mmu.c 39.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_pgtable.h>
18
#include <asm/kvm_ras.h>
19
#include <asm/kvm_asm.h>
20
#include <asm/kvm_emulate.h>
21
#include <asm/virt.h>
22 23

#include "trace.h"
24

25
static struct kvm_pgtable *hyp_pgtable;
26 27
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

28 29 30 31
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

32 33
static unsigned long io_map_base;

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
 * long will also starve other vCPUs. We have to also make sure that the page
 * tables are not freed while we released the lock.
 */
static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
			      phys_addr_t end,
			      int (*fn)(struct kvm_pgtable *, u64, u64),
			      bool resched)
{
	int ret;
	u64 next;

	do {
		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
		if (!pgt)
			return -EINVAL;

		next = stage2_pgd_addr_end(kvm, addr, end);
		ret = fn(pgt, addr, next - addr);
		if (ret)
			break;

		if (resched && next != end)
			cond_resched_lock(&kvm->mmu_lock);
	} while (addr = next, addr != end);

	return ret;
}

67 68 69
#define stage2_apply_range_resched(kvm, addr, end, fn)			\
	stage2_apply_range(kvm, addr, end, fn, true)

70 71 72
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 74 75 76 77 78 79 80 81 82
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
83
	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84
}
85

86 87 88 89 90
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
108 109
 * the corresponding TLBs, we flush to make sure the IO subsystem will
 * never hit in the cache.
110 111 112 113
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
114
 */
115 116
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
117
 * @mmu:   The KVM stage-2 MMU pointer
118 119
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
120
 * @may_block: Whether or not we are permitted to block
121 122 123 124 125 126
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
127 128
static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
				 bool may_block)
129
{
130
	struct kvm *kvm = mmu->kvm;
131
	phys_addr_t end = start + size;
132

133
	assert_spin_locked(&kvm->mmu_lock);
134
	WARN_ON(size & ~PAGE_MASK);
135 136
	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
				   may_block));
137 138
}

139 140 141 142 143
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
{
	__unmap_stage2_range(mmu, start, size, true);
}

144 145 146 147 148 149
static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;

150
	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
151 152 153 154 155 156 157 158 159
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
160
static void stage2_flush_vm(struct kvm *kvm)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

177
/**
178
 * free_hyp_pgds - free Hyp-mode page tables
179
 */
180
void free_hyp_pgds(void)
181
{
182
	mutex_lock(&kvm_hyp_pgd_mutex);
183 184 185
	if (hyp_pgtable) {
		kvm_pgtable_hyp_destroy(hyp_pgtable);
		kfree(hyp_pgtable);
186
	}
187 188 189
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

190 191
static int __create_hyp_mappings(unsigned long start, unsigned long size,
				 unsigned long phys, enum kvm_pgtable_prot prot)
192
{
193
	int err;
194 195

	mutex_lock(&kvm_hyp_pgd_mutex);
196
	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
197
	mutex_unlock(&kvm_hyp_pgd_mutex);
198

199 200 201
	return err;
}

202 203 204 205 206 207 208 209 210 211 212
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

213
/**
214
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
215 216
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
217
 * @prot:	The protection to be applied to this range
218
 *
219 220 221
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
222
 */
223
int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
224
{
225 226
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
227 228
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
229

230 231 232
	if (is_kernel_in_hyp_mode())
		return 0;

233 234
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
235

236 237
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
238

239
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
240
		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
241
					    prot);
242 243 244 245 246
		if (err)
			return err;
	}

	return 0;
247 248
}

249
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
250 251
					unsigned long *haddr,
					enum kvm_pgtable_prot prot)
252
{
253 254
	unsigned long base;
	int ret = 0;
255

256
	mutex_lock(&kvm_hyp_pgd_mutex);
257

258
	/*
F
Fuad Tabba 已提交
259
	 * This assumes that we have enough space below the idmap
260 261 262 263 264 265 266 267
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
268

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

284
	ret = __create_hyp_mappings(base, size, phys_addr, prot);
285 286 287
	if (ret)
		goto out;

