgroup.h"
38
#include "compression.h"
39
#include "tree-checker.h"
J
Josef Bacik 已提交
40
#include "ref-verify.h"
41
#include "block-group.h"
42
#include "discard.h"
43
#include "space-info.h"
N
Naohiro Aota 已提交
44
#include "zoned.h"
45
#include "subpage.h"
46

47 48 49 50
#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
51 52
				 BTRFS_SUPER_FLAG_METADUMP |\
				 BTRFS_SUPER_FLAG_METADUMP_V2)
53

54
static void end_workqueue_fn(struct btrfs_work *work);
55
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
L
liubo 已提交
56
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57
				      struct btrfs_fs_info *fs_info);
58
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
60 61
					struct extent_io_tree *dirty_pages,
					int mark);
62
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
L
liubo 已提交
63
				       struct extent_io_tree *pinned_extents);
64 65
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66

C
Chris Mason 已提交
67
/*
68 69
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
C
Chris Mason 已提交
70 71
 * by writes to insert metadata for new file extents after IO is complete.
 */
72
struct btrfs_end_io_wq {
73 74 75 76
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
77
	blk_status_t status;
78
	enum btrfs_wq_endio_type metadata;
79
	struct btrfs_work work;
80
};
81

82 83 84 85 86 87 88
static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
89
					SLAB_MEM_SPREAD,
90 91 92 93 94 95
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

96
void __cold btrfs_end_io_wq_exit(void)
97
{
98
	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 100
}

101 102 103 104 105 106
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
	if (fs_info->csum_shash)
		crypto_free_shash(fs_info->csum_shash);
}

C
Chris Mason 已提交
107 108 109 110 111
/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
112
struct async_submit_bio {
113
	struct inode *inode;
114
	struct bio *bio;
115
	extent_submit_bio_start_t *submit_bio_start;
116
	int mirror_num;
117 118 119

	/* Optional parameter for submit_bio_start used by direct io */
	u64 dio_file_offset;
120
	struct btrfs_work work;
121
	blk_status_t status;
122 123
};

124 125 126 127 128 129 130 131
/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
132 133
 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 * roots have separate keysets.
134
 *
135 136 137
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
138
 *
139 140 141
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
142
 *
143 144 145
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
146 147 148 149 150
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif
151

152 153 154 155 156 157 158 159 160 161 162 163 164
#define DEFINE_LEVEL(stem, level)					\
	.names[level] = "btrfs-" stem "-0" #level,

#define DEFINE_NAME(stem)						\
	DEFINE_LEVEL(stem, 0)						\
	DEFINE_LEVEL(stem, 1)						\
	DEFINE_LEVEL(stem, 2)						\
	DEFINE_LEVEL(stem, 3)						\
	DEFINE_LEVEL(stem, 4)						\
	DEFINE_LEVEL(stem, 5)						\
	DEFINE_LEVEL(stem, 6)						\
	DEFINE_LEVEL(stem, 7)

165 166
static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
167
	/* Longest entry: btrfs-free-space-00 */
168 169
	char			names[BTRFS_MAX_LEVEL][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170
} btrfs_lockdep_keysets[] = {
171 172 173 174 175 176 177 178 179 180 181 182
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
	{ .id = 0,				DEFINE_NAME("tree")	},
183
};
184

185 186
#undef DEFINE_LEVEL
#undef DEFINE_NAME
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

204 205
#endif

C
Chris Mason 已提交
206
/*
207
 * Compute the csum of a btree block and store the result to provided buffer.
C
Chris Mason 已提交
208
 */
209
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210
{
211
	struct btrfs_fs_info *fs_info = buf->fs_info;
212
	const int num_pages = num_extent_pages(buf);
213
	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215
	char *kaddr;
216
	int i;
217 218 219

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
220
	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222
			    first_page_part - BTRFS_CSUM_SIZE);
223

224 225 226
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(buf->pages[i]);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227
	}
228
	memset(result, 0, BTRFS_CSUM_SIZE);
229
	crypto_shash_final(shash, result);
230 231
}

C
Chris Mason 已提交
232 233 234 235 236 237
/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
238
static int verify_parent_transid(struct extent_io_tree *io_tree,
239 240
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
241
{
242
	struct extent_state *cached_state = NULL;
243 244 245 246 247
	int ret;

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

248 249 250
	if (atomic)
		return -EAGAIN;

251
	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252
			 &cached_state);
253
	if (extent_buffer_uptodate(eb) &&
254 255 256 257
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
258 259 260
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
261
			parent_transid, btrfs_header_generation(eb));
262
	ret = 1;
263
	clear_extent_buffer_uptodate(eb);
C
Chris Mason 已提交
264
out:
265
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266
			     &cached_state);
267 268 269
	return ret;
}

270 271 272 273
static bool btrfs_supported_super_csum(u16 csum_type)
{
	switch (csum_type) {
	case BTRFS_CSUM_TYPE_CRC32:
274
	case BTRFS_CSUM_TYPE_XXHASH:
275
	case BTRFS_CSUM_TYPE_SHA256:
276
	case BTRFS_CSUM_TYPE_BLAKE2:
277 278 279 280 281 282
		return true;
	default:
		return false;
	}
}

D
David Sterba 已提交
283 284 285 286
/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
287 288
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
D
David Sterba 已提交
289 290 291
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
292
	char result[BTRFS_CSUM_SIZE];
293 294 295
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);

	shash->tfm = fs_info->csum_shash;
D
David Sterba 已提交
296

297 298 299 300 301
	/*
	 * The super_block structure does not span the whole
	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
	 * filled with zeros and is included in the checksum.
	 */
302 303
	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
D
David Sterba 已提交
304

305
	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306
		return 1;
D
David Sterba 已提交
307

308
	return 0;
D
David Sterba 已提交
309 310
}

311
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312
			   struct btrfs_key *first_key, u64 parent_transid)
313
{
314
	struct btrfs_fs_info *fs_info = eb->fs_info;
315 316 317 318 319 320
	int found_level;
	struct btrfs_key found_key;
	int ret;

	found_level = btrfs_header_level(eb);
	if (found_level != level) {
321 322
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree level check failed\n");
323 324 325 326 327 328 329 330 331
		btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
			  eb->start, level, found_level);
		return -EIO;
	}

	if (!first_key)
		return 0;

332 333 334 335 336 337 338 339
	/*
	 * For live tree block (new tree blocks in current transaction),
	 * we need proper lock context to avoid race, which is impossible here.
	 * So we only checks tree blocks which is read from disk, whose
	 * generation <= fs_info->last_trans_committed.
	 */
	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
		return 0;
340 341 342 343 344 345 346 347 348 349

	/* We have @first_key, so this @eb must have at least one item */
	if (btrfs_header_nritems(eb) == 0) {
		btrfs_err(fs_info,
		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
			  eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return -EUCLEAN;
	}

350 351 352 353 354 355 356
	if (found_level)
		btrfs_node_key_to_cpu(eb, &found_key, 0);
	else
		btrfs_item_key_to_cpu(eb, &found_key, 0);
	ret = btrfs_comp_cpu_keys(first_key, &found_key);

	if (ret) {
357 358
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree first key check failed\n");
359
		btrfs_err(fs_info,
360 361 362 363 364
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
			  eb->start, parent_transid, first_key->objectid,
			  first_key->type, first_key->offset,
			  found_key.objectid, found_key.type,
			  found_key.offset);
365 366 367 368
	}
	return ret;
}

C
Chris Mason 已提交
369 370 371
/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
372 373 374 375
 *
 * @parent_transid:	expected transid, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key of first slot, skip check if NULL
C
Chris Mason 已提交
376
 */
377 378 379
int btrfs_read_extent_buffer(struct extent_buffer *eb,
			     u64 parent_transid, int level,
			     struct btrfs_key *first_key)
380
{
381
	struct btrfs_fs_info *fs_info = eb->fs_info;
382
	struct extent_io_tree *io_tree;
383
	int failed = 0;
384 385 386
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
387
	int failed_mirror = 0;
388

389
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390
	while (1) {
391
		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392
		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393
		if (!ret) {
394
			if (verify_parent_transid(io_tree, eb,
395
						   parent_transid, 0))
396
				ret = -EIO;
397
			else if (btrfs_verify_level_key(eb, level,
398
						first_key, parent_transid))
399 400 401
				ret = -EUCLEAN;
			else
				break;
402
		}
C
Chris Mason 已提交
403

404
		num_copies = btrfs_num_copies(fs_info,
405
					      eb->start, eb->len);
C
Chris Mason 已提交
406
		if (num_copies == 1)
407
			break;
C
Chris Mason 已提交
408

409 410 411 412 413
		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

414
		mirror_num++;
415 416 417
		if (mirror_num == failed_mirror)
			mirror_num++;

C
Chris Mason 已提交
418
		if (mirror_num > num_copies)
419
			break;
420
	}
421

422
	if (failed && !ret && failed_mirror)
423
		btrfs_repair_eb_io_failure(eb, failed_mirror);
424 425

	return ret;
426
}
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static int csum_one_extent_buffer(struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	u8 result[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
				    offsetof(struct btrfs_header, fsid),
				    BTRFS_FSID_SIZE) == 0);
	csum_tree_block(eb, result);

	if (btrfs_header_level(eb))
		ret = btrfs_check_node(eb);
	else
		ret = btrfs_check_leaf_full(eb);

444 445 446 447 448 449 450 451 452
	if (ret < 0)
		goto error;

	/*
	 * Also check the generation, the eb reached here must be newer than
	 * last committed. Or something seriously wrong happened.
	 */
	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
		ret = -EUCLEAN;
453
		btrfs_err(fs_info,
454 455 456 457
			"block=%llu bad generation, have %llu expect > %llu",
			  eb->start, btrfs_header_generation(eb),
			  fs_info->last_trans_committed);
		goto error;
458 459 460 461
	}
	write_extent_buffer(eb, result, 0, fs_info->csum_size);

	return 0;
462 463 464 465 466 467 468

error:
	btrfs_print_tree(eb, 0);
	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
		  eb->start);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
	return ret;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

/* Checksum all dirty extent buffers in one bio_vec */
static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
				      struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	u64 bvec_start = page_offset(page) + bvec->bv_offset;
	u64 cur;
	int ret = 0;

	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
	     cur += fs_info->nodesize) {
		struct extent_buffer *eb;
		bool uptodate;

		eb = find_extent_buffer(fs_info, cur);
		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
						       fs_info->nodesize);

		/* A dirty eb shouldn't disappear from buffer_radix */
		if (WARN_ON(!eb))
			return -EUCLEAN;

		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}
		if (WARN_ON(!uptodate)) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}

		ret = csum_one_extent_buffer(eb);
		free_extent_buffer(eb);
		if (ret < 0)
			return ret;
	}
	return ret;
}

C
Chris Mason 已提交
510
/*
511 512 513
 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block.
 * For subpage extent buffers we need bvec to also read the offset in the page.
C
Chris Mason 已提交
514
 */
515
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
516
{
517
	struct page *page = bvec->bv_page;
M
Miao Xie 已提交
518
	u64 start = page_offset(page);
519 520
	u64 found_start;
	struct extent_buffer *eb;
521

522
	if (fs_info->nodesize < PAGE_SIZE)
523
		return csum_dirty_subpage_buffers(fs_info, bvec);
524

J
Josef Bacik 已提交
525 526 527
	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;
528

529
	found_start = btrfs_header_bytenr(eb);
530 531 532 533 534 535

	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
		WARN_ON(found_start != 0);
		return 0;
	}

536 537 538 539 540 541 542 543 544
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

545
	return csum_one_extent_buffer(eb);
546 547
}

548
static int check_tree_block_fsid(struct extent_buffer *eb)
Y
Yan Zheng 已提交
549
{
550
	struct btrfs_fs_info *fs_info = eb->fs_info;
551
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
552
	u8 fsid[BTRFS_FSID_SIZE];
553
	u8 *metadata_uuid;
Y
Yan Zheng 已提交
554

555 556
	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	/*
	 * Checking the incompat flag is only valid for the current fs. For
	 * seed devices it's forbidden to have their uuid changed so reading
	 * ->fsid in this case is fine
	 */
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
		metadata_uuid = fs_devices->metadata_uuid;
	else
		metadata_uuid = fs_devices->fsid;

	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
		return 0;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
			return 0;

	return 1;
Y
Yan Zheng 已提交
575 576
}

577 578
/* Do basic extent buffer checks at read time */
static int validate_extent_buffer(struct extent_buffer *eb)
579
{
580
	struct btrfs_fs_info *fs_info = eb->fs_info;
581
	u64 found_start;
582 583
	const u32 csum_size = fs_info->csum_size;
	u8 found_level;
584
	u8 result[BTRFS_CSUM_SIZE];
585
	const u8 *header_csum;
586
	int ret = 0;
587

588
	found_start = btrfs_header_bytenr(eb);
589
	if (found_start != eb->start) {
590 591
		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
			     eb->start, found_start);
592
		ret = -EIO;
593
		goto out;
594
	}
595
	if (check_tree_block_fsid(eb)) {
596 597
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
598
		ret = -EIO;
599
		goto out;
600
	}
601
	found_level = btrfs_header_level(eb);
602
	if (found_level >= BTRFS_MAX_LEVEL) {
603 604
		btrfs_err(fs_info, "bad tree block level %d on %llu",
			  (int)btrfs_header_level(eb), eb->start);
605
		ret = -EIO;
606
		goto out;
607
	}
608

609
	csum_tree_block(eb, result);
610 611
	header_csum = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
612

613
	if (memcmp(result, header_csum, csum_size) != 0) {
614
		btrfs_warn_rl(fs_info,
615 616
	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
			      eb->start,
617
			      CSUM_FMT_VALUE(csum_size, header_csum),
618 619
			      CSUM_FMT_VALUE(csum_size, result),
			      btrfs_header_level(eb));
620
		ret = -EUCLEAN;
621
		goto out;
622 623
	}

624 625 626 627 628
	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
629
	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
630 631 632
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}
633

634
	if (found_level > 0 && btrfs_check_node(eb))
L
Liu Bo 已提交
635 636
		ret = -EIO;

637 638
	if (!ret)
		set_extent_buffer_uptodate(eb);
639 640 641 642
	else
		btrfs_err(fs_info,
			  "block=%llu read time tree block corruption detected",
			  eb->start);
643 644 645 646
out:
	return ret;
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	struct extent_buffer *eb;
	bool reads_done;
	int ret = 0;

	/*
	 * We don't allow bio merge for subpage metadata read, so we should
	 * only get one eb for each endio hook.
	 */
	ASSERT(end == start + fs_info->nodesize - 1);
	ASSERT(PagePrivate(page));

	eb = find_extent_buffer(fs_info, start);
	/*
	 * When we are reading one tree block, eb must have been inserted into
	 * the radix tree. If not, something is wrong.
	 */
	ASSERT(eb);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	/* Subpage read must finish in page read */
	ASSERT(reads_done);

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
	if (ret < 0)
		goto err;

	set_extent_buffer_uptodate(eb);

	free_extent_buffer(eb);
	return ret;
err:
	/*
	 * end_bio_extent_readpage decrements io_pages in case of error,
	 * make sure it has something to decrement.
	 */
	atomic_inc(&eb->io_pages);
	clear_extent_buffer_uptodate(eb);
	free_extent_buffer(eb);
	return ret;
}

697
int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
698 699 700 701 702 703 704 705
				   struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct extent_buffer *eb;
	int ret = 0;
	int reads_done;

	ASSERT(page->private);
706

707
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
708 709
		return validate_subpage_buffer(page, start, end, mirror);

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	eb = (struct extent_buffer *)page->private;

	/*
	 * The pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
	atomic_inc(&eb->refs);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	if (!reads_done)
		goto err;

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
728
err:
D
David Woodhouse 已提交
729 730 731 732 733 734 735
	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
736
		clear_extent_buffer_uptodate(eb);
D
David Woodhouse 已提交
737
	}
738
	free_extent_buffer(eb);
739

740
	return ret;
741 742
}

743
static void end_workqueue_bio(struct bio *bio)
744
{
745
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
746
	struct btrfs_fs_info *fs_info;
747
	struct btrfs_workqueue *wq;
748 749

	fs_info = end_io_wq->info;
750
	end_io_wq->status = bio->bi_status;
751

752
	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
753
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
754
			wq = fs_info->endio_meta_write_workers;
755
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
756
			wq = fs_info->endio_freespace_worker;
757
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
758
			wq = fs_info->endio_raid56_workers;
759
		else
760
			wq = fs_info->endio_write_workers;
761
	} else {
762
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
763
			wq = fs_info->endio_raid56_workers;
764
		else if (end_io_wq->metadata)
765
			wq = fs_info->endio_meta_workers;
766
		else
767
			wq = fs_info->endio_workers;
768
	}
769