288
	*haddr = base + offset_in_page(phys_addr);
289
out:
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
318 319 320
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
347 348 349
		return ret;
	}

350
	*haddr = (void *)addr;
351
	return 0;
352 353
}

354
/**
355 356 357
 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
 * @kvm:	The pointer to the KVM structure
 * @mmu:	The pointer to the s2 MMU structure
358
 *
359
 * Allocates only the stage-2 HW PGD level table(s).
360 361 362
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
363
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
364
{
365 366
	int cpu, err;
	struct kvm_pgtable *pgt;
367

368
	if (mmu->pgt != NULL) {
369 370 371 372
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

373 374
	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
	if (!pgt)
375 376
		return -ENOMEM;

377 378 379
	err = kvm_pgtable_stage2_init(pgt, kvm);
	if (err)
		goto out_free_pgtable;
380

381 382
	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
	if (!mmu->last_vcpu_ran) {
383 384
		err = -ENOMEM;
		goto out_destroy_pgtable;
385 386 387 388 389 390
	}

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;

	mmu->kvm = kvm;
391 392
	mmu->pgt = pgt;
	mmu->pgd_phys = __pa(pgt->pgd);
393
	mmu->vmid.vmid_gen = 0;
394
	return 0;
395 396 397 398 399 400

out_destroy_pgtable:
	kvm_pgtable_stage2_destroy(pgt);
out_free_pgtable:
	kfree(pgt);
	return err;
401 402
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
438
			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
439 440 441 442 443 444 445 446 447
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
F
Fuad Tabba 已提交
448
 * Go through the memregions and unmap any regular RAM
449 450 451 452 453 454 455 456 457
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
458
	mmap_read_lock(current->mm);
459 460 461 462 463 464 465
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
466
	mmap_read_unlock(current->mm);
467 468 469
	srcu_read_unlock(&kvm->srcu, idx);
}

470
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
471
{
472
	struct kvm *kvm = mmu->kvm;
473
	struct kvm_pgtable *pgt = NULL;
474

475
	spin_lock(&kvm->mmu_lock);
476 477 478 479 480
	pgt = mmu->pgt;
	if (pgt) {
		mmu->pgd_phys = 0;
		mmu->pgt = NULL;
		free_percpu(mmu->last_vcpu_ran);
481
	}
482 483
	spin_unlock(&kvm->mmu_lock);

484 485 486
	if (pgt) {
		kvm_pgtable_stage2_destroy(pgt);
		kfree(pgt);
487
	}
488 489 490 491 492 493 494 495 496
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
497
 * @writable:   Whether or not to create a writable mapping
498 499
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
500
			  phys_addr_t pa, unsigned long size, bool writable)
501
{
502
	phys_addr_t addr;
503
	int ret = 0;
504
	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
505 506 507 508
	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
				     KVM_PGTABLE_PROT_R |
				     (writable ? KVM_PGTABLE_PROT_W : 0);
509

510 511
	size += offset_in_page(guest_ipa);
	guest_ipa &= PAGE_MASK;
512

513
	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
514 515
		ret = kvm_mmu_topup_memory_cache(&cache,
						 kvm_mmu_cache_min_pages(kvm));
516
		if (ret)
517 518
			break;

519
		spin_lock(&kvm->mmu_lock);
520 521
		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
					     &cache);
522 523
		spin_unlock(&kvm->mmu_lock);
		if (ret)
524
			break;
525

526
		pa += PAGE_SIZE;
527 528
	}

529
	kvm_mmu_free_memory_cache(&cache);
530 531 532
	return ret;
}

533 534
/**
 * stage2_wp_range() - write protect stage2 memory region range
535
 * @mmu:        The KVM stage-2 MMU pointer
536 537 538
 * @addr:	Start address of range
 * @end:	End address of range
 */
539
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
540
{
541
	struct kvm *kvm = mmu->kvm;
542
	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
543 544 545 546 547 548 549 550 551
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
552
 * all present PUD, PMD and PTEs are write protected in the memory region.
553 554 555 556 557 558 559
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
560 561
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
562 563 564 565 566 567 568
	phys_addr_t start, end;

	if (WARN_ON_ONCE(!memslot))
		return;

	start = memslot->base_gfn << PAGE_SHIFT;
	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
569 570

	spin_lock(&kvm->mmu_lock);
571
	stage2_wp_range(&kvm->arch.mmu, start, end);
572 573 574
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
575 576

/**
577
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
578 579 580 581 582 583 584 585 586
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
587
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
588 589 590 591 592 593 594
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

595
	stage2_wp_range(&kvm->arch.mmu, start, end);
596
}
597

598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

612
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
613
{
614
	__clean_dcache_guest_page(pfn, size);
615 616
}

617
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
618
{
619
	__invalidate_icache_guest_page(pfn, size);
620 621
}

622
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
623
{
624
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
625 626
}

627 628 629
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
630
{
631
	gpa_t gpa_start;
632 633 634
	hva_t uaddr_start, uaddr_end;
	size_t size;

635 636 637 638
	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
	if (map_size == PAGE_SIZE)
		return true;

639 640 641 642 643 644 645 646 647
	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
648 649
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
650 651 652 653 654
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
655
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
656 657
	 *    +-----+--------------------+--------------------+---+
	 *
658
	 *    memslot->base_gfn << PAGE_SHIFT:
659
	 *      +---+--------------------+--------------------+-----+
660
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
661 662
	 *      +---+--------------------+--------------------+-----+
	 *
663
	 * If we create those stage-2 blocks, we'll end up with this incorrect
664 665 666 667 668
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
669
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
670 671 672 673
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
674 675
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
676 677 678 679 680 681 682 683
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
684 685
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
686 687
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/*
 * Check if the given hva is backed by a transparent huge page (THP) and
 * whether it can be mapped using block mapping in stage2. If so, adjust
 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 * supported. This will need to be updated to support other THP sizes.
 *
 * Returns the size of the mapping.
 */
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
			    unsigned long hva, kvm_pfn_t *pfnp,
			    phys_addr_t *ipap)
{
	kvm_pfn_t pfn = *pfnp;

	/*
	 * Make sure the adjustment is done only for THP pages. Also make
	 * sure that the HVA and IPA are sufficiently aligned and that the
	 * block map is contained within the memslot.
	 */
	if (kvm_is_transparent_hugepage(pfn) &&
	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		*ipap &= PMD_MASK;
		kvm_release_pfn_clean(pfn);
		pfn &= ~(PTRS_PER_PMD - 1);
		kvm_get_pfn(pfn);
		*pfnp = pfn;

		return PMD_SIZE;
	}

	/* Use page mapping if we cannot use block mapping. */
	return PAGE_SIZE;
}

741
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
742
			  struct kvm_memory_slot *memslot, unsigned long hva,
743 744 745
			  unsigned long fault_status)
{
	int ret;
746
	bool write_fault, writable, force_pte = false;
747 748
	bool exec_fault;
	bool device = false;
749
	unsigned long mmu_seq;
750
	struct kvm *kvm = vcpu->kvm;
751
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
752
	struct vm_area_struct *vma;
753
	short vma_shift;
754
	gfn_t gfn;
D
Dan Williams 已提交
755
	kvm_pfn_t pfn;
756
	bool logging_active = memslot_is_logging(memslot);
757 758 759
	unsigned long vma_pagesize;
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
	struct kvm_pgtable *pgt;
760

761
	write_fault = kvm_is_write_fault(vcpu);
762 763 764 765
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
766 767 768 769
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

770
	/* Let's check if we will get back a huge page backed by hugetlbfs */
771
	mmap_read_lock(current->mm);
772
	vma = find_vma_intersection(current->mm, hva, hva + 1);
773 774
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
775
		mmap_read_unlock(current->mm);
776 777 778
		return -EFAULT;
	}

779 780 781 782 783
	if (is_vm_hugetlb_page(vma))
		vma_shift = huge_page_shift(hstate_vma(vma));
	else
		vma_shift = PAGE_SHIFT;