770
	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
771
	btrfs_queue_work(wq, &end_io_wq->work);
772 773
}

774
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
775
			enum btrfs_wq_endio_type metadata)
776
{
777
	struct btrfs_end_io_wq *end_io_wq;
778

779
	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
780
	if (!end_io_wq)
781
		return BLK_STS_RESOURCE;
782 783 784

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
785
	end_io_wq->info = info;
786
	end_io_wq->status = 0;
787
	end_io_wq->bio = bio;
788
	end_io_wq->metadata = metadata;
789 790 791

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
792 793 794
	return 0;
}

C
Chris Mason 已提交
795 796 797
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
798
	blk_status_t ret;
C
Chris Mason 已提交
799 800

	async = container_of(work, struct  async_submit_bio, work);
801 802
	ret = async->submit_bio_start(async->inode, async->bio,
				      async->dio_file_offset);
803
	if (ret)
804
		async->status = ret;
C
Chris Mason 已提交
805 806
}

807 808 809 810 811 812 813 814
/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
C
Chris Mason 已提交
815
static void run_one_async_done(struct btrfs_work *work)
816 817
{
	struct async_submit_bio *async;
818 819
	struct inode *inode;
	blk_status_t ret;
820 821

	async = container_of(work, struct  async_submit_bio, work);
822
	inode = async->inode;
823

824
	/* If an error occurred we just want to clean up the bio and move on */
825 826
	if (async->status) {
		async->bio->bi_status = async->status;
827
		bio_endio(async->bio);
828 829 830
		return;
	}

831 832 833 834 835 836
	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
	 * This changes nothing when cgroups aren't in use.
	 */
	async->bio->bi_opf |= REQ_CGROUP_PUNT;
837
	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
838 839 840 841
	if (ret) {
		async->bio->bi_status = ret;
		bio_endio(async->bio);
	}
C
Chris Mason 已提交
842 843 844 845 846 847 848
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
849 850 851
	kfree(async);
}

852
blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
853
				 int mirror_num, unsigned long bio_flags,
854
				 u64 dio_file_offset,
855
				 extent_submit_bio_start_t *submit_bio_start)
856
{
857
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
858 859 860 861
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
862
		return BLK_STS_RESOURCE;
863

864
	async->inode = inode;
865 866
	async->bio = bio;
	async->mirror_num = mirror_num;
C
Chris Mason 已提交
867 868
	async->submit_bio_start = submit_bio_start;

869 870
	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
C
Chris Mason 已提交
871

872
	async->dio_file_offset = dio_file_offset;
873

874
	async->status = 0;
875

876
	if (op_is_sync(bio->bi_opf))
877
		btrfs_set_work_high_priority(&async->work);
878

879
	btrfs_queue_work(fs_info->workers, &async->work);
880 881 882
	return 0;
}

883
static blk_status_t btree_csum_one_bio(struct bio *bio)
884
{
885
	struct bio_vec *bvec;
886
	struct btrfs_root *root;
887
	int ret = 0;
888
	struct bvec_iter_all iter_all;
889

890
	ASSERT(!bio_flagged(bio, BIO_CLONED));
891
	bio_for_each_segment_all(bvec, bio, iter_all) {
892
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
893
		ret = csum_dirty_buffer(root->fs_info, bvec);
894 895
		if (ret)
			break;
896
	}
897

898
	return errno_to_blk_status(ret);
899 900
}

901
static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
902
					   u64 dio_file_offset)
903
{
904 905
	/*
	 * when we're called for a write, we're already in the async
906
	 * submission context.  Just jump into btrfs_map_bio
907
	 */
908
	return btree_csum_one_bio(bio);
C
Chris Mason 已提交
909
}
910

911
static bool should_async_write(struct btrfs_fs_info *fs_info,
912
			     struct btrfs_inode *bi)
913
{
914
	if (btrfs_is_zoned(fs_info))
915
		return false;
916
	if (atomic_read(&bi->sync_writers))
917
		return false;
918
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
919 920
		return false;
	return true;
921 922
}

923
void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
924
{
925
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
926
	blk_status_t ret;
927

928
	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
C
Chris Mason 已提交
929 930 931 932
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
933 934
		ret = btrfs_bio_wq_end_io(fs_info, bio,
					  BTRFS_WQ_ENDIO_METADATA);
935 936
		if (!ret)
			ret = btrfs_map_bio(fs_info, bio, mirror_num);
937
	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
938
		ret = btree_csum_one_bio(bio);
939 940
		if (!ret)
			ret = btrfs_map_bio(fs_info, bio, mirror_num);
941 942 943 944 945
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
946 947
		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
					  0, btree_submit_bio_start);
948
	}
949

950 951 952 953
	if (ret) {
		bio->bi_status = ret;
		bio_endio(bio);
	}
954 955
}

J
Jan Beulich 已提交
956
#ifdef CONFIG_MIGRATION
957
static int btree_migratepage(struct address_space *mapping,
958 959
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
960 961 962 963 964 965 966 967 968 969 970 971 972 973
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
974
	return migrate_page(mapping, newpage, page, mode);
975
}
J
Jan Beulich 已提交
976
#endif
977

978 979 980 981

static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
982 983 984
	struct btrfs_fs_info *fs_info;
	int ret;

985
	if (wbc->sync_mode == WB_SYNC_NONE) {
986 987 988 989

		if (wbc->for_kupdate)
			return 0;

990
		fs_info = BTRFS_I(mapping->host)->root->fs_info;
991
		/* this is a bit racy, but that's ok */
992 993 994
		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH,
					     fs_info->dirty_metadata_batch);
995
		if (ret < 0)
996 997
			return 0;
	}
998
	return btree_write_cache_pages(mapping, wbc);
999 1000
}

1001
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002
{
1003
	if (PageWriteback(page) || PageDirty(page))
C
Chris Mason 已提交
1004
		return 0;
1005

1006
	return try_release_extent_buffer(page);
1007 1008
}

1009 1010
static void btree_invalidate_folio(struct folio *folio, size_t offset,
				 size_t length)
1011
{
1012
	struct extent_io_tree *tree;
1013 1014 1015 1016 1017 1018 1019 1020
	tree = &BTRFS_I(folio->mapping->host)->io_tree;
	extent_invalidate_folio(tree, folio, offset);
	btree_releasepage(&folio->page, GFP_NOFS);
	if (folio_get_private(folio)) {
		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
			   "folio private not zero on folio %llu",
			   (unsigned long long)folio_pos(folio));
		folio_detach_private(folio);
1021
	}
1022 1023
}

1024
#ifdef DEBUG
1025 1026 1027 1028
static bool btree_dirty_folio(struct address_space *mapping,
		struct folio *folio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1029
	struct btrfs_subpage *subpage;
1030
	struct extent_buffer *eb;
1031
	int cur_bit = 0;
1032
	u64 page_start = folio_pos(folio);
1033 1034

	if (fs_info->sectorsize == PAGE_SIZE) {
1035
		eb = folio_get_private(folio);
1036 1037 1038
		BUG_ON(!eb);
		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		BUG_ON(!atomic_read(&eb->refs));
1039
		btrfs_assert_tree_write_locked(eb);
1040
		return filemap_dirty_folio(mapping, folio);
1041
	}
1042
	subpage = folio_get_private(folio);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	ASSERT(subpage->dirty_bitmap);
	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
		unsigned long flags;
		u64 cur;
		u16 tmp = (1 << cur_bit);

		spin_lock_irqsave(&subpage->lock, flags);
		if (!(tmp & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			cur_bit++;
			continue;
		}
		spin_unlock_irqrestore(&subpage->lock, flags);
		cur = page_start + cur_bit * fs_info->sectorsize;
1058

1059 1060 1061 1062
		eb = find_extent_buffer(fs_info, cur);
		ASSERT(eb);
		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		ASSERT(atomic_read(&eb->refs));
1063
		btrfs_assert_tree_write_locked(eb);
1064 1065 1066 1067
		free_extent_buffer(eb);

		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
	}
1068
	return filemap_dirty_folio(mapping, folio);
1069
}
1070 1071 1072
#else
#define btree_dirty_folio filemap_dirty_folio
#endif
1073

1074
static const struct address_space_operations btree_aops = {
1075
	.writepages	= btree_writepages,
1076
	.releasepage	= btree_releasepage,
1077
	.invalidate_folio = btree_invalidate_folio,
1078
#ifdef CONFIG_MIGRATION
1079
	.migratepage	= btree_migratepage,
1080
#endif
1081
	.dirty_folio = btree_dirty_folio,
1082 1083
};

1084 1085
struct extent_buffer *btrfs_find_create_tree_block(
						struct btrfs_fs_info *fs_info,
1086 1087
						u64 bytenr, u64 owner_root,
						int level)
1088
{
1089 1090
	if (btrfs_is_testing(fs_info))
		return alloc_test_extent_buffer(fs_info, bytenr);
1091
	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1092 1093
}

1094 1095 1096 1097
/*
 * Read tree block at logical address @bytenr and do variant basic but critical
 * verification.
 *
1098
 * @owner_root:		the objectid of the root owner for this block.
1099 1100 1101 1102
 * @parent_transid:	expected transid of this tree block, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key in slot 0, skip check if NULL
 */
1103
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1104 1105
				      u64 owner_root, u64 parent_transid,
				      int level, struct btrfs_key *first_key)
1106 1107 1108 1109
{
	struct extent_buffer *buf = NULL;
	int ret;

1110
	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1111 1112
	if (IS_ERR(buf))
		return buf;
1113

1114
	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
1115
	if (ret) {
1116
		free_extent_buffer_stale(buf);
1117
		return ERR_PTR(ret);
1118
	}
1119 1120 1121 1122
	if (btrfs_check_eb_owner(buf, owner_root)) {
		free_extent_buffer_stale(buf);
		return ERR_PTR(-EUCLEAN);
	}
1123
	return buf;
1124

1125 1126
}

1127
void btrfs_clean_tree_block(struct extent_buffer *buf)
1128
{
1129
	struct btrfs_fs_info *fs_info = buf->fs_info;
1130
	if (btrfs_header_generation(buf) ==
1131
	    fs_info->running_transaction->transid) {
1132
		btrfs_assert_tree_write_locked(buf);
1133

1134
		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1135 1136 1137
			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
						 -buf->len,
						 fs_info->dirty_metadata_batch);
1138 1139
			clear_extent_buffer_dirty(buf);
		}
1140
	}
1141 1142
}

1143
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1144
			 u64 objectid)
1145
{
1146
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1147 1148 1149 1150

	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1151
	root->fs_info = fs_info;
1152
	root->root_key.objectid = objectid;
C
Chris Mason 已提交
1153
	root->node = NULL;
1154
	root->commit_root = NULL;
1155
	root->state = 0;
1156
	RB_CLEAR_NODE(&root->rb_node);
1157

1158
	root->last_trans = 0;
1159
	root->free_objectid = 0;
1160
	root->nr_delalloc_inodes = 0;
1161
	root->nr_ordered_extents = 0;
1162
	root->inode_tree = RB_ROOT;
1163
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1164 1165

	btrfs_init_root_block_rsv(root);
1166 1167

	INIT_LIST_HEAD(&root->dirty_list);
1168
	INIT_LIST_HEAD(&root->root_list);
1169 1170
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
1171 1172
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
1173
	INIT_LIST_HEAD(&root->reloc_dirty_list);
1174 1175
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
1176
	spin_lock_init(&root->inode_lock);
1177
	spin_lock_init(&root->delalloc_lock);
1178
	spin_lock_init(&root->ordered_extent_lock);
1179
	spin_lock_init(&root->accounting_lock);
1180 1181
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
1182
	spin_lock_init(&root->qgroup_meta_rsv_lock);
1183
	mutex_init(&root->objectid_mutex);
1184
	mutex_init(&root->log_mutex);
1185
	mutex_init(&root->ordered_extent_mutex);
1186
	mutex_init(&root->delalloc_mutex);
1187
	init_waitqueue_head(&root->qgroup_flush_wait);
Y
Yan Zheng 已提交
1188 1189 1190
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
1191 1192
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
Y
Yan Zheng 已提交
1193 1194 1195
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
M
Miao Xie 已提交
1196
	atomic_set(&root->log_batch, 0);
1197
	refcount_set(&root->refs, 1);
1198
	atomic_set(&root->snapshot_force_cow, 0);
1199
	atomic_set(&root->nr_swapfiles, 0);
Y
Yan Zheng 已提交
1200
	root->log_transid = 0;
1201
	root->log_transid_committed = -1;
1202
	root->last_log_commit = 0;
1203
	root->anon_dev = 0;
1204
	if (!dummy) {
1205 1206
		extent_io_tree_init(fs_info, &root->dirty_log_pages,
				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1207 1208 1209
		extent_io_tree_init(fs_info, &root->log_csum_range,
				    IO_TREE_LOG_CSUM_RANGE, NULL);
	}
C
Chris Mason 已提交
1210

1211
	spin_lock_init(&root->root_item_lock);
1212
	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
J
Josef Bacik 已提交
1213 1214 1215 1216 1217 1218
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&root->leak_list);
	spin_lock(&fs_info->fs_roots_radix_lock);
	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
	spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
1219 1220
}

1221
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1222
					   u64 objectid, gfp_t flags)
A
Al Viro 已提交
1223
{
1224
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
A
Al Viro 已提交
1225
	if (root)
1226
		__setup_root(root, fs_info, objectid);
A
Al Viro 已提交
1227 1228 1229
	return root;
}

1230 1231
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
1232
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1233 1234 1235
{
	struct btrfs_root *root;

1236 1237 1238
	if (!fs_info)
		return ERR_PTR(-EINVAL);

1239
	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1240 1241
	if (!root)
		return ERR_PTR(-ENOMEM);
1242

1243
	/* We don't use the stripesize in selftest, set it as sectorsize */
1244
	root->alloc_bytenr = 0;
1245 1246 1247 1248 1249

	return root;
}
#endif

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
{
	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);

	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
}

static int global_root_key_cmp(const void *k, const struct rb_node *node)
{
	const struct btrfs_key *key = k;
	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);

	return btrfs_comp_cpu_keys(key, &root->root_key);
}

int btrfs_global_root_insert(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct rb_node *tmp;

	write_lock(&fs_info->global_root_lock);
	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
	write_unlock(&fs_info->global_root_lock);
	ASSERT(!tmp);

	return tmp ? -EEXIST : 0;
}

void btrfs_global_root_delete(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	write_lock(&fs_info->global_root_lock);
	rb_erase(&root->rb_node, &fs_info->global_root_tree);
	write_unlock(&fs_info->global_root_lock);
}

struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
				     struct btrfs_key *key)
{
	struct rb_node *node;
	struct btrfs_root *root = NULL;

	read_lock(&fs_info->global_root_lock);
	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
	if (node)
		root = container_of(node, struct btrfs_root, rb_node);
	read_unlock(&fs_info->global_root_lock);

	return root;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
{
	struct btrfs_block_group *block_group;
	u64 ret;

	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
		return 0;

	if (bytenr)
		block_group = btrfs_lookup_block_group(fs_info, bytenr);
	else
		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
	ASSERT(block_group);
	if (!block_group)
		return 0;
	ret = block_group->global_root_id;
	btrfs_put_block_group(block_group);

	return ret;
}

1324 1325 1326 1327 1328
struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
	struct btrfs_key key = {
		.objectid = BTRFS_CSUM_TREE_OBJECTID,
		.type = BTRFS_ROOT_ITEM_KEY,
1329
		.offset = btrfs_global_root_id(fs_info, bytenr),
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	};

	return btrfs_global_root(fs_info, &key);
}

struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
	struct btrfs_key key = {
		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
		.type = BTRFS_ROOT_ITEM_KEY,
1340
		.offset = btrfs_global_root_id(fs_info, bytenr),
1341 1342 1343 1344 1345
	};

	return btrfs_global_root(fs_info, &key);
}

1346 1347 1348
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     u64 objectid)
{
1349
	struct btrfs_fs_info *fs_info = trans->fs_info;
1350 1351 1352 1353
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
1354
	unsigned int nofs_flag;
1355 1356
	int ret = 0;

1357 1358 1359 1360 1361
	/*
	 * We're holding a transaction handle, so use a NOFS memory allocation
	 * context to avoid deadlock if reclaim happens.
	 */
	nofs_flag = memalloc_nofs_save();
1362
	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1363
	memalloc_nofs_restore(nofs_flag);
1364 1365 1366 1367 1368 1369 1370
	if (!root)
		return ERR_PTR(-ENOMEM);