784
	if (logging_active ||
785
	    (vma->vm_flags & VM_PFNMAP)) {
786
		force_pte = true;
787 788 789 790 791 792 793 794 795 796 797
		vma_shift = PAGE_SHIFT;
	}

	if (vma_shift == PUD_SHIFT &&
	    !fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
	       vma_shift = PMD_SHIFT;

	if (vma_shift == PMD_SHIFT &&
	    !fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		force_pte = true;
		vma_shift = PAGE_SHIFT;
798 799
	}

800
	vma_pagesize = 1UL << vma_shift;
801
	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
802
		fault_ipa &= ~(vma_pagesize - 1);
803 804

	gfn = fault_ipa >> PAGE_SHIFT;
805
	mmap_read_unlock(current->mm);
806

807 808 809 810 811 812 813 814 815 816 817 818
	/*
	 * Permission faults just need to update the existing leaf entry,
	 * and so normally don't require allocations from the memcache. The
	 * only exception to this is when dirty logging is enabled at runtime
	 * and a write fault needs to collapse a block entry into a table.
	 */
	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
		ret = kvm_mmu_topup_memory_cache(memcache,
						 kvm_mmu_cache_min_pages(kvm));
		if (ret)
			return ret;
	}
819 820 821 822 823 824 825 826 827 828 829 830 831

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

832
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
833
	if (pfn == KVM_PFN_ERR_HWPOISON) {
834
		kvm_send_hwpoison_signal(hva, vma_shift);
835 836
		return 0;
	}
837
	if (is_error_noslot_pfn(pfn))
838 839
		return -EFAULT;

840
	if (kvm_is_device_pfn(pfn)) {
841 842
		device = true;
	} else if (logging_active && !write_fault) {
843 844 845 846
		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
847
		writable = false;
848
	}
849

850
	if (exec_fault && device)
851 852
		return -ENOEXEC;

853
	spin_lock(&kvm->mmu_lock);
854
	pgt = vcpu->arch.hw_mmu->pgt;
855
	if (mmu_notifier_retry(kvm, mmu_seq))
856
		goto out_unlock;
857

858 859 860 861 862 863 864
	/*
	 * If we are not forced to use page mapping, check if we are
	 * backed by a THP and thus use block mapping if possible.
	 */
	if (vma_pagesize == PAGE_SIZE && !force_pte)
		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
							   &pfn, &fault_ipa);
865 866
	if (writable) {
		prot |= KVM_PGTABLE_PROT_W;
867
		kvm_set_pfn_dirty(pfn);
868 869
		mark_page_dirty(kvm, gfn);
	}
870

871
	if (fault_status != FSC_PERM && !device)
872 873
		clean_dcache_guest_page(pfn, vma_pagesize);

874 875
	if (exec_fault) {
		prot |= KVM_PGTABLE_PROT_X;
876
		invalidate_icache_guest_page(pfn, vma_pagesize);
877
	}
878

879 880 881 882
	if (device)
		prot |= KVM_PGTABLE_PROT_DEVICE;
	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
		prot |= KVM_PGTABLE_PROT_X;
883

884 885
	if (fault_status == FSC_PERM && !(logging_active && writable)) {
		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
886
	} else {
887 888 889
		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
					     __pfn_to_phys(pfn), prot,
					     memcache);
890
	}
891

892
out_unlock:
893
	spin_unlock(&kvm->mmu_lock);
894
	kvm_set_pfn_accessed(pfn);
895
	kvm_release_pfn_clean(pfn);
896
	return ret;
897 898
}

899
/* Resolve the access fault by making the page young again. */
900 901
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
902 903 904
	pte_t pte;
	kvm_pte_t kpte;
	struct kvm_s2_mmu *mmu;
905 906 907 908

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);
909 910
	mmu = vcpu->arch.hw_mmu;
	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
911
	spin_unlock(&vcpu->kvm->mmu_lock);
912 913 914 915

	pte = __pte(kpte);
	if (pte_valid(pte))
		kvm_set_pfn_accessed(pte_pfn(pte));
916 917
}

918 919 920 921 922 923 924 925 926 927 928
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
929
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
930
{
931 932 933
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
934 935
	unsigned long hva;
	bool is_iabt, write_fault, writable;
936 937 938
	gfn_t gfn;
	int ret, idx;

939 940 941
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
942
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
943

944
	/* Synchronous External Abort? */
945
	if (kvm_vcpu_abt_issea(vcpu)) {
946 947 948 949
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
950
		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
951
			kvm_inject_vabt(vcpu);
952 953

		return 1;
954 955
	}

G
Gavin Shan 已提交
956
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
957
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
958 959

	/* Check the stage-2 fault is trans. fault or write fault */
960 961
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
962 963 964
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
G
Gavin Shan 已提交
965
			(unsigned long)kvm_vcpu_get_esr(vcpu));
966 967 968 969 970 971
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
972 973
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
974
	write_fault = kvm_is_write_fault(vcpu);
975
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
976 977 978 979 980 981
		/*
		 * The guest has put either its instructions or its page-tables
		 * somewhere it shouldn't have. Userspace won't be able to do
		 * anything about this (there's no syndrome for a start), so
		 * re-inject the abort back into the guest.
		 */
982
		if (is_iabt) {
983 984
			ret = -ENOEXEC;
			goto out;
985 986
		}

987 988 989 990 991 992
		if (kvm_vcpu_dabt_iss1tw(vcpu)) {
			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
			ret = 1;
			goto out_unlock;
		}

993 994 995 996 997 998 999 1000 1001 1002
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
1003
		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1004 1005 1006 1007 1008
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1009 1010 1011 1012 1013 1014 1015
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1016
		ret = io_mem_abort(vcpu, fault_ipa);
1017 1018 1019
		goto out_unlock;
	}

1020
	/* Userspace should not be able to register out-of-bounds IPAs */
1021
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1022

1023 1024 1025 1026 1027 1028
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1029
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1030 1031
	if (ret == 0)
		ret = 1;
1032 1033 1034 1035 1036
out:
	if (ret == -ENOEXEC) {
		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
		ret = 1;
	}
1037 1038 1039
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1040 1041
}

1042 1043 1044 1045
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1046 1047
					    gpa_t gpa, u64 size,
					    void *data),
1048
			     void *data)
1049 1050 1051
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1052
	int ret = 0;
1053 1054 1055 1056 1057 1058

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1059
		gfn_t gpa;
1060 1061 1062 1063 1064 1065 1066

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1067 1068
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1069
	}
1070 1071

	return ret;
1072 1073
}

1074
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1075
{
1076 1077 1078 1079
	unsigned flags = *(unsigned *)data;
	bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;

	__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1080
	return 0;
1081 1082 1083
}

int kvm_unmap_hva_range(struct kvm *kvm,
1084
			unsigned long start, unsigned long end, unsigned flags)
1085
{
1086
	if (!kvm->arch.mmu.pgt)
1087 1088 1089
		return 0;

	trace_kvm_unmap_hva_range(start, end);
1090
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1091 1092 1093
	return 0;
}

1094
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1095
{
1096
	kvm_pfn_t *pfn = (kvm_pfn_t *)data;
1097

1098
	WARN_ON(size != PAGE_SIZE);
1099

1100
	/*
1101 1102 1103 1104
	 * The MMU notifiers will have unmapped a huge PMD before calling
	 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore we never need to clear out a huge PMD through this
	 * calling path and a memcache is not required.
1105
	 */
1106 1107
	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
			       __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
1108
	return 0;
1109 1110
}

1111
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1112 1113
{
	unsigned long end = hva + PAGE_SIZE;
1114
	kvm_pfn_t pfn = pte_pfn(pte);
1115

1116
	if (!kvm->arch.mmu.pgt)
1117
		return 0;
1118 1119

	trace_kvm_set_spte_hva(hva);
1120 1121 1122 1123 1124 1125

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
1126
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
1127
	return 0;
1128 1129
}

1130
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1131
{
1132 1133
	pte_t pte;
	kvm_pte_t kpte;
1134

1135
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1136 1137 1138
	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
	pte = __pte(kpte);
	return pte_valid(pte) && pte_young(pte);
1139 1140
}