	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

1371 1372
	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
				      BTRFS_NESTING_NORMAL);
1373 1374
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
1375
		leaf = NULL;
1376
		goto fail_unlock;
1377 1378 1379 1380 1381 1382
	}

	root->node = leaf;
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
1383
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1384

1385 1386
	btrfs_set_root_flags(&root->root_item, 0);
	btrfs_set_root_limit(&root->root_item, 0);
1387 1388 1389 1390 1391 1392 1393
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
1394
	if (is_fstree(objectid))
1395 1396 1397
		generate_random_guid(root->root_item.uuid);
	else
		export_guid(root->root_item.uuid, &guid_null);
1398
	btrfs_set_root_drop_level(&root->root_item, 0);
1399

1400 1401
	btrfs_tree_unlock(leaf);

1402 1403 1404 1405 1406 1407 1408
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

1409 1410
	return root;

1411
fail_unlock:
1412
	if (leaf)
1413
		btrfs_tree_unlock(leaf);
1414
fail:
1415
	btrfs_put_root(root);
1416

1417
	return ERR_PTR(ret);
1418 1419
}

Y
Yan Zheng 已提交
1420 1421
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
1422 1423
{
	struct btrfs_root *root;
1424

1425
	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1426
	if (!root)
Y
Yan Zheng 已提交
1427
		return ERR_PTR(-ENOMEM);
1428 1429 1430 1431

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1432

N
Naohiro Aota 已提交
1433 1434 1435 1436 1437 1438 1439 1440
	return root;
}

int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root)
{
	struct extent_buffer *leaf;

Y
Yan Zheng 已提交
1441
	/*
1442
	 * DON'T set SHAREABLE bit for log trees.
1443
	 *
1444 1445 1446 1447 1448
	 * Log trees are not exposed to user space thus can't be snapshotted,
	 * and they go away before a real commit is actually done.
	 *
	 * They do store pointers to file data extents, and those reference
	 * counts still get updated (along with back refs to the log tree).
Y
Yan Zheng 已提交
1449
	 */
1450

1451
	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1452
			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
N
Naohiro Aota 已提交
1453 1454
	if (IS_ERR(leaf))
		return PTR_ERR(leaf);
1455

Y
Yan Zheng 已提交
1456
	root->node = leaf;
1457 1458 1459

	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
N
Naohiro Aota 已提交
1460 1461

	return 0;
Y
Yan Zheng 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
N
Naohiro Aota 已提交
1472

1473 1474 1475 1476 1477 1478 1479
	if (!btrfs_is_zoned(fs_info)) {
		int ret = btrfs_alloc_log_tree_node(trans, log_root);

		if (ret) {
			btrfs_put_root(log_root);
			return ret;
		}
N
Naohiro Aota 已提交
1480 1481
	}

Y
Yan Zheng 已提交
1482 1483 1484 1485 1486 1487 1488 1489
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
1490
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan Zheng 已提交
1491 1492
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;
N
Naohiro Aota 已提交
1493
	int ret;
Y
Yan Zheng 已提交
1494

1495
	log_root = alloc_log_tree(trans, fs_info);
Y
Yan Zheng 已提交
1496 1497 1498
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

N
Naohiro Aota 已提交
1499 1500 1501 1502 1503 1504
	ret = btrfs_alloc_log_tree_node(trans, log_root);
	if (ret) {
		btrfs_put_root(log_root);
		return ret;
	}

Y
Yan Zheng 已提交
1505 1506 1507 1508
	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
1509 1510 1511
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
1512
	btrfs_set_stack_inode_nbytes(inode_item,
1513
				     fs_info->nodesize);
1514
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
Y
Yan Zheng 已提交
1515

1516
	btrfs_set_root_node(&log_root->root_item, log_root->node);
Y
Yan Zheng 已提交
1517 1518 1519 1520

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
1521
	root->log_transid_committed = -1;
1522
	root->last_log_commit = 0;
1523 1524 1525
	return 0;
}

1526 1527 1528
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
					      struct btrfs_path *path,
					      struct btrfs_key *key)
1529 1530 1531
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1532
	u64 generation;
1533
	int ret;
1534
	int level;
1535

1536
	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1537 1538
	if (!root)
		return ERR_PTR(-ENOMEM);
1539

1540 1541
	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
1542
	if (ret) {
1543 1544
		if (ret > 0)
			ret = -ENOENT;
1545
		goto fail;
1546
	}
1547

1548
	generation = btrfs_root_generation(&root->root_item);
1549
	level = btrfs_root_level(&root->root_item);
1550 1551
	root->node = read_tree_block(fs_info,
				     btrfs_root_bytenr(&root->root_item),
1552
				     key->objectid, generation, level, NULL);
1553 1554
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
1555
		root->node = NULL;
1556
		goto fail;
1557 1558
	}
	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1559
		ret = -EIO;
1560
		goto fail;
1561
	}
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	/*
	 * For real fs, and not log/reloc trees, root owner must
	 * match its root node owner
	 */
	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
	    root->root_key.objectid != btrfs_header_owner(root->node)) {
		btrfs_crit(fs_info,
"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
			   root->root_key.objectid, root->node->start,
			   btrfs_header_owner(root->node),
			   root->root_key.objectid);
		ret = -EUCLEAN;
		goto fail;
	}
1579
	root->commit_root = btrfs_root_node(root);
1580
	return root;
1581
fail:
1582
	btrfs_put_root(root);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	return ERR_PTR(ret);
}

struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					struct btrfs_key *key)
{
	struct btrfs_root *root;
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return ERR_PTR(-ENOMEM);
	root = read_tree_root_path(tree_root, path, key);
	btrfs_free_path(path);

	return root;
1599 1600
}

1601 1602 1603 1604 1605 1606
/*
 * Initialize subvolume root in-memory structure
 *
 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
 */
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1607 1608
{
	int ret;
1609
	unsigned int nofs_flag;
1610

1611 1612 1613 1614 1615 1616 1617 1618
	/*
	 * We might be called under a transaction (e.g. indirect backref
	 * resolution) which could deadlock if it triggers memory reclaim
	 */
	nofs_flag = memalloc_nofs_save();
	ret = btrfs_drew_lock_init(&root->snapshot_lock);
	memalloc_nofs_restore(nofs_flag);
	if (ret)
1619 1620
		goto fail;

1621
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1622
	    !btrfs_is_data_reloc_root(root)) {
1623
		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1624 1625 1626
		btrfs_check_and_init_root_item(&root->root_item);
	}

1627 1628 1629 1630 1631 1632
	/*
	 * Don't assign anonymous block device to roots that are not exposed to
	 * userspace, the id pool is limited to 1M
	 */
	if (is_fstree(root->root_key.objectid) &&
	    btrfs_root_refs(&root->root_item) > 0) {
1633 1634 1635 1636 1637 1638 1639
		if (!anon_dev) {
			ret = get_anon_bdev(&root->anon_dev);
			if (ret)
				goto fail;
		} else {
			root->anon_dev = anon_dev;
		}
1640
	}
1641 1642

	mutex_lock(&root->objectid_mutex);
1643
	ret = btrfs_init_root_free_objectid(root);
1644 1645
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
L
Liu Bo 已提交
1646
		goto fail;
1647 1648
	}

1649
	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1650 1651 1652

	mutex_unlock(&root->objectid_mutex);

1653 1654
	return 0;
fail:
D
David Sterba 已提交
1655
	/* The caller is responsible to call btrfs_free_fs_root */
1656 1657 1658
	return ret;
}

1659 1660
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					       u64 root_id)
1661 1662 1663 1664 1665 1666
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
1667
	if (root)
1668
		root = btrfs_grab_root(root);
1669 1670 1671 1672
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

1673 1674 1675
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
						u64 objectid)
{
1676 1677 1678 1679 1680 1681
	struct btrfs_key key = {
		.objectid = objectid,
		.type = BTRFS_ROOT_ITEM_KEY,
		.offset = 0,
	};

1682 1683 1684
	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->tree_root);
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1685
		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1686 1687 1688 1689 1690
	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->chunk_root);
	if (objectid == BTRFS_DEV_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->dev_root);
	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1691
		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1692 1693 1694 1695 1696 1697
	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->quota_root) ?
			fs_info->quota_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_UUID_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->uuid_root) ?
			fs_info->uuid_root : ERR_PTR(-ENOENT);
1698 1699 1700 1701 1702
	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
		struct btrfs_root *root = btrfs_global_root(fs_info, &key);

		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
	}
1703 1704 1705
	return NULL;
}

1706 1707 1708 1709 1710
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

1711
	ret = radix_tree_preload(GFP_NOFS);
1712 1713 1714 1715 1716 1717 1718
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
1719
	if (ret == 0) {
1720
		btrfs_grab_root(root);
1721
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1722
	}
1723 1724 1725 1726 1727 1728
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

J
Josef Bacik 已提交
1729 1730 1731 1732 1733 1734
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
	struct btrfs_root *root;

	while (!list_empty(&fs_info->allocated_roots)) {
J
Josef Bacik 已提交
1735 1736
		char buf[BTRFS_ROOT_NAME_BUF_LEN];

J
Josef Bacik 已提交
1737 1738
		root = list_first_entry(&fs_info->allocated_roots,
					struct btrfs_root, leak_list);
J
Josef Bacik 已提交
1739
		btrfs_err(fs_info, "leaked root %s refcount %d",
1740
			  btrfs_root_name(&root->root_key, buf),
J
Josef Bacik 已提交
1741 1742
			  refcount_read(&root->refs));
		while (refcount_read(&root->refs) > 1)
1743 1744
			btrfs_put_root(root);
		btrfs_put_root(root);
J
Josef Bacik 已提交
1745 1746 1747 1748
	}
#endif
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static void free_global_roots(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct rb_node *node;

	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
		root = rb_entry(node, struct btrfs_root, rb_node);
		rb_erase(&root->rb_node, &fs_info->global_root_tree);
		btrfs_put_root(root);
	}
}

1761 1762
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
1763 1764
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
1765
	percpu_counter_destroy(&fs_info->ordered_bytes);
1766 1767 1768 1769
	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
	btrfs_free_csum_hash(fs_info);
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_free_ref_cache(fs_info);
1770 1771
	kfree(fs_info->balance_ctl);
	kfree(fs_info->delayed_root);
1772
	free_global_roots(fs_info);
1773 1774 1775 1776 1777 1778
	btrfs_put_root(fs_info->tree_root);
	btrfs_put_root(fs_info->chunk_root);
	btrfs_put_root(fs_info->dev_root);
	btrfs_put_root(fs_info->quota_root);
	btrfs_put_root(fs_info->uuid_root);
	btrfs_put_root(fs_info->fs_root);
1779
	btrfs_put_root(fs_info->data_reloc_root);
1780
	btrfs_put_root(fs_info->block_group_root);
J
Josef Bacik 已提交
1781
	btrfs_check_leaked_roots(fs_info);
1782
	btrfs_extent_buffer_leak_debug_check(fs_info);
1783 1784
	kfree(fs_info->super_copy);
	kfree(fs_info->super_for_commit);
1785
	kfree(fs_info->subpage_info);
1786 1787 1788 1789
	kvfree(fs_info);
}


1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/*
 * Get an in-memory reference of a root structure.
 *
 * For essential trees like root/extent tree, we grab it from fs_info directly.
 * For subvolume trees, we check the cached filesystem roots first. If not
 * found, then read it from disk and add it to cached fs roots.
 *
 * Caller should release the root by calling btrfs_put_root() after the usage.
 *
 * NOTE: Reloc and log trees can't be read by this function as they share the
 *	 same root objectid.
 *
 * @objectid:	root id
 * @anon_dev:	preallocated anonymous block device number for new roots,
 * 		pass 0 for new allocation.
 * @check_ref:	whether to check root item references, If true, return -ENOENT
 *		for orphan roots
 */
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
					     u64 objectid, dev_t anon_dev,
					     bool check_ref)
1811 1812
{
	struct btrfs_root *root;
1813
	struct btrfs_path *path;
1814
	struct btrfs_key key;
1815 1816
	int ret;

1817 1818 1819
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;
1820
again:
D
David Sterba 已提交
1821
	root = btrfs_lookup_fs_root(fs_info, objectid);
1822
	if (root) {
1823 1824
		/* Shouldn't get preallocated anon_dev for cached roots */
		ASSERT(!anon_dev);
1825
		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1826
			btrfs_put_root(root);
1827
			return ERR_PTR(-ENOENT);
1828
		}
1829
		return root;
1830
	}
1831

D
David Sterba 已提交
1832 1833 1834 1835
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1836 1837
	if (IS_ERR(root))
		return root;
1838

1839
	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1840
		ret = -ENOENT;
1841
		goto fail;
1842
	}
1843

1844
	ret = btrfs_init_fs_root(root, anon_dev);
1845 1846
	if (ret)
		goto fail;
1847

1848 1849 1850 1851 1852
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
1853 1854
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
D
David Sterba 已提交
1855
	key.offset = objectid;
1856 1857

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1858
	btrfs_free_path(path);
1859 1860 1861
	if (ret < 0)
		goto fail;
	if (ret == 0)
1862
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1863

1864
	ret = btrfs_insert_fs_root(fs_info, root);
1865
	if (ret) {
1866 1867
		if (ret == -EEXIST) {
			btrfs_put_root(root);
1868
			goto again;
1869
		}
1870
		goto fail;
1871
	}
1872
	return root;
1873
fail:
1874 1875 1876 1877 1878 1879 1880 1881
	/*
	 * If our caller provided us an anonymous device, then it's his
	 * responsability to free it in case we fail. So we have to set our
	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
	 * and once again by our caller.
	 */
	if (anon_dev)
		root->anon_dev = 0;
1882
	btrfs_put_root(root);
1883
	return ERR_PTR(ret);
1884 1885
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/*
 * Get in-memory reference of a root structure
 *
 * @objectid:	tree objectid
 * @check_ref:	if set, verify that the tree exists and the item has at least
 *		one reference
 */
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     u64 objectid, bool check_ref)
{
	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
}

/*
 * Get in-memory reference of a root structure, created as new, optionally pass
 * the anonymous block device id
 *
 * @objectid:	tree objectid
 * @anon_dev:	if zero, allocate a new anonymous block device or use the
 *		parameter value
 */
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
					 u64 objectid, dev_t anon_dev)
{
	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
/*
 * btrfs_get_fs_root_commit_root - return a root for the given objectid
 * @fs_info:	the fs_info
 * @objectid:	the objectid we need to lookup
 *
 * This is exclusively used for backref walking, and exists specifically because
 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
 * creation time, which means we may have to read the tree_root in order to look
 * up a fs root that is not in memory.  If the root is not in memory we will
 * read the tree root commit root and look up the fs root from there.  This is a
 * temporary root, it will not be inserted into the radix tree as it doesn't
 * have the most uptodate information, it'll simply be discarded once the
 * backref code is finished using the root.
 */
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
						 struct btrfs_path *path,
						 u64 objectid)
{
	struct btrfs_root *root;
	struct btrfs_key key;

	ASSERT(path->search_commit_root && path->skip_locking);

	/*
	 * This can return -ENOENT if we ask for a root that doesn't exist, but
	 * since this is called via the backref walking code we won't be looking
	 * up a root that doesn't exist, unless there's corruption.  So if root
	 * != NULL just return it.
	 */
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;

	root = btrfs_lookup_fs_root(fs_info, objectid);
	if (root)
		return root;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = read_tree_root_path(fs_info->tree_root, path, &key);
	btrfs_release_path(path);

	return root;
}

1959 1960 1961 1962 1963
/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
1964 1965
{
	struct bio *bio;
1966
	struct btrfs_end_io_wq *end_io_wq;
1967

1968
	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1969
	bio = end_io_wq->bio;
1970

1971
	bio->bi_status = end_io_wq->status;
1972 1973
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
1974
	bio_endio(bio);
1975
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1976 1977
}

1978 1979
static int cleaner_kthread(void *arg)
{
Y
Yu Zhe 已提交
1980
	struct btrfs_fs_info *fs_info = arg;
1981
	int again;
1982

1983
	while (1) {
1984
		again = 0;
1985

1986 1987
		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);

1988
		/* Make the cleaner go to sleep early. */
1989
		if (btrfs_need_cleaner_sleep(fs_info))
1990 1991
			goto sleep;

1992 1993 1994 1995
		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
1996
		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1997 1998
			goto sleep;

1999
		if (!mutex_trylock(&fs_info->cleaner_mutex))
2000 2001
			goto sleep;

2002 2003 2004 2005
		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
2006
		if (btrfs_need_cleaner_sleep(fs_info)) {
2007
			mutex_unlock(&fs_info->cleaner_mutex);
2008
			goto sleep;
2009
		}
2010

2011
		btrfs_run_delayed_iputs(fs_info);
2012

2013
		again = btrfs_clean_one_deleted_snapshot(fs_info);
2014
		mutex_unlock(&fs_info->cleaner_mutex);
2015 2016

		/*
2017 2018
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
2019
		 */
2020
		btrfs_run_defrag_inodes(fs_info);
2021 2022

		/*
2023
		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
2024 2025
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
2026
		 * after acquiring fs_info->reclaim_bgs_lock. So we
2027 2028 2029
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
2030
		btrfs_delete_unused_bgs(fs_info);
2031 2032 2033 2034 2035 2036 2037

		/*
		 * Reclaim block groups in the reclaim_bgs list after we deleted
		 * all unused block_groups. This possibly gives us some more free
		 * space.
		 */
		btrfs_reclaim_bgs(fs_info);
2038
sleep:
2039
		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
2040 2041 2042 2043
		if (kthread_should_park())
			kthread_parkme();
		if (kthread_should_stop())
			return 0;
2044
		if (!again) {
2045
			set_current_state(TASK_INTERRUPTIBLE);
2046
			schedule();
2047 2048
			__set_current_state(TASK_RUNNING);
		}
2049
	}
2050 2051 2052 2053 2054
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
2055
	struct btrfs_fs_info *fs_info = root->fs_info;
2056 2057
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
2058
	u64 transid;
2059
	time64_t delta;
2060
	unsigned long delay;
2061
	bool cannot_commit;
2062 2063

	do {
2064
		cannot_commit = false;
2065
		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
2066
		mutex_lock(&fs_info->transaction_kthread_mutex);
2067

2068 2069
		spin_lock(&fs_info->trans_lock);
		cur = fs_info->running_transaction;
2070
		if (!cur) {
2071
			spin_unlock(&fs_info->trans_lock);
2072 2073
			goto sleep;
		}
Y
Yan Zheng 已提交
2074

2075
		delta = ktime_get_seconds() - cur->start_time;
2076 2077
		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
		    cur->state < TRANS_STATE_COMMIT_START &&
2078
		    delta < fs_info->commit_interval) {
2079
			spin_unlock(&fs_info->trans_lock);
2080 2081 2082
			delay -= msecs_to_jiffies((delta - 1) * 1000);
			delay = min(delay,
				    msecs_to_jiffies(fs_info->commit_interval * 1000));
2083 2084
			goto sleep;
		}
2085
		transid = cur->transid;
2086
		spin_unlock(&fs_info->trans_lock);
2087

2088
		/* If the file system is aborted, this will always fail. */
2089
		trans = btrfs_attach_transaction(root);
2090
		if (IS_ERR(trans)) {
2091 2092
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
2093
			goto sleep;
2094
		}
2095
		if (transid == trans->transid) {
2096
			btrfs_commit_transaction(trans);
2097
		} else {
2098
			btrfs_end_transaction(trans);
2099
		}
2100
sleep:
2101 2102
		wake_up_process(fs_info->cleaner_kthread);
		mutex_unlock(&fs_info->transaction_kthread_mutex);
2103

J
Josef Bacik 已提交
2104
		if (BTRFS_FS_ERROR(fs_info))
2105
			btrfs_cleanup_transaction(fs_info);
2106
		if (!kthread_should_stop() &&
2107
				(!btrfs_transaction_blocked(fs_info) ||
2108
				 cannot_commit))
2109
			schedule_timeout_interruptible(delay);
2110 2111 2112 2113
	} while (!kthread_should_stop());
	return 0;
}

C
Chris Mason 已提交
2114
/*
2115 2116 2117
 * This will find the highest generation in the array of root backups.  The
 * index of the highest array is returned, or -EINVAL if we can't find
 * anything.
C
Chris Mason 已提交
2118 2119 2120 2121 2122
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
2123
static int find_newest_super_backup(struct btrfs_fs_info *info)
C
Chris Mason 已提交
2124
{
2125
	const u64 newest_gen = btrfs_super_generation(info->super_copy);
C
Chris Mason 已提交
2126 2127 2128 2129 2130 2131 2132 2133
	u64 cur;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
2134
			return i;
C
Chris Mason 已提交
2135 2136
	}

2137
	return -EINVAL;
C
Chris Mason 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
2147
	const int next_backup = info->backup_root_index;
C
Chris Mason 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	struct btrfs_root_backup *root_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

2173 2174 2175 2176 2177 2178 2179 2180 2181
	if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
		btrfs_set_backup_block_group_root(root_backup,
					info->block_group_root->node->start);
		btrfs_set_backup_block_group_root_gen(root_backup,
			btrfs_header_generation(info->block_group_root->node));
		btrfs_set_backup_block_group_root_level(root_backup,
			btrfs_header_level(info->block_group_root->node));
	} else {
		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2182
		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2183 2184 2185 2186 2187 2188 2189

		btrfs_set_backup_extent_root(root_backup,
					     extent_root->node->start);
		btrfs_set_backup_extent_root_gen(root_backup,
				btrfs_header_generation(extent_root->node));
		btrfs_set_backup_extent_root_level(root_backup,
					btrfs_header_level(extent_root->node));
2190 2191 2192 2193 2194 2195

		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
		btrfs_set_backup_csum_root_gen(root_backup,
					       btrfs_header_generation(csum_root->node));
		btrfs_set_backup_csum_root_level(root_backup,
						 btrfs_header_level(csum_root->node));
2196
	}
C
Chris Mason 已提交
2197

2198 2199 2200 2201 2202 2203 2204 2205
	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
C
Chris Mason 已提交
2206
			       btrfs_header_generation(info->fs_root->node));
2207
		btrfs_set_backup_fs_root_level(root_backup,
C
Chris Mason 已提交
2208
			       btrfs_header_level(info->fs_root->node));
2209
	}
C
Chris Mason 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

N
Nikolay Borisov 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
/*
 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 *
 * fs_info - filesystem whose backup roots need to be read
 * priority - priority of backup root required
 *
 * Returns backup root index on success and -EINVAL otherwise.
 */
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
	int backup_index = find_newest_super_backup(fs_info);
	struct btrfs_super_block *super = fs_info->super_copy;
	struct btrfs_root_backup *root_backup;

	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
		if (priority == 0)
			return backup_index;

		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
	} else {
		return -EINVAL;
	}

	root_backup = super->super_roots + backup_index;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * Fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));

	return backup_index;
}

L
Liu Bo 已提交
2277 2278 2279
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
2280
	btrfs_destroy_workqueue(fs_info->fixup_workers);
2281
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2282
	btrfs_destroy_workqueue(fs_info->workers);
2283 2284
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2285
	btrfs_destroy_workqueue(fs_info->rmw_workers);
2286 2287
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2288
	btrfs_destroy_workqueue(fs_info->delayed_workers);
2289
	btrfs_destroy_workqueue(fs_info->caching_workers);
2290
	btrfs_destroy_workqueue(fs_info->flush_workers);
2291
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2292 2293
	if (fs_info->discard_ctl.discard_workers)
		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2294 2295 2296 2297 2298 2299 2300
	/*
	 * Now that all other work queues are destroyed, we can safely destroy
	 * the queues used for metadata I/O, since tasks from those other work
	 * queues can do metadata I/O operations.
	 */
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
L
Liu Bo 已提交
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root, *tmp;

	rbtree_postorder_for_each_entry_safe(root, tmp,
					     &fs_info->global_root_tree,
					     rb_node)
		free_root_extent_buffers(root);
}

C
Chris Mason 已提交
2323
/* helper to cleanup tree roots */
2324
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
C
Chris Mason 已提交
2325
{
2326
	free_root_extent_buffers(info->tree_root);
2327

2328
	free_global_root_pointers(info);
2329 2330 2331
	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
2332
	free_root_extent_buffers(info->fs_root);
2333
	free_root_extent_buffers(info->data_reloc_root);
2334
	free_root_extent_buffers(info->block_group_root);
2335
	if (free_chunk_root)
2336
		free_root_extent_buffers(info->chunk_root);
C
Chris Mason 已提交
2337 2338
}

2339 2340 2341 2342 2343 2344 2345
void btrfs_put_root(struct btrfs_root *root)
{
	if (!root)
		return;

	if (refcount_dec_and_test(&root->refs)) {
		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2346
		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2347 2348 2349
		if (root->anon_dev)
			free_anon_bdev(root->anon_dev);
		btrfs_drew_lock_destroy(&root->snapshot_lock);
2350
		free_root_extent_buffers(root);
2351 2352 2353 2354 2355 2356 2357 2358 2359
#ifdef CONFIG_BTRFS_DEBUG
		spin_lock(&root->fs_info->fs_roots_radix_lock);
		list_del_init(&root->leak_list);
		spin_unlock(&root->fs_info->fs_roots_radix_lock);
#endif
		kfree(root);
	}
}

2360
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

2371
		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2372
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2373
		btrfs_put_root(gang[0]);
2374 2375 2376 2377 2378 2379 2380 2381 2382
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
2383
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2384 2385
	}
}
C
Chris Mason 已提交
2386

2387 2388 2389 2390 2391 2392 2393 2394
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
2395
	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2396 2397
}

2398 2399 2400 2401 2402 2403 2404 2405
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
2406
	atomic_set(&fs_info->reloc_cancel_req, 0);
2407 2408
}

2409
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2410
{
2411 2412 2413 2414
	struct inode *inode = fs_info->btree_inode;

	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(inode, 1);
2415 2416 2417 2418 2419
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
2420 2421
	inode->i_size = OFFSET_MAX;
	inode->i_mapping->a_ops = &btree_aops;
2422

2423
	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2424
	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2425
			    IO_TREE_BTREE_INODE_IO, inode);
2426
	BTRFS_I(inode)->io_tree.track_uptodate = false;
2427
	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2428

2429
	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2430 2431 2432
	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
	btrfs_insert_inode_hash(inode);
2433 2434
}

2435 2436 2437
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2438
	init_rwsem(&fs_info->dev_replace.rwsem);
2439
	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
2450
	fs_info->qgroup_rescan_running = false;
2451 2452 2453
	mutex_init(&fs_info->qgroup_rescan_lock);
}

2454
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2455
{
2456
	u32 max_active = fs_info->thread_pool_size;
2457
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2458 2459

	fs_info->workers =
2460 2461
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);
2462 2463

	fs_info->delalloc_workers =
2464 2465
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);
2466 2467

	fs_info->flush_workers =
2468 2469
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);
2470 2471

	fs_info->caching_workers =
2472
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2473 2474

	fs_info->fixup_workers =
2475
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2476 2477 2478 2479 2480 2481

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
2482
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2483
	fs_info->endio_meta_workers =
2484 2485
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
2486
	fs_info->endio_meta_write_workers =
2487 2488
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
2489
	fs_info->endio_raid56_workers =
2490 2491
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
2492
	fs_info->rmw_workers =
2493
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2494
	fs_info->endio_write_workers =
2495 2496
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
2497
	fs_info->endio_freespace_worker =
2498 2499
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
2500
	fs_info->delayed_workers =
2501 2502
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
2503
	fs_info->qgroup_rescan_workers =
2504
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2505 2506
	fs_info->discard_ctl.discard_workers =
		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2507 2508

	if (!(fs_info->workers && fs_info->delalloc_workers &&
2509
	      fs_info->flush_workers &&
2510 2511 2512 2513
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
Q
Qu Wenruo 已提交
2514 2515
	      fs_info->caching_workers && fs_info->fixup_workers &&
	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2516
	      fs_info->discard_ctl.discard_workers)) {
2517 2518 2519 2520 2521 2522
		return -ENOMEM;
	}

	return 0;
}

2523 2524 2525
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
	struct crypto_shash *csum_shash;
2526
	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2527

2528
	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2529 2530 2531

	if (IS_ERR(csum_shash)) {
		btrfs_err(fs_info, "error allocating %s hash for checksum",
2532
			  csum_driver);
2533 2534 2535 2536 2537 2538 2539 2540
		return PTR_ERR(csum_shash);
	}

	fs_info->csum_shash = csum_shash;

	return 0;
}

2541 2542 2543 2544 2545 2546 2547
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);
2548
	int level = btrfs_super_log_root_level(disk_super);
2549 2550

	if (fs_devices->rw_devices == 0) {
2551
		btrfs_warn(fs_info, "log replay required on RO media");
2552 2553 2554
		return -EIO;
	}

2555 2556
	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
					 GFP_KERNEL);
2557 2558 2559
	if (!log_tree_root)
		return -ENOMEM;

2560
	log_tree_root->node = read_tree_block(fs_info, bytenr,
2561 2562 2563
					      BTRFS_TREE_LOG_OBJECTID,
					      fs_info->generation + 1, level,
					      NULL);
2564
	if (IS_ERR(log_tree_root->node)) {
2565
		btrfs_warn(fs_info, "failed to read log tree");
2566
		ret = PTR_ERR(log_tree_root->node);
2567
		log_tree_root->node = NULL;
2568
		btrfs_put_root(log_tree_root);
2569
		return ret;
2570 2571
	}
	if (!extent_buffer_uptodate(log_tree_root->node)) {
2572
		btrfs_err(fs_info, "failed to read log tree");
2573
		btrfs_put_root(log_tree_root);
2574 2575
		return -EIO;
	}
2576

2577 2578 2579
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
2580 2581
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to recover log tree");
2582
		btrfs_put_root(log_tree_root);
2583 2584 2585
		return ret;
	}

2586
	if (sb_rdonly(fs_info->sb)) {
2587
		ret = btrfs_commit_super(fs_info);
2588 2589 2590 2591 2592 2593 2594
		if (ret)
			return ret;
	}

	return 0;
}

2595 2596 2597 2598 2599 2600
static int load_global_roots_objectid(struct btrfs_root *tree_root,
				      struct btrfs_path *path, u64 objectid,
				      const char *name)
{
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
	struct btrfs_root *root;
2601
	u64 max_global_id = 0;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	int ret;
	struct btrfs_key key = {
		.objectid = objectid,
		.type = BTRFS_ROOT_ITEM_KEY,
		.offset = 0,
	};
	bool found = false;

	/* If we have IGNOREDATACSUMS skip loading these roots. */
	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
		return 0;
	}

	while (1) {
		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
		if (ret < 0)
			break;

		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(tree_root, path);
			if (ret) {
				if (ret > 0)
					ret = 0;
				break;
			}
		}
		ret = 0;

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != objectid)
			break;
		btrfs_release_path(path);

2637 2638 2639 2640 2641 2642 2643
		/*
		 * Just worry about this for extent tree, it'll be the same for
		 * everybody.
		 */
		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
			max_global_id = max(max_global_id, key.offset);

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		found = true;
		root = read_tree_root_path(tree_root, path, &key);
		if (IS_ERR(root)) {
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
				ret = PTR_ERR(root);
			break;
		}
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		ret = btrfs_global_root_insert(root);
		if (ret) {
			btrfs_put_root(root);
			break;
		}
		key.offset++;
	}
	btrfs_release_path(path);

2661 2662 2663
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
		fs_info->nr_global_roots = max_global_id + 1;

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	if (!found || ret) {
		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);

		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
			ret = ret ? ret : -ENOENT;
		else
			ret = 0;
		btrfs_err(fs_info, "failed to load root %s", name);
	}
	return ret;
}

static int load_global_roots(struct btrfs_root *tree_root)
{
	struct btrfs_path *path;
	int ret = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = load_global_roots_objectid(tree_root, path,
					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
	if (ret)
		goto out;
	ret = load_global_roots_objectid(tree_root, path,
					 BTRFS_CSUM_TREE_OBJECTID, "csum");
	if (ret)
		goto out;
	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
		goto out;
	ret = load_global_roots_objectid(tree_root, path,
					 BTRFS_FREE_SPACE_TREE_OBJECTID,
					 "free space");
out:
	btrfs_free_path(path);
	return ret;
}

2704
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2705
{
2706
	struct btrfs_root *tree_root = fs_info->tree_root;
2707
	struct btrfs_root *root;
2708 2709 2710
	struct btrfs_key location;
	int ret;

2711 2712
	BUG_ON(!fs_info->tree_root);

2713 2714 2715 2716 2717
	ret = load_global_roots(tree_root);
	if (ret)
		return ret;

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2718 2719 2720
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

2721
	root = btrfs_read_tree_root(tree_root, &location);
2722
	if (IS_ERR(root)) {
2723 2724 2725 2726 2727 2728 2729
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->dev_root = root;
2730
	}
2731 2732
	/* Initialize fs_info for all devices in any case */
	btrfs_init_devices_late(fs_info);
2733