1141
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1142
{
1143
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1144
	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
1145 1146 1147 1148
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1149
	if (!kvm->arch.mmu.pgt)
1150
		return 0;
1151 1152 1153 1154 1155 1156
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1157
	if (!kvm->arch.mmu.pgt)
1158
		return 0;
1159
	trace_kvm_test_age_hva(hva);
1160 1161
	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
				 kvm_test_age_hva_handler, NULL);
1162 1163
}

1164 1165
phys_addr_t kvm_mmu_get_httbr(void)
{
1166
	return __pa(hyp_pgtable->pgd);
1167 1168
}

1169 1170 1171 1172 1173
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1174
static int kvm_map_idmap_text(void)
1175
{
1176 1177 1178
	unsigned long size = hyp_idmap_end - hyp_idmap_start;
	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
					PAGE_HYP_EXEC);
1179 1180 1181 1182 1183 1184 1185
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1186 1187
int kvm_mmu_init(void)
{
1188
	int err;
1189
	u32 hyp_va_bits;
1190

1191
	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1192
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1193
	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1194
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1195
	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1196

1197 1198 1199 1200 1201
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1202

1203 1204
	hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
	kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits);
1205 1206 1207 1208
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1209

M
Marc Zyngier 已提交
1210
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1211
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1212
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1213 1214 1215 1216 1217 1218 1219 1220 1221
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1222 1223 1224
	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
	if (!hyp_pgtable) {
		kvm_err("Hyp mode page-table not allocated\n");
1225 1226 1227 1228
		err = -ENOMEM;
		goto out;
	}

1229 1230 1231
	err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits);
	if (err)
		goto out_free_pgtable;
1232

1233 1234 1235
	err = kvm_map_idmap_text();
	if (err)
		goto out_destroy_pgtable;
1236

1237
	io_map_base = hyp_idmap_start;
1238
	return 0;
1239 1240 1241 1242 1243 1244

out_destroy_pgtable:
	kvm_pgtable_hyp_destroy(hyp_pgtable);
out_free_pgtable:
	kfree(hyp_pgtable);
	hyp_pgtable = NULL;
1245 1246
out:
	return err;
1247
}
1248 1249

void kvm_arch_commit_memory_region(struct kvm *kvm,
1250
				   const struct kvm_userspace_memory_region *mem,
1251
				   struct kvm_memory_slot *old,
1252
				   const struct kvm_memory_slot *new,
1253 1254
				   enum kvm_mr_change change)
{
1255 1256
	/*
	 * At this point memslot has been committed and there is an
F
Fuad Tabba 已提交
1257
	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1258 1259
	 * memory slot is write protected.
	 */
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
		/*
		 * If we're with initial-all-set, we don't need to write
		 * protect any pages because they're all reported as dirty.
		 * Huge pages and normal pages will be write protect gradually.
		 */
		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
			kvm_mmu_wp_memory_region(kvm, mem->slot);
		}
	}
1270 1271 1272 1273
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1274
				   const struct kvm_userspace_memory_region *mem,
1275 1276
				   enum kvm_mr_change change)
{
1277 1278 1279 1280 1281
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1282 1283
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1284 1285
		return 0;

1286 1287 1288 1289 1290
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
1291
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
1292 1293
		return -EFAULT;

1294
	mmap_read_lock(current->mm);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1323 1324 1325 1326
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1327

1328
			/* IO region dirty page logging not allowed */
1329 1330 1331 1332
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1343
	if (change == KVM_MR_FLAGS_ONLY)
1344
		goto out;
1345

1346 1347
	spin_lock(&kvm->mmu_lock);
	if (ret)
1348
		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1349
	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1350 1351
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1352
out:
1353
	mmap_read_unlock(current->mm);
1354
	return ret;
1355 1356
}

1357
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1358 1359 1360
{
}

1361
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1362 1363 1364 1365 1366
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
1367
	kvm_free_stage2_pgd(&kvm->arch.mmu);
1368 1369 1370 1371 1372
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1373 1374 1375 1376
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
1377
	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1378
	spin_unlock(&kvm->mmu_lock);
1379
}
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
1411
	unsigned long hcr = *vcpu_hcr(vcpu);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
1426
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
1444
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1445 1446 1447

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}