2734 2735 2736 2737
	/*
	 * This tree can share blocks with some other fs tree during relocation
	 * and we need a proper setup by btrfs_get_fs_root
	 */
D
David Sterba 已提交
2738 2739
	root = btrfs_get_fs_root(tree_root->fs_info,
				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2740
	if (IS_ERR(root)) {
2741 2742 2743 2744 2745 2746 2747
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->data_reloc_root = root;
2748 2749
	}

2750
	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2751 2752 2753
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2754
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2755
		fs_info->quota_root = root;
2756 2757 2758
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2759 2760
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
2761 2762 2763 2764 2765
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			if (ret != -ENOENT)
				goto out;
		}
2766
	} else {
2767 2768
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
2769 2770 2771
	}

	return 0;
2772 2773 2774 2775
out:
	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
		   location.objectid, ret);
	return ret;
2776 2777
}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
/*
 * Real super block validation
 * NOTE: super csum type and incompat features will not be checked here.
 *
 * @sb:		super block to check
 * @mirror_num:	the super block number to check its bytenr:
 * 		0	the primary (1st) sb
 * 		1, 2	2nd and 3rd backup copy
 * 	       -1	skip bytenr check
 */
static int validate_super(struct btrfs_fs_info *fs_info,
			    struct btrfs_super_block *sb, int mirror_num)
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
{
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
		ret = -EINVAL;
	}
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
2829 2830

	/*
2831 2832 2833 2834 2835 2836
	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
	 *
	 * We can support 16K sectorsize with 64K page size without problem,
	 * but such sectorsize/pagesize combination doesn't make much sense.
	 * 4K will be our future standard, PAGE_SIZE is supported from the very
	 * beginning.
2837
	 */
2838
	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2839
		btrfs_err(fs_info,
2840
			"sectorsize %llu not yet supported for page size %lu",
2841 2842 2843
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
		   BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
		ret = -EINVAL;
	}

	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
	    memcmp(fs_info->fs_devices->metadata_uuid,
		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
			fs_info->super_copy->metadata_uuid,
			fs_info->fs_devices->metadata_uuid);
		ret = -EINVAL;
	}

2891
	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2892
		   BTRFS_FSID_SIZE) != 0) {
2893
		btrfs_err(fs_info,
2894
			"dev_item UUID does not match metadata fsid: %pU != %pU",
2895
			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

2921 2922
	if (mirror_num >= 0 &&
	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * Validation of super block at mount time.
 * Some checks already done early at mount time, like csum type and incompat
 * flags will be skipped.
 */
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
	return validate_super(fs_info, fs_info->super_copy, 0);
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/*
 * Validation of super block at write time.
 * Some checks like bytenr check will be skipped as their values will be
 * overwritten soon.
 * Extra checks like csum type and incompat flags will be done here.
 */
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
				      struct btrfs_super_block *sb)
{
	int ret;

	ret = validate_super(fs_info, sb, -1);
	if (ret < 0)
		goto out;
2990
	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
		ret = -EUCLEAN;
		btrfs_err(fs_info, "invalid csum type, has %u want %u",
			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
		goto out;
	}
	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
		ret = -EUCLEAN;
		btrfs_err(fs_info,
		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
			  btrfs_super_incompat_flags(sb),
			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
		goto out;
	}
out:
	if (ret < 0)
		btrfs_err(fs_info,
		"super block corruption detected before writing it to disk");
	return ret;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019
static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
{
	int ret = 0;

	root->node = read_tree_block(root->fs_info, bytenr,
				     root->root_key.objectid, gen, level, NULL);
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
		root->node = NULL;
3020 3021 3022
		return ret;
	}
	if (!extent_buffer_uptodate(root->node)) {
3023 3024
		free_extent_buffer(root->node);
		root->node = NULL;
3025
		return -EIO;
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	}

	btrfs_set_root_node(&root->root_item, root->node);
	root->commit_root = btrfs_root_node(root);
	btrfs_set_root_refs(&root->root_item, 1);
	return ret;
}

static int load_important_roots(struct btrfs_fs_info *fs_info)
{
	struct btrfs_super_block *sb = fs_info->super_copy;
	u64 gen, bytenr;
	int level, ret;

	bytenr = btrfs_super_root(sb);
	gen = btrfs_super_generation(sb);
	level = btrfs_super_root_level(sb);
	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
3044
	if (ret) {
3045
		btrfs_warn(fs_info, "couldn't read tree root");
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		return ret;
	}

	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
		return 0;

	bytenr = btrfs_super_block_group_root(sb);
	gen = btrfs_super_block_group_root_generation(sb);
	level = btrfs_super_block_group_root_level(sb);
	ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
	if (ret)
		btrfs_warn(fs_info, "couldn't read block group root");
3058 3059 3060
	return ret;
}

3061
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
3062
{
3063
	int backup_index = find_newest_super_backup(fs_info);
3064 3065 3066 3067 3068 3069
	struct btrfs_super_block *sb = fs_info->super_copy;
	struct btrfs_root *tree_root = fs_info->tree_root;
	bool handle_error = false;
	int ret = 0;
	int i;

3070 3071 3072 3073 3074 3075 3076 3077 3078
	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
		struct btrfs_root *root;

		root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
					GFP_KERNEL);
		if (!root)
			return -ENOMEM;
		fs_info->block_group_root = root;
	}
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		if (handle_error) {
			if (!IS_ERR(tree_root->node))
				free_extent_buffer(tree_root->node);
			tree_root->node = NULL;

			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
				break;

			free_root_pointers(fs_info, 0);

			/*
			 * Don't use the log in recovery mode, it won't be
			 * valid
			 */
			btrfs_set_super_log_root(sb, 0);

			/* We can't trust the free space cache either */
			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

			ret = read_backup_root(fs_info, i);
3101
			backup_index = ret;
3102 3103 3104 3105
			if (ret < 0)
				return ret;
		}

3106 3107
		ret = load_important_roots(fs_info);
		if (ret) {
3108
			handle_error = true;
3109 3110 3111
			continue;
		}

3112 3113 3114 3115
		/*
		 * No need to hold btrfs_root::objectid_mutex since the fs
		 * hasn't been fully initialised and we are the only user
		 */
3116
		ret = btrfs_init_root_free_objectid(tree_root);
3117 3118 3119 3120 3121
		if (ret < 0) {
			handle_error = true;
			continue;
		}

3122
		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3123 3124 3125 3126 3127 3128 3129 3130

		ret = btrfs_read_roots(fs_info);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		/* All successful */
3131 3132
		fs_info->generation = btrfs_header_generation(tree_root->node);
		fs_info->last_trans_committed = fs_info->generation;
3133
		fs_info->last_reloc_trans = 0;
3134 3135 3136 3137 3138 3139 3140 3141

		/* Always begin writing backup roots after the one being used */
		if (backup_index < 0) {
			fs_info->backup_root_index = 0;
		} else {
			fs_info->backup_root_index = backup_index + 1;
			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
		}
3142 3143 3144 3145 3146 3147
		break;
	}

	return ret;
}

3148
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3149
{
3150
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3151
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
C
Chris Mason 已提交
3152
	INIT_LIST_HEAD(&fs_info->trans_list);
3153
	INIT_LIST_HEAD(&fs_info->dead_roots);
Y
Yan, Zheng 已提交
3154
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3155
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3156
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3157
	spin_lock_init(&fs_info->delalloc_root_lock);
J
Josef Bacik 已提交
3158
	spin_lock_init(&fs_info->trans_lock);
3159
	spin_lock_init(&fs_info->fs_roots_radix_lock);
Y
Yan, Zheng 已提交
3160
	spin_lock_init(&fs_info->delayed_iput_lock);
C
Chris Mason 已提交
3161
	spin_lock_init(&fs_info->defrag_inodes_lock);
3162
	spin_lock_init(&fs_info->super_lock);
3163
	spin_lock_init(&fs_info->buffer_lock);
3164
	spin_lock_init(&fs_info->unused_bgs_lock);
3165
	spin_lock_init(&fs_info->treelog_bg_lock);
3166
	spin_lock_init(&fs_info->zone_active_bgs_lock);
3167
	spin_lock_init(&fs_info->relocation_bg_lock);
J
Jan Schmidt 已提交
3168
	rwlock_init(&fs_info->tree_mod_log_lock);
3169
	rwlock_init(&fs_info->global_root_lock);
3170
	mutex_init(&fs_info->unused_bg_unpin_mutex);
3171
	mutex_init(&fs_info->reclaim_bgs_lock);
C
Chris Mason 已提交
3172
	mutex_init(&fs_info->reloc_mutex);
3173
	mutex_init(&fs_info->delalloc_root_mutex);
3174
	mutex_init(&fs_info->zoned_meta_io_lock);
3175
	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3176
	seqlock_init(&fs_info->profiles_lock);
3177

3178
	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3179
	INIT_LIST_HEAD(&fs_info->space_info);
J
Jan Schmidt 已提交
3180
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3181
	INIT_LIST_HEAD(&fs_info->unused_bgs);
3182
	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3183
	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
J
Josef Bacik 已提交
3184 3185
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&fs_info->allocated_roots);
3186 3187
	INIT_LIST_HEAD(&fs_info->allocated_ebs);
	spin_lock_init(&fs_info->eb_leak_lock);
J
Josef Bacik 已提交
3188
#endif
3189
	extent_map_tree_init(&fs_info->mapping_tree);
3190 3191 3192 3193 3194 3195 3196
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
J
Josef Bacik 已提交
3197 3198 3199
	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
			     BTRFS_BLOCK_RSV_DELREFS);

3200
	atomic_set(&fs_info->async_delalloc_pages, 0);
C
Chris Mason 已提交
3201
	atomic_set(&fs_info->defrag_running, 0);
3202
	atomic_set(&fs_info->nr_delayed_iputs, 0);
3203
	atomic64_set(&fs_info->tree_mod_seq, 0);
3204
	fs_info->global_root_tree = RB_ROOT;
3205
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
J
Josef Bacik 已提交
3206
	fs_info->metadata_ratio = 0;
C
Chris Mason 已提交
3207
	fs_info->defrag_inodes = RB_ROOT;
3208
	atomic64_set(&fs_info->free_chunk_space, 0);
J
Jan Schmidt 已提交
3209
	fs_info->tree_mod_log = RB_ROOT;
3210
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3211
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
J
Josef Bacik 已提交
3212
	btrfs_init_ref_verify(fs_info);
C
Chris Mason 已提交
3213

3214 3215
	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);
3216

3217 3218
	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
3219

3220
	btrfs_init_scrub(fs_info);
3221 3222 3223
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
3224
	btrfs_init_balance(fs_info);
3225
	btrfs_init_async_reclaim_work(fs_info);
A
Arne Jansen 已提交
3226

3227
	rwlock_init(&fs_info->block_group_cache_lock);
3228
	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
J
Josef Bacik 已提交
3229

3230 3231
	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
C
Chris Mason 已提交
3232

3233
	mutex_init(&fs_info->ordered_operations_mutex);
3234
	mutex_init(&fs_info->tree_log_mutex);
3235
	mutex_init(&fs_info->chunk_mutex);
3236 3237
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
3238
	mutex_init(&fs_info->ro_block_group_mutex);
3239
	init_rwsem(&fs_info->commit_root_sem);
3240
	init_rwsem(&fs_info->cleanup_work_sem);
3241
	init_rwsem(&fs_info->subvol_sem);
S
Stefan Behrens 已提交
3242
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3243

3244
	btrfs_init_dev_replace_locks(fs_info);
3245
	btrfs_init_qgroup(fs_info);
3246
	btrfs_discard_init(fs_info);
3247

3248 3249 3250
	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

3251
	init_waitqueue_head(&fs_info->transaction_throttle);
3252
	init_waitqueue_head(&fs_info->transaction_wait);
S
Sage Weil 已提交
3253
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3254
	init_waitqueue_head(&fs_info->async_submit_wait);
3255
	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3256

3257 3258 3259
	/* Usable values until the real ones are cached from the superblock */
	fs_info->nodesize = 4096;
	fs_info->sectorsize = 4096;
3260
	fs_info->sectorsize_bits = ilog2(4096);
3261 3262
	fs_info->stripesize = 4096;

3263 3264 3265
	spin_lock_init(&fs_info->swapfile_pins_lock);
	fs_info->swapfile_pins = RB_ROOT;

3266 3267
	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3268 3269 3270 3271 3272 3273 3274 3275 3276
}

static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
	int ret;

	fs_info->sb = sb;
	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3277

3278
	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3279
	if (ret)
J
Josef Bacik 已提交
3280
		return ret;
3281 3282 3283

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3284
		return ret;
3285 3286 3287 3288 3289 3290

	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3291
		return ret;
3292 3293 3294 3295

	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
			GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3296
		return ret;
3297 3298 3299

	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
J
Josef Bacik 已提交
3300 3301
	if (!fs_info->delayed_root)
		return -ENOMEM;
3302 3303
	btrfs_init_delayed_root(fs_info->delayed_root);

3304 3305 3306
	if (sb_rdonly(sb))
		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);

J
Josef Bacik 已提交
3307
	return btrfs_alloc_stripe_hash_table(fs_info);
3308 3309
}

3310 3311
static int btrfs_uuid_rescan_kthread(void *data)
{
Y
Yu Zhe 已提交
3312
	struct btrfs_fs_info *fs_info = data;
3313 3314 3315 3316 3317 3318 3319 3320 3321
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info);
	if (ret < 0) {
3322 3323 3324
		if (ret != -EINTR)
			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
				   ret);
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

3347 3348 3349 3350 3351 3352 3353 3354
/*
 * Some options only have meaning at mount time and shouldn't persist across
 * remounts, or be displayed. Clear these at the end of mount and remount
 * code paths.
 */
void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
{
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3355
	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3356 3357
}

3358 3359 3360 3361 3362 3363 3364
/*
 * Mounting logic specific to read-write file systems. Shared by open_ctree
 * and btrfs_remount when remounting from read-only to read-write.
 */
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
	int ret;
3365
	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	bool clear_free_space_tree = false;

	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		clear_free_space_tree = true;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = true;
	}

	if (clear_free_space_tree) {
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
			goto out;
		}
	}
3386

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	/*
	 * btrfs_find_orphan_roots() is responsible for finding all the dead
	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
	 * them into the fs_info->fs_roots_radix tree. This must be done before
	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
	 * item before the root's tree is deleted - this means that if we unmount
	 * or crash before the deletion completes, on the next mount we will not
	 * delete what remains of the tree because the orphan item does not
	 * exists anymore, which is what tells us we have a pending deletion.
	 */
	ret = btrfs_find_orphan_roots(fs_info);
	if (ret)
		goto out;

3402 3403 3404 3405
	ret = btrfs_cleanup_fs_roots(fs_info);
	if (ret)
		goto out;

3406 3407 3408 3409 3410 3411 3412 3413
	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
		up_read(&fs_info->cleanup_work_sem);
		goto out;
	}
	up_read(&fs_info->cleanup_work_sem);

3414
	mutex_lock(&fs_info->cleaner_mutex);
3415
	ret = btrfs_recover_relocation(fs_info);
3416 3417 3418 3419 3420 3421
	mutex_unlock(&fs_info->cleaner_mutex);
	if (ret < 0) {
		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
		goto out;
	}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		btrfs_info(fs_info, "creating free space tree");
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
			goto out;
		}
	}

3433 3434 3435 3436 3437 3438
	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
		if (ret)
			goto out;
	}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	ret = btrfs_resume_balance_async(fs_info);
	if (ret)
		goto out;

	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume dev_replace");
		goto out;
	}

	btrfs_qgroup_rescan_resume(fs_info);

	if (!fs_info->uuid_root) {
		btrfs_info(fs_info, "creating UUID tree");
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to create the UUID tree %d", ret);
			goto out;
		}
	}

out:
	return ret;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
		      char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	u16 csum_type;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int level;

3482
	ret = init_mount_fs_info(fs_info, sb);
D
David Woodhouse 已提交
3483
	if (ret) {
3484
		err = ret;
3485
		goto fail;
D
David Woodhouse 已提交
3486 3487
	}

3488 3489 3490 3491 3492 3493 3494 3495 3496
	/* These need to be init'ed before we start creating inodes and such. */
	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
				     GFP_KERNEL);
	fs_info->tree_root = tree_root;
	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
				      GFP_KERNEL);
	fs_info->chunk_root = chunk_root;
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3497
		goto fail;
3498 3499 3500 3501 3502
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3503
		goto fail;
3504 3505 3506 3507
	}
	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
	btrfs_init_btree_inode(fs_info);

3508
	invalidate_bdev(fs_devices->latest_dev->bdev);
D
David Sterba 已提交
3509 3510 3511 3512

	/*
	 * Read super block and check the signature bytes only
	 */
3513
	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3514 3515
	if (IS_ERR(disk_super)) {
		err = PTR_ERR(disk_super);
3516
		goto fail_alloc;
3517
	}
C
Chris Mason 已提交
3518

3519
	/*
3520
	 * Verify the type first, if that or the checksum value are
3521 3522
	 * corrupted, we'll find out
	 */
3523
	csum_type = btrfs_super_csum_type(disk_super);
3524
	if (!btrfs_supported_super_csum(csum_type)) {
3525
		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3526
			  csum_type);
3527
		err = -EINVAL;
3528
		btrfs_release_disk_super(disk_super);
3529 3530 3531
		goto fail_alloc;
	}

3532 3533
	fs_info->csum_size = btrfs_super_csum_size(disk_super);

3534 3535 3536
	ret = btrfs_init_csum_hash(fs_info, csum_type);
	if (ret) {
		err = ret;
3537
		btrfs_release_disk_super(disk_super);
3538 3539 3540
		goto fail_alloc;
	}

D
David Sterba 已提交
3541 3542 3543 3544
	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
3545
	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3546
		btrfs_err(fs_info, "superblock checksum mismatch");
D
David Sterba 已提交
3547
		err = -EINVAL;
3548
		btrfs_release_disk_super(disk_super);
3549
		goto fail_alloc;
D
David Sterba 已提交
3550 3551 3552 3553 3554 3555 3556
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
3557 3558
	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
	btrfs_release_disk_super(disk_super);
3559

3560 3561
	disk_super = fs_info->super_copy;

3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	features = btrfs_super_flags(disk_super);
	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
		btrfs_set_super_flags(disk_super, features);
		btrfs_info(fs_info,
			"found metadata UUID change in progress flag, clearing");
	}

	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
3573

3574
	ret = btrfs_validate_mount_super(fs_info);
D
David Sterba 已提交
3575
	if (ret) {
3576
		btrfs_err(fs_info, "superblock contains fatal errors");
D
David Sterba 已提交
3577
		err = -EINVAL;
3578
		goto fail_alloc;
D
David Sterba 已提交
3579 3580
	}

3581
	if (!btrfs_super_root(disk_super))
3582
		goto fail_alloc;
3583

L
liubo 已提交
3584
	/* check FS state, whether FS is broken. */
3585 3586
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
L
liubo 已提交
3587

3588 3589 3590 3591 3592 3593
	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	/*
	 * Flag our filesystem as having big metadata blocks if they are bigger
	 * than the page size.
	 */
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

	/* Set up fs_info before parsing mount options */
	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
	stripesize = sectorsize;
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));

	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;
	fs_info->sectorsize_bits = ilog2(sectorsize);
	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
	fs_info->stripesize = stripesize;

3618
	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
Y
Yan Zheng 已提交
3619 3620
	if (ret) {
		err = ret;
3621
		goto fail_alloc;
Y
Yan Zheng 已提交
3622
	}
3623

3624 3625 3626
	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
3627 3628 3629
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
3630
		err = -EINVAL;
3631
		goto fail_alloc;
3632 3633
	}

3634
	features = btrfs_super_incompat_flags(disk_super);
L
Li Zefan 已提交
3635
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3636
	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
L
Li Zefan 已提交
3637
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
N
Nick Terrell 已提交
3638 3639
	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3640

3641
	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3642
		btrfs_info(fs_info, "has skinny extents");
3643

3644 3645 3646 3647 3648
	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3649
	    (sectorsize != nodesize)) {
3650 3651 3652
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
3653
		goto fail_alloc;
3654 3655
	}

3656 3657 3658 3659
	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
L
Li Zefan 已提交
3660
	btrfs_set_super_incompat_flags(disk_super, features);
3661

3662 3663
	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3664
	if (!sb_rdonly(sb) && features) {
3665 3666
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
3667
		       features);
3668
		err = -EINVAL;
3669
		goto fail_alloc;
3670
	}
3671

3672 3673 3674
	if (sectorsize < PAGE_SIZE) {
		struct btrfs_subpage_info *subpage_info;

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
		/*
		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
		 * going to be deprecated.
		 *
		 * Force to use v2 cache for subpage case.
		 */
		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
			"forcing free space tree for sector size %u with page size %lu",
			sectorsize, PAGE_SIZE);

3686 3687 3688
		btrfs_warn(fs_info,
		"read-write for sector size %u with page size %lu is experimental",
			   sectorsize, PAGE_SIZE);
3689 3690 3691 3692 3693 3694 3695 3696
		if (btrfs_super_incompat_flags(fs_info->super_copy) &
			BTRFS_FEATURE_INCOMPAT_RAID56) {
			btrfs_err(fs_info,
		"RAID56 is not yet supported for sector size %u with page size %lu",
				sectorsize, PAGE_SIZE);
			err = -EINVAL;
			goto fail_alloc;
		}
3697 3698 3699 3700 3701
		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
		if (!subpage_info)
			goto fail_alloc;
		btrfs_init_subpage_info(subpage_info, sectorsize);
		fs_info->subpage_info = subpage_info;
3702
	}
3703

3704
	ret = btrfs_init_workqueues(fs_info);
3705 3706
	if (ret) {
		err = ret;
3707 3708
		goto fail_sb_buffer;
	}
3709

3710 3711
	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3712

3713 3714
	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);
3715
	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3716

3717
	mutex_lock(&fs_info->chunk_mutex);
3718
	ret = btrfs_read_sys_array(fs_info);
3719
	mutex_unlock(&fs_info->chunk_mutex);
3720
	if (ret) {
3721
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3722
		goto fail_sb_buffer;
3723
	}
3724

3725
	generation = btrfs_super_chunk_root_generation(disk_super);
3726
	level = btrfs_super_chunk_root_level(disk_super);
3727 3728 3729
	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
			      generation, level);
	if (ret) {
3730
		btrfs_err(fs_info, "failed to read chunk root");
C
Chris Mason 已提交
3731
		goto fail_tree_roots;
3732
	}
3733

3734
	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3735 3736
			   offsetof(struct btrfs_header, chunk_tree_uuid),
			   BTRFS_UUID_SIZE);
3737

3738
	ret = btrfs_read_chunk_tree(fs_info);
Y
Yan Zheng 已提交
3739
	if (ret) {
3740
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
C
Chris Mason 已提交
3741
		goto fail_tree_roots;
Y
Yan Zheng 已提交
3742
	}
3743

3744
	/*
3745 3746 3747
	 * At this point we know all the devices that make this filesystem,
	 * including the seed devices but we don't know yet if the replace
	 * target is required. So free devices that are not part of this
D
David Sterba 已提交
3748
	 * filesystem but skip the replace target device which is checked
3749
	 * below in btrfs_init_dev_replace().
3750
	 */
3751
	btrfs_free_extra_devids(fs_devices);
3752
	if (!fs_devices->latest_dev->bdev) {
3753
		btrfs_err(fs_info, "failed to read devices");
3754 3755 3756
		goto fail_tree_roots;
	}

3757
	ret = init_tree_roots(fs_info);
3758
	if (ret)
3759
		goto fail_tree_roots;
3760

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
	/*
	 * Get zone type information of zoned block devices. This will also
	 * handle emulation of a zoned filesystem if a regular device has the
	 * zoned incompat feature flag set.
	 */
	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "zoned: failed to read device zone info: %d",
			  ret);
		goto fail_block_groups;
	}

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	/*
	 * If we have a uuid root and we're not being told to rescan we need to
	 * check the generation here so we can set the
	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
	 * transaction during a balance or the log replay without updating the
	 * uuid generation, and then if we crash we would rescan the uuid tree,
	 * even though it was perfectly fine.
	 */
	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);

3786 3787 3788 3789 3790 3791 3792
	ret = btrfs_verify_dev_extents(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "failed to verify dev extents against chunks: %d",
			  ret);
		goto fail_block_groups;
	}
3793 3794
	ret = btrfs_recover_balance(fs_info);
	if (ret) {
3795
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3796 3797 3798
		goto fail_block_groups;
	}

3799 3800
	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
3801
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3802 3803 3804
		goto fail_block_groups;
	}

3805 3806
	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
3807
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3808 3809 3810
		goto fail_block_groups;
	}

N
Naohiro Aota 已提交
3811 3812 3813 3814 3815 3816 3817
	ret = btrfs_check_zoned_mode(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
			  ret);
		goto fail_block_groups;
	}

3818
	ret = btrfs_sysfs_add_fsid(fs_devices);
3819
	if (ret) {
3820 3821
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
3822 3823 3824
		goto fail_block_groups;
	}

3825
	ret = btrfs_sysfs_add_mounted(fs_info);
3826
	if (ret) {
3827
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3828
		goto fail_fsdev_sysfs;
3829 3830 3831 3832
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
3833
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3834
		goto fail_sysfs;
3835 3836
	}

3837
	ret = btrfs_read_block_groups(fs_info);
3838
	if (ret) {
3839
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3840
		goto fail_sysfs;
3841
	}
3842

3843 3844
	btrfs_free_zone_cache(fs_info);

3845 3846
	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3847
		btrfs_warn(fs_info,
3848
		"writable mount is not allowed due to too many missing devices");
3849
		goto fail_sysfs;
3850
	}
C
Chris Mason 已提交
3851

3852
	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3853
					       "btrfs-cleaner");
3854
	if (IS_ERR(fs_info->cleaner_kthread))
3855
		goto fail_sysfs;
3856 3857 3858 3859

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
3860
	if (IS_ERR(fs_info->transaction_kthread))
3861
		goto fail_cleaner;
3862

3863
	if (!btrfs_test_opt(fs_info, NOSSD) &&
C
Chris Mason 已提交
3864
	    !fs_info->fs_devices->rotating) {
3865
		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
C
Chris Mason 已提交
3866 3867
	}

3868
	/*
3869
	 * Mount does not set all options immediately, we can do it now and do
3870 3871 3872
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);
3873

3874
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3875
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3876
		ret = btrfsic_mount(fs_info, fs_devices,
3877
				    btrfs_test_opt(fs_info,
3878
					CHECK_INTEGRITY_DATA) ? 1 : 0,
3879 3880
				    fs_info->check_integrity_print_mask);
		if (ret)
3881 3882 3883
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
3884 3885
	}
#endif
3886 3887 3888
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;
3889

J
Josef Bacik 已提交
3890 3891 3892
	if (btrfs_build_ref_tree(fs_info))
		btrfs_err(fs_info, "couldn't build ref tree");

3893 3894
	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
3895
	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3896
		btrfs_info(fs_info, "start tree-log replay");
3897
		ret = btrfs_replay_log(fs_info, fs_devices);
3898
		if (ret) {
3899
			err = ret;
3900
			goto fail_qgroup;
3901
		}
3902
	}
Z
Zheng Yan 已提交
3903

D
David Sterba 已提交
3904
	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3905 3906
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
3907
		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3908
		fs_info->fs_root = NULL;
3909
		goto fail_qgroup;
3910
	}
C
Chris Mason 已提交
3911

3912
	if (sb_rdonly(sb))
3913
		goto clear_oneshot;
I
Ilya Dryomov 已提交
3914

3915
	ret = btrfs_start_pre_rw_mount(fs_info);
3916
	if (ret) {
3917
		close_ctree(fs_info);
3918
		return ret;
3919
	}
3920
	btrfs_discard_resume(fs_info);
3921

3922 3923 3924
	if (fs_info->uuid_root &&
	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3925
		btrfs_info(fs_info, "checking UUID tree");
3926 3927
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
3928 3929
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
3930
			close_ctree(fs_info);
3931 3932
			return ret;
		}
3933
	}
3934

3935
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3936

3937 3938 3939 3940
	/* Kick the cleaner thread so it'll start deleting snapshots. */
	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
		wake_up_process(fs_info->cleaner_kthread);

3941 3942
clear_oneshot:
	btrfs_clear_oneshot_options(fs_info);
A
Al Viro 已提交
3943
	return 0;
C
Chris Mason 已提交
3944

3945 3946
fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
3947 3948
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
3949
	btrfs_cleanup_transaction(fs_info);
3950
	btrfs_free_fs_roots(fs_info);
3951
fail_cleaner:
3952
	kthread_stop(fs_info->cleaner_kthread);
3953 3954 3955 3956 3957 3958 3959

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

3960
fail_sysfs:
3961
	btrfs_sysfs_remove_mounted(fs_info);
3962

3963 3964 3965
fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

3966
fail_block_groups:
J
Josef Bacik 已提交
3967
	btrfs_put_block_group_cache(fs_info);
C
Chris Mason 已提交
3968 3969

fail_tree_roots:
3970 3971
	if (fs_info->data_reloc_root)
		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3972
	free_root_pointers(fs_info, true);
3973
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
C
Chris Mason 已提交
3974

C
Chris Mason 已提交
3975
fail_sb_buffer:
L
Liu Bo 已提交
3976
	btrfs_stop_all_workers(fs_info);
3977
	btrfs_free_block_groups(fs_info);
3978
fail_alloc:
3979 3980
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

3981
	iput(fs_info->btree_inode);
3982
fail:
3983
	btrfs_close_devices(fs_info->fs_devices);
A
Al Viro 已提交
3984
	return err;
3985
}
3986
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3987

3988
static void btrfs_end_super_write(struct bio *bio)
3989
{
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	struct btrfs_device *device = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;
	struct page *page;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		page = bvec->bv_page;

		if (bio->bi_status) {
			btrfs_warn_rl_in_rcu(device->fs_info,
				"lost page write due to IO error on %s (%d)",
				rcu_str_deref(device->name),
				blk_status_to_errno(bio->bi_status));
			ClearPageUptodate(page);
			SetPageError(page);
			btrfs_dev_stat_inc_and_print(device,
						     BTRFS_DEV_STAT_WRITE_ERRS);
		} else {
			SetPageUptodate(page);
		}

		put_page(page);
		unlock_page(page);
4013
	}
4014 4015

	bio_put(bio);
4016 4017
}

4018 4019
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
						   int copy_num)
4020 4021
{
	struct btrfs_super_block *super;
4022
	struct page *page;
4023
	u64 bytenr, bytenr_orig;
4024
	struct address_space *mapping = bdev->bd_inode->i_mapping;
4025 4026 4027 4028 4029 4030 4031 4032
	int ret;

	bytenr_orig = btrfs_sb_offset(copy_num);
	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
	if (ret == -ENOENT)
		return ERR_PTR(-EINVAL);
	else if (ret)
		return ERR_PTR(ret);
4033

4034
	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4035
		return ERR_PTR(-EINVAL);
4036

4037 4038 4039
	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
	if (IS_ERR(page))
		return ERR_CAST(page);
4040

4041
	super = page_address(page);
4042 4043 4044 4045 4046
	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
		btrfs_release_disk_super(super);
		return ERR_PTR(-ENODATA);
	}

4047
	if (btrfs_super_bytenr(super) != bytenr_orig) {
4048 4049
		btrfs_release_disk_super(super);
		return ERR_PTR(-EINVAL);
4050 4051
	}

4052
	return super;
4053 4054 4055
}


4056
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Y
Yan Zheng 已提交
4057
{
4058
	struct btrfs_super_block *super, *latest = NULL;
Y
Yan Zheng 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067
	int i;
	u64 transid = 0;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
4068 4069
		super = btrfs_read_dev_one_super(bdev, i);
		if (IS_ERR(super))
Y
Yan Zheng 已提交
4070 4071 4072
			continue;

		if (!latest || btrfs_super_generation(super) > transid) {
4073 4074 4075 4076
			if (latest)
				btrfs_release_disk_super(super);

			latest = super;
Y
Yan Zheng 已提交
4077 4078 4079
			transid = btrfs_super_generation(super);
		}
	}
4080

4081
	return super;
Y
Yan Zheng 已提交
4082 4083
}

4084
/*
4085
 * Write superblock @sb to the @device. Do not wait for completion, all the
4086
 * pages we use for writing are locked.
4087
 *
4088 4089 4090
 * Write @max_mirrors copies of the superblock, where 0 means default that fit
 * the expected device size at commit time. Note that max_mirrors must be
 * same for write and wait phases.
4091
 *
4092
 * Return number of errors when page is not found or submission fails.
4093
 */
Y
Yan Zheng 已提交
4094
static int write_dev_supers(struct btrfs_device *device,
4095
			    struct btrfs_super_block *sb, int max_mirrors)
Y
Yan Zheng 已提交
4096
{
4097
	struct btrfs_fs_info *fs_info = device->fs_info;
4098
	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4099
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Y
Yan Zheng 已提交
4100 4101
	int i;
	int errors = 0;
4102 4103
	int ret;
	u64 bytenr, bytenr_orig;
Y
Yan Zheng 已提交
4104 4105 4106 4107

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

4108 4109
	shash->tfm = fs_info->csum_shash;

Y
Yan Zheng 已提交
4110
	for (i = 0; i < max_mirrors; i++) {
4111 4112 4113 4114
		struct page *page;
		struct bio *bio;
		struct btrfs_super_block *disk_super;

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		bytenr_orig = btrfs_sb_offset(i);
		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
		if (ret == -ENOENT) {
			continue;
		} else if (ret < 0) {
			btrfs_err(device->fs_info,
				"couldn't get super block location for mirror %d",
				i);
			errors++;
			continue;
		}
4126 4127
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
Y
Yan Zheng 已提交
4128 4129
			break;

4130
		btrfs_set_super_bytenr(sb, bytenr_orig);
4131

4132 4133 4134
		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
				    sb->csum);
4135

4136 4137 4138
		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
					   GFP_NOFS);
		if (!page) {
4139
			btrfs_err(device->fs_info,
4140
			    "couldn't get super block page for bytenr %llu",
4141 4142
			    bytenr);
			errors++;
4143
			continue;
4144
		}
4145

4146 4147
		/* Bump the refcount for wait_dev_supers() */
		get_page(page);
Y
Yan Zheng 已提交
4148

4149 4150
		disk_super = page_address(page);
		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4151

4152 4153 4154 4155 4156
		/*
		 * Directly use bios here instead of relying on the page cache
		 * to do I/O, so we don't lose the ability to do integrity
		 * checking.
		 */
4157 4158 4159
		bio = bio_alloc(device->bdev, 1,
				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
				GFP_NOFS);
4160 4161 4162 4163 4164
		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
		bio->bi_private = device;
		bio->bi_end_io = btrfs_end_super_write;
		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
			       offset_in_page(bytenr));
Y
Yan Zheng 已提交
4165

C
Chris Mason 已提交
4166
		/*
4167 4168 4169
		 * We FUA only the first super block.  The others we allow to
		 * go down lazy and there's a short window where the on-disk
		 * copies might still contain the older version.
C
Chris Mason 已提交
4170
		 */
4171
		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4172 4173
			bio->bi_opf |= REQ_FUA;

4174 4175
		btrfsic_check_bio(bio);
		submit_bio(bio);
4176 4177 4178

		if (btrfs_advance_sb_log(device, i))
			errors++;
Y
Yan Zheng 已提交
4179 4180 4181 4182
	}
	return errors < i ? 0 : -1;
}

4183 4184 4185 4186
/*
 * Wait for write completion of superblocks done by write_dev_supers,
 * @max_mirrors same for write and wait phases.
 *
4187
 * Return number of errors when page is not found or not marked up to
4188 4189 4190 4191 4192 4193
 * date.
 */
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
	int i;
	int errors = 0;
4194
	bool primary_failed = false;
4195
	int ret;
4196 4197 4198 4199 4200 4201
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
4202 4203
		struct page *page;

4204 4205 4206 4207 4208 4209 4210 4211 4212
		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
		if (ret == -ENOENT) {
			break;
		} else if (ret < 0) {
			errors++;
			if (i == 0)
				primary_failed = true;
			continue;
		}
4213 4214 4215 4216
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

4217 4218 4219
		page = find_get_page(device->bdev->bd_inode->i_mapping,
				     bytenr >> PAGE_SHIFT);
		if (!page) {
4220
			errors++;
4221 4222
			if (i == 0)
				primary_failed = true;
4223 4224
			continue;
		}
4225 4226 4227
		/* Page is submitted locked and unlocked once the IO completes */
		wait_on_page_locked(page);
		if (PageError(page)) {
4228
			errors++;
4229 4230 4231
			if (i == 0)
				primary_failed = true;
		}
4232

4233 4234
		/* Drop our reference */
		put_page(page);
4235

4236 4237
		/* Drop the reference from the writing run */
		put_page(page);
4238 4239
	}

4240 4241 4242 4243 4244 4245 4246
	/* log error, force error return */
	if (primary_failed) {
		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
			  device->devid);
		return -1;
	}

4247 4248 4249
	return errors < i ? 0 : -1;
}

C
Chris Mason 已提交
4250 4251 4252 4253
/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
4254
static void btrfs_end_empty_barrier(struct bio *bio)
C
Chris Mason 已提交
4255
{
4256
	complete(bio->bi_private);
C
Chris Mason 已提交
4257 4258 4259
}

/*
4260 4261
 * Submit a flush request to the device if it supports it. Error handling is
 * done in the waiting counterpart.
C
Chris Mason 已提交
4262
 */
4263
static void write_dev_flush(struct btrfs_device *device)
C
Chris Mason 已提交
4264
{
4265
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
4266

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	/*
	 * When a disk has write caching disabled, we skip submission of a bio
	 * with flush and sync requests before writing the superblock, since
	 * it's not needed. However when the integrity checker is enabled, this
	 * results in reports that there are metadata blocks referred by a
	 * superblock that were not properly flushed. So don't skip the bio
	 * submission only when the integrity checker is enabled for the sake
	 * of simplicity, since this is a debug tool and not meant for use in
	 * non-debug builds.
	 */
	struct request_queue *q = bdev_get_queue(device->bdev);
4279
	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4280
		return;
4281
#endif
C
Chris Mason 已提交
4282

4283
	bio_reset(bio, device->bdev, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
C
Chris Mason 已提交
4284 4285 4286 4287
	bio->bi_end_io = btrfs_end_empty_barrier;
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;

4288 4289
	btrfsic_check_bio(bio);
	submit_bio(bio);
4290
	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4291
}
C
Chris Mason 已提交
4292

4293 4294 4295
/*
 * If the flush bio has been submitted by write_dev_flush, wait for it.
 */
4296
static blk_status_t wait_dev_flush(struct btrfs_device *device)
4297 4298
{
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
4299

4300
	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4301
		return BLK_STS_OK;
C
Chris Mason 已提交
4302

4303
	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4304
	wait_for_completion_io(&device->flush_wait);
C
Chris Mason 已提交
4305

4306
	return bio->bi_status;
C
Chris Mason 已提交
4307 4308
}

4309
static int check_barrier_error(struct btrfs_fs_info *fs_info)
4310
{
4311
	if (!btrfs_check_rw_degradable(fs_info, NULL))
4312
		return -EIO;
C
Chris Mason 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
4324
	int errors_wait = 0;
4325
	blk_status_t ret;
C
Chris Mason 已提交
4326

4327
	lockdep_assert_held(&info->fs_devices->device_list_mutex);
C
Chris Mason 已提交
4328 4329
	/* send down all the barriers */
	head = &info->fs_devices->devices;
4330
	list_for_each_entry(dev, head, dev_list) {
4331
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4332
			continue;
4333
		if (!dev->bdev)
C
Chris Mason 已提交
4334
			continue;
4335
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4336
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4337 4338
			continue;

4339
		write_dev_flush(dev);
4340
		dev->last_flush_error = BLK_STS_OK;
C
Chris Mason 已提交
4341 4342 4343
	}

	/* wait for all the barriers */
4344
	list_for_each_entry(dev, head, dev_list) {
4345
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4346
			continue;
C
Chris Mason 已提交
4347
		if (!dev->bdev) {
4348
			errors_wait++;
C
Chris Mason 已提交
4349 4350
			continue;
		}
4351
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4352
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4353 4354
			continue;

4355
		ret = wait_dev_flush(dev);
4356 4357
		if (ret) {
			dev->last_flush_error = ret;
4358 4359
			btrfs_dev_stat_inc_and_print(dev,
					BTRFS_DEV_STAT_FLUSH_ERRS);
4360
			errors_wait++;
4361 4362 4363
		}
	}

4364
	if (errors_wait) {
4365 4366 4367 4368 4369
		/*
		 * At some point we need the status of all disks
		 * to arrive at the volume status. So error checking
		 * is being pushed to a separate loop.
		 */
4370
		return check_barrier_error(info);
C
Chris Mason 已提交
4371 4372 4373 4374
	}
	return 0;
}

4375 4376
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
4377 4378
	int raid_type;
	int min_tolerated = INT_MAX;
4379

4380 4381
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4382
		min_tolerated = min_t(int, min_tolerated,
4383 4384
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);
4385

4386 4387 4388
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
4389
		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4390
			continue;
4391
		min_tolerated = min_t(int, min_tolerated,
4392 4393 4394
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}
4395

4396
	if (min_tolerated == INT_MAX) {
4397
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4398 4399 4400 4401
		min_tolerated = 0;
	}

	return min_tolerated;
4402 4403
}

4404
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4405
{
4406
	struct list_head *head;
4407
	struct btrfs_device *dev;
4408
	struct btrfs_super_block *sb;
4409 4410 4411
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
4412 4413
	int max_errors;
	int total_errors = 0;
4414
	u64 flags;
4415

4416
	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4417 4418 4419 4420 4421 4422 4423 4424

	/*
	 * max_mirrors == 0 indicates we're from commit_transaction,
	 * not from fsync where the tree roots in fs_info have not
	 * been consistent on disk.
	 */
	if (max_mirrors == 0)
		backup_super_roots(fs_info);
4425

4426
	sb = fs_info->super_for_commit;
4427
	dev_item = &sb->dev_item;
4428

4429 4430 4431
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	head = &fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
C
Chris Mason 已提交
4432

4433
	if (do_barriers) {
4434
		ret = barrier_all_devices(fs_info);
4435 4436
		if (ret) {
			mutex_unlock(
4437 4438 4439
				&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, ret,
					      "errors while submitting device barriers.");
4440 4441 4442
			return ret;
		}
	}
C
Chris Mason 已提交
4443

4444
	list_for_each_entry(dev, head, dev_list) {
4445 4446 4447 4448
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
4449
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4450
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4451 4452
			continue;

Y
Yan Zheng 已提交
4453
		btrfs_set_stack_device_generation(dev_item, 0);
4454 4455
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
4456
		btrfs_set_stack_device_total_bytes(dev_item,
4457
						   dev->commit_total_bytes);
4458 4459
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
4460 4461 4462 4463
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4464 4465
		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
		       BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
4466

4467 4468 4469
		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

4470 4471 4472 4473 4474 4475 4476 4477
		ret = btrfs_validate_write_super(fs_info, sb);
		if (ret < 0) {
			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, -EUCLEAN,
				"unexpected superblock corruption detected");
			return -EUCLEAN;
		}

4478
		ret = write_dev_supers(dev, sb, max_mirrors);
4479 4480
		if (ret)
			total_errors++;
4481
	}
4482
	if (total_errors > max_errors) {
4483 4484 4485
		btrfs_err(fs_info, "%d errors while writing supers",
			  total_errors);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4486

4487
		/* FUA is masked off if unsupported and can't be the reason */
4488 4489 4490
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4491
		return -EIO;
4492
	}
4493

Y
Yan Zheng 已提交
4494
	total_errors = 0;
4495
	list_for_each_entry(dev, head, dev_list) {
4496 4497
		if (!dev->bdev)
			continue;
4498
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4499
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4500 4501
			continue;

4502
		ret = wait_dev_supers(dev, max_mirrors);
Y
Yan Zheng 已提交
4503 4504
		if (ret)
			total_errors++;
4505
	}
4506
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4507
	if (total_errors > max_errors) {
4508 4509 4510
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4511
		return -EIO;
4512
	}
4513 4514 4515
	return 0;
}

4516 4517 4518
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
C
Chris Mason 已提交
4519
{
4520 4521
	bool drop_ref = false;

4522
	spin_lock(&fs_info->fs_roots_radix_lock);
C
Chris Mason 已提交
4523 4524
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
4525
	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4526
		drop_ref = true;
4527
	spin_unlock(&fs_info->fs_roots_radix_lock);
4528

J
Josef Bacik 已提交
4529
	if (BTRFS_FS_ERROR(fs_info)) {
4530
		ASSERT(root->log_root == NULL);
L
Liu Bo 已提交
4531
		if (root->reloc_root) {
4532
			btrfs_put_root(root->reloc_root);
L
Liu Bo 已提交
4533 4534 4535
			root->reloc_root = NULL;
		}
	}
L
Liu Bo 已提交
4536

4537 4538
	if (drop_ref)
		btrfs_put_root(root);
C
Chris Mason 已提交
4539 4540
}

Y
Yan Zheng 已提交
4541
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4542
{
Y
Yan Zheng 已提交
4543 4544
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
4545 4546 4547
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
4548

Y
Yan Zheng 已提交
4549
	while (1) {
4550
		spin_lock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4551 4552 4553
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
4554
		if (!ret) {
4555
			spin_unlock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4556
			break;
4557
		}
4558
		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4559

Y
Yan Zheng 已提交
4560
		for (i = 0; i < ret; i++) {
4561 4562 4563 4564 4565 4566
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
4567
			gang[i] = btrfs_grab_root(gang[i]);
4568
		}
4569
		spin_unlock(&fs_info->fs_roots_radix_lock);
4570

4571 4572 4573
		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
Y
Yan Zheng 已提交
4574
			root_objectid = gang[i]->root_key.objectid;
4575 4576
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
4577
				break;
4578
			btrfs_put_root(gang[i]);
Y
Yan Zheng 已提交
4579 4580 4581
		}
		root_objectid++;
	}
4582 4583 4584 4585

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
4586
			btrfs_put_root(gang[i]);
4587 4588
	}
	return err;
Y
Yan Zheng 已提交
4589
}
4590

4591
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4592
{
4593
	struct btrfs_root *root = fs_info->tree_root;
Y
Yan Zheng 已提交
4594
	struct btrfs_trans_handle *trans;
4595

4596
	mutex_lock(&fs_info->cleaner_mutex);
4597
	btrfs_run_delayed_iputs(fs_info);
4598 4599
	mutex_unlock(&fs_info->cleaner_mutex);
	wake_up_process(fs_info->cleaner_kthread);
4600 4601

	/* wait until ongoing cleanup work done */
4602 4603
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
4604

4605
	trans = btrfs_join_transaction(root);
4606 4607
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4608
	return btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
4609 4610
}

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
{
	struct btrfs_transaction *trans;
	struct btrfs_transaction *tmp;
	bool found = false;

	if (list_empty(&fs_info->trans_list))
		return;

	/*
	 * This function is only called at the very end of close_ctree(),
	 * thus no other running transaction, no need to take trans_lock.
	 */
	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
		struct extent_state *cached = NULL;
		u64 dirty_bytes = 0;
		u64 cur = 0;
		u64 found_start;
		u64 found_end;

		found = true;
		while (!find_first_extent_bit(&trans->dirty_pages, cur,
			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
			dirty_bytes += found_end + 1 - found_start;
			cur = found_end + 1;
		}
		btrfs_warn(fs_info,
	"transaction %llu (with %llu dirty metadata bytes) is not committed",
			   trans->transid, dirty_bytes);
		btrfs_cleanup_one_transaction(trans, fs_info);

		if (trans == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
		list_del_init(&trans->list);

		btrfs_put_transaction(trans);
		trace_btrfs_transaction_commit(fs_info);
	}
	ASSERT(!found);
}

4653
void __cold close_ctree(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4654 4655 4656
{
	int ret;

4657
	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4658 4659 4660 4661 4662 4663 4664
	/*
	 * We don't want the cleaner to start new transactions, add more delayed
	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
	 * because that frees the task_struct, and the transaction kthread might
	 * still try to wake up the cleaner.
	 */
	kthread_park(fs_info->cleaner_kthread);
Y
Yan Zheng 已提交
4665

4666 4667 4668 4669 4670 4671
	/*
	 * If we had UNFINISHED_DROPS we could still be processing them, so
	 * clear that bit and wake up relocation so it can stop.
	 */
	btrfs_wake_unfinished_drop(fs_info);

4672
	/* wait for the qgroup rescan worker to stop */
4673
	btrfs_qgroup_wait_for_completion(fs_info, false);
4674

S
Stefan Behrens 已提交
4675 4676 4677 4678 4679
	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

4680
	/* pause restriper - we want to resume on mount */
4681
	btrfs_pause_balance(fs_info);
4682

4683 4684
	btrfs_dev_replace_suspend_for_unmount(fs_info);

4685
	btrfs_scrub_cancel(fs_info);
C
Chris Mason 已提交
4686 4687 4688 4689 4690 4691

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
4692
	btrfs_cleanup_defrag_inodes(fs_info);
C
Chris Mason 已提交
4693

4694
	cancel_work_sync(&fs_info->async_reclaim_work);
4695
	cancel_work_sync(&fs_info->async_data_reclaim_work);
4696
	cancel_work_sync(&fs_info->preempt_reclaim_work);
4697

4698 4699
	cancel_work_sync(&fs_info->reclaim_bgs_work);

4700 4701 4702
	/* Cancel or finish ongoing discard work */
	btrfs_discard_cleanup(fs_info);

4703
	if (!sb_rdonly(fs_info->sb)) {
4704
		/*
4705 4706
		 * The cleaner kthread is stopped, so do one final pass over
		 * unused block groups.
4707
		 */
4708
		btrfs_delete_unused_bgs(fs_info);
4709

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
		/*
		 * There might be existing delayed inode workers still running
		 * and holding an empty delayed inode item. We must wait for
		 * them to complete first because they can create a transaction.
		 * This happens when someone calls btrfs_balance_delayed_items()
		 * and then a transaction commit runs the same delayed nodes
		 * before any delayed worker has done something with the nodes.
		 * We must wait for any worker here and not at transaction
		 * commit time since that could cause a deadlock.
		 * This is a very rare case.
		 */
		btrfs_flush_workqueue(fs_info->delayed_workers);

4723
		ret = btrfs_commit_super(fs_info);
L
liubo 已提交
4724
		if (ret)
4725
			btrfs_err(fs_info, "commit super ret %d", ret);
L
liubo 已提交
4726 4727
	}

J
Josef Bacik 已提交
4728
	if (BTRFS_FS_ERROR(fs_info))
4729
		btrfs_error_commit_super(fs_info);
4730

A
Al Viro 已提交
4731 4732
	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);
4733

4734
	ASSERT(list_empty(&fs_info->delayed_iputs));
4735
	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4736

4737 4738 4739 4740 4741
	if (btrfs_check_quota_leak(fs_info)) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		btrfs_err(fs_info, "qgroup reserved space leaked");
	}

4742
	btrfs_free_qgroup_config(fs_info);
4743
	ASSERT(list_empty(&fs_info->delalloc_roots));
4744

4745
	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4746
		btrfs_info(fs_info, "at unmount delalloc count %lld",
4747
		       percpu_counter_sum(&fs_info->delalloc_bytes));
C
Chris Mason 已提交
4748
	}
4749

4750
	if (percpu_counter_sum(&fs_info->ordered_bytes))
J
Josef Bacik 已提交
4751
		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4752
			   percpu_counter_sum(&fs_info->ordered_bytes));
J
Josef Bacik 已提交
4753

4754
	btrfs_sysfs_remove_mounted(fs_info);
4755
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4756

4757 4758
	btrfs_put_block_group_cache(fs_info);

4759 4760 4761 4762 4763
	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4764 4765
	btrfs_stop_all_workers(fs_info);

4766
	/* We shouldn't have any transaction open at this point */
4767
	warn_about_uncommitted_trans(fs_info);
4768

4769
	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4770
	free_root_pointers(fs_info, true);
4771
	btrfs_free_fs_roots(fs_info);
4772

4773 4774 4775 4776 4777 4778 4779 4780 4781
	/*
	 * We must free the block groups after dropping the fs_roots as we could
	 * have had an IO error and have left over tree log blocks that aren't
	 * cleaned up until the fs roots are freed.  This makes the block group
	 * accounting appear to be wrong because there's pending reserved bytes,
	 * so make sure we do the block group cleanup afterwards.
	 */
	btrfs_free_block_groups(fs_info);

4782
	iput(fs_info->btree_inode);
4783

4784
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4785
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4786
		btrfsic_unmount(fs_info->fs_devices);
4787 4788
#endif

4789
	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4790
	btrfs_close_devices(fs_info->fs_devices);
4791 4792
}

4793 4794
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
4795
{
4796
	int ret;
4797
	struct inode *btree_inode = buf->pages[0]->mapping->host;
4798

4799
	ret = extent_buffer_uptodate(buf);
4800 4801 4802 4803
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4804 4805 4806
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
4807
	return !ret;
4808 4809 4810 4811
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
4812
	struct btrfs_fs_info *fs_info = buf->fs_info;
4813
	u64 transid = btrfs_header_generation(buf);
4814
	int was_dirty;
4815

4816 4817 4818
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
4819
	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4820 4821
	 * outside of the sanity tests.
	 */
4822
	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4823 4824
		return;
#endif
4825
	btrfs_assert_tree_write_locked(buf);
4826
	if (transid != fs_info->generation)
J
Jeff Mahoney 已提交
4827
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4828
			buf->start, transid, fs_info->generation);
4829
	was_dirty = set_extent_buffer_dirty(buf);
4830
	if (!was_dirty)
4831 4832 4833
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 buf->len,
					 fs_info->dirty_metadata_batch);
4834
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4835 4836 4837 4838 4839 4840
	/*
	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
	 * but item data not updated.
	 * So here we should only check item pointers, not item data.
	 */
	if (btrfs_header_level(buf) == 0 &&
4841
	    btrfs_check_leaf_relaxed(buf)) {
4842
		btrfs_print_leaf(buf);
4843 4844 4845
		ASSERT(0);
	}
#endif
4846 4847
}

4848
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4849
					int flush_delayed)
4850 4851 4852 4853 4854
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
4855
	int ret;
4856 4857 4858 4859

	if (current->flags & PF_MEMALLOC)
		return;

4860
	if (flush_delayed)
4861
		btrfs_balance_delayed_items(fs_info);
4862

4863 4864 4865
	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH,
				     fs_info->dirty_metadata_batch);
4866
	if (ret > 0) {
4867
		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4868 4869 4870
	}
}

4871
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4872
{
4873
	__btrfs_btree_balance_dirty(fs_info, 1);
4874
}
4875

4876
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4877
{
4878
	__btrfs_btree_balance_dirty(fs_info, 0);
C
Chris Mason 已提交
4879
}
4880

4881
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4882
{
4883 4884 4885
	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(fs_info);

4886
	mutex_lock(&fs_info->cleaner_mutex);
4887
	btrfs_run_delayed_iputs(fs_info);
4888
	mutex_unlock(&fs_info->cleaner_mutex);
L
liubo 已提交
4889

4890 4891
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
L
liubo 已提交
4892 4893
}

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *gang[8];
	u64 root_objectid = 0;
	int ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang))) != 0) {
		int i;

		for (i = 0; i < ret; i++)
			gang[i] = btrfs_grab_root(gang[i]);
		spin_unlock(&fs_info->fs_roots_radix_lock);

		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
			root_objectid = gang[i]->root_key.objectid;
			btrfs_free_log(NULL, gang[i]);
			btrfs_put_root(gang[i]);
		}
		root_objectid++;
		spin_lock(&fs_info->fs_roots_radix_lock);
	}
	spin_unlock(&fs_info->fs_roots_radix_lock);
	btrfs_free_log_root_tree(NULL, fs_info);
}

4924
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
L
liubo 已提交
4925 4926 4927
{
	struct btrfs_ordered_extent *ordered;

4928
	spin_lock(&root->ordered_extent_lock);
4929 4930 4931 4932
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
4933
	list_for_each_entry(ordered, &root->ordered_extents,
4934 4935
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
4951 4952
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
4953

4954
		spin_unlock(&fs_info->ordered_root_lock);
4955 4956
		btrfs_destroy_ordered_extents(root);

4957 4958
		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
4959 4960
	}
	spin_unlock(&fs_info->ordered_root_lock);
4961 4962 4963 4964 4965 4966 4967 4968

	/*
	 * We need this here because if we've been flipped read-only we won't
	 * get sync() from the umount, so we need to make sure any ordered
	 * extents that haven't had their dirty pages IO start writeout yet
	 * actually get run and error out properly.
	 */
	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
L
liubo 已提交
4969 4970
}

4971
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4972
				      struct btrfs_fs_info *fs_info)
L
liubo 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
4982
	if (atomic_read(&delayed_refs->num_entries) == 0) {
4983
		spin_unlock(&delayed_refs->lock);
4984
		btrfs_debug(fs_info, "delayed_refs has NO entry");
L
liubo 已提交
4985 4986 4987
		return ret;
	}

4988
	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4989
		struct btrfs_delayed_ref_head *head;
4990
		struct rb_node *n;
4991
		bool pin_bytes = false;
L
liubo 已提交
4992

4993 4994
		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
4995
		if (btrfs_delayed_ref_lock(delayed_refs, head))
4996
			continue;
4997

4998
		spin_lock(&head->lock);
4999
		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5000 5001
			ref = rb_entry(n, struct btrfs_delayed_ref_node,
				       ref_node);
5002
			ref->in_tree = 0;
5003
			rb_erase_cached(&ref->ref_node, &head->ref_tree);
5004
			RB_CLEAR_NODE(&ref->ref_node);
5005 5006
			if (!list_empty(&ref->add_list))
				list_del(&ref->add_list);
5007 5008
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
5009
		}
5010 5011 5012
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
5013
		btrfs_delete_ref_head(delayed_refs, head);
5014 5015 5016
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);
L
liubo 已提交
5017

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
		if (pin_bytes) {
			struct btrfs_block_group *cache;

			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
			BUG_ON(!cache);

			spin_lock(&cache->space_info->lock);
			spin_lock(&cache->lock);
			cache->pinned += head->num_bytes;
			btrfs_space_info_update_bytes_pinned(fs_info,
				cache->space_info, head->num_bytes);
			cache->reserved -= head->num_bytes;
			cache->space_info->bytes_reserved -= head->num_bytes;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);

			btrfs_put_block_group(cache);

			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
				head->bytenr + head->num_bytes - 1);
		}
5039
		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5040
		btrfs_put_delayed_ref_head(head);
L
liubo 已提交
5041 5042 5043
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}
5044
	btrfs_qgroup_destroy_extent_records(trans);
L
liubo 已提交
5045 5046 5047 5048 5049 5050

	spin_unlock(&delayed_refs->lock);

	return ret;
}

5051
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
L
liubo 已提交
5052 5053 5054 5055 5056 5057
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

5058 5059
	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);
L
liubo 已提交
5060 5061

	while (!list_empty(&splice)) {
5062
		struct inode *inode = NULL;
5063 5064
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);
5065
		__btrfs_del_delalloc_inode(root, btrfs_inode);
5066
		spin_unlock(&root->delalloc_lock);
L
liubo 已提交
5067

5068 5069 5070 5071 5072 5073 5074 5075 5076
		/*
		 * Make sure we get a live inode and that it'll not disappear
		 * meanwhile.
		 */
		inode = igrab(&btrfs_inode->vfs_inode);
		if (inode) {
			invalidate_inode_pages2(inode->i_mapping);
			iput(inode);
		}
5077
		spin_lock(&root->delalloc_lock);
L
liubo 已提交
5078
	}
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
5094
		root = btrfs_grab_root(root);
5095 5096 5097 5098
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
5099
		btrfs_put_root(root);
5100 5101 5102 5103

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
L
liubo 已提交
5104 5105
}

5106
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5117
					    mark, NULL);
L
liubo 已提交
5118 5119 5120
		if (ret)
			break;

5121
		clear_extent_bits(dirty_pages, start, end, mark);
L
liubo 已提交
5122
		while (start <= end) {
5123 5124
			eb = find_extent_buffer(fs_info, start);
			start += fs_info->nodesize;
5125
			if (!eb)
L
liubo 已提交
5126
				continue;
5127
			wait_on_extent_buffer_writeback(eb);
L
liubo 已提交
5128

5129 5130 5131 5132
			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
L
liubo 已提交
5133 5134 5135 5136 5137 5138
		}
	}

	return ret;
}

5139
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5140
				       struct extent_io_tree *unpin)
L
liubo 已提交
5141 5142 5143 5144 5145 5146
{
	u64 start;
	u64 end;
	int ret;

	while (1) {
5147 5148
		struct extent_state *cached_state = NULL;

5149 5150 5151 5152 5153 5154 5155
		/*
		 * The btrfs_finish_extent_commit() may get the same range as
		 * ours between find_first_extent_bit and clear_extent_dirty.
		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
		 * the same extent range.
		 */
		mutex_lock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
5156
		ret = find_first_extent_bit(unpin, 0, &start, &end,
5157
					    EXTENT_DIRTY, &cached_state);
5158 5159
		if (ret) {
			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
5160
			break;
5161
		}
L
liubo 已提交
5162

5163 5164
		clear_extent_dirty(unpin, start, end, &cached_state);
		free_extent_state(cached_state);
5165
		btrfs_error_unpin_extent_range(fs_info, start, end);
5166
		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
5167 5168 5169 5170 5171 5172
		cond_resched();
	}

	return 0;
}

5173
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
5184
	ASSERT(cache->io_ctl.pages == NULL);
5185 5186 5187 5188
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5189
			     struct btrfs_fs_info *fs_info)
5190
{
5191
	struct btrfs_block_group *cache;
5192 5193 5194 5195

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
5196
					 struct btrfs_block_group,
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
					 dirty_list);

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
J
Josef Bacik 已提交
5213
		btrfs_delayed_refs_rsv_release(fs_info, 1);
5214 5215 5216 5217
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

5218 5219 5220 5221
	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
5222 5223
	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
5224
					 struct btrfs_block_group,
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
					 io_list);

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

5235
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5236
				   struct btrfs_fs_info *fs_info)
5237
{
5238 5239
	struct btrfs_device *dev, *tmp;

5240
	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5241 5242 5243
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

5244 5245 5246 5247 5248
	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&dev->post_commit_list);
	}

5249
	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5250

5251
	cur_trans->state = TRANS_STATE_COMMIT_START;
5252
	wake_up(&fs_info->transaction_blocked_wait);
5253

5254
	cur_trans->state = TRANS_STATE_UNBLOCKED;
5255
	wake_up(&fs_info->transaction_wait);
5256

5257
	btrfs_destroy_delayed_inodes(fs_info);
5258

5259
	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5260
				     EXTENT_DIRTY);
5261
	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5262

5263 5264
	btrfs_free_redirty_list(cur_trans);

5265 5266
	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);
5267 5268
}

5269
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
L
liubo 已提交
5270 5271 5272
{
	struct btrfs_transaction *t;

5273
	mutex_lock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
5274

5275 5276 5277
	spin_lock(&fs_info->trans_lock);
	while (!list_empty(&fs_info->trans_list)) {
		t = list_first_entry(&fs_info->trans_list,
5278 5279
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
5280
			refcount_inc(&t->use_count);
5281
			spin_unlock(&fs_info->trans_lock);
5282
			btrfs_wait_for_commit(fs_info, t->transid);
5283
			btrfs_put_transaction(t);
5284
			spin_lock(&fs_info->trans_lock);
5285 5286
			continue;
		}
5287
		if (t == fs_info->running_transaction) {
5288
			t->state = TRANS_STATE_COMMIT_DOING;
5289
			spin_unlock(&fs_info->trans_lock);
5290 5291 5292 5293 5294 5295 5296
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
5297
			spin_unlock(&fs_info->trans_lock);
5298
		}
5299
		btrfs_cleanup_one_transaction(t, fs_info);
5300

5301 5302 5303
		spin_lock(&fs_info->trans_lock);
		if (t == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
L
liubo 已提交
5304
		list_del_init(&t->list);
5305
		spin_unlock(&fs_info->trans_lock);
L
liubo 已提交
5306

5307
		btrfs_put_transaction(t);
5308
		trace_btrfs_transaction_commit(fs_info);
5309
		spin_lock(&fs_info->trans_lock);
5310
	}
5311 5312
	spin_unlock(&fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(fs_info);
5313 5314
	btrfs_destroy_delayed_inodes(fs_info);
	btrfs_assert_delayed_root_empty(fs_info);
5315
	btrfs_destroy_all_delalloc_inodes(fs_info);
5316
	btrfs_drop_all_logs(fs_info);
5317
	mutex_unlock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
5318 5319 5320

	return 0;
}
5321

5322
int btrfs_init_root_free_objectid(struct btrfs_root *root)
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
{
	struct btrfs_path *path;
	int ret;
	struct extent_buffer *l;
	struct btrfs_key search_key;
	struct btrfs_key found_key;
	int slot;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
	search_key.type = -1;
	search_key.offset = (u64)-1;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto error;
	BUG_ON(ret == 0); /* Corruption */
	if (path->slots[0] > 0) {
		slot = path->slots[0] - 1;
		l = path->nodes[0];
		btrfs_item_key_to_cpu(l, &found_key, slot);
5346 5347
		root->free_objectid = max_t(u64, found_key.objectid + 1,
					    BTRFS_FIRST_FREE_OBJECTID);
5348
	} else {
5349
		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5350 5351 5352 5353 5354 5355 5356
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

5357
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5358 5359 5360 5361
{
	int ret;
	mutex_lock(&root->objectid_mutex);

5362
	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5363 5364 5365 5366 5367 5368 5369
		btrfs_warn(root->fs_info,
			   "the objectid of root %llu reaches its highest value",
			   root->root_key.objectid);
		ret = -ENOSPC;
		goto out;
	}

5370
	*objectid = root->free_objectid++;
5371 5372 5373 5374 5375
	ret = 0;
out:
	mutex_unlock(&root->objectid_mutex);
	return ret;
}