fsl_sai.c 35.1 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: GPL-2.0+
//
// Freescale ALSA SoC Digital Audio Interface (SAI) driver.
//
// Copyright 2012-2015 Freescale Semiconductor, Inc.
6 7 8 9 10 11

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
L
Lucas Stach 已提交
12
#include <linux/of_device.h>
13
#include <linux/pm_qos.h>
14
#include <linux/pm_runtime.h>
15
#include <linux/regmap.h>
16
#include <linux/slab.h>
17
#include <linux/time.h>
18 19 20
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
21 22
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23 24

#include "fsl_sai.h"
25
#include "imx-pcm.h"
26

27 28 29
#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

30
static const unsigned int fsl_sai_rates[] = {
31 32 33 34 35
	8000, 11025, 12000, 16000, 22050,
	24000, 32000, 44100, 48000, 64000,
	88200, 96000, 176400, 192000
};

36
static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
37 38 39 40
	.count = ARRAY_SIZE(fsl_sai_rates),
	.list = fsl_sai_rates,
};

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/**
 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
 *
 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
 * or Receiver's for both streams. This function is used to check if clocks of
 * the stream's are synced by the opposite stream.
 *
 * @sai: SAI context
 * @dir: stream direction
 */
static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
{
	int adir = (dir == TX) ? RX : TX;

	/* current dir in async mode while opposite dir in sync mode */
	return !sai->synchronous[dir] && sai->synchronous[adir];
}

59 60 61
static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
62
	unsigned int ofs = sai->soc_data->reg_offset;
63
	struct device *dev = &sai->pdev->dev;
64 65 66 67 68 69 70 71
	u32 flags, xcsr, mask;
	bool irq_none = true;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
72 73 74
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
75
	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
76 77 78 79 80 81
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto irq_rx;
82

83
	if (flags & FSL_SAI_CSR_WSF)
84 85
		dev_dbg(dev, "isr: Start of Tx word detected\n");

86
	if (flags & FSL_SAI_CSR_SEF)
87
		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
88

89
	if (flags & FSL_SAI_CSR_FEF) {
90
		dev_dbg(dev, "isr: Transmit underrun detected\n");
91 92 93 94
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

95
	if (flags & FSL_SAI_CSR_FWF)
96 97
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

98
	if (flags & FSL_SAI_CSR_FRF)
99 100
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

101 102 103 104
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
105
		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
106

107
irq_rx:
108
	/* Rx IRQ */
109
	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
110
	flags = xcsr & mask;
111

112 113 114 115 116 117
	if (flags)
		irq_none = false;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
118 119
		dev_dbg(dev, "isr: Start of Rx word detected\n");

120
	if (flags & FSL_SAI_CSR_SEF)
121
		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
122

123
	if (flags & FSL_SAI_CSR_FEF) {
124
		dev_dbg(dev, "isr: Receive overflow detected\n");
125 126 127 128
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

129
	if (flags & FSL_SAI_CSR_FWF)
130 131
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

132
	if (flags & FSL_SAI_CSR_FRF)
133 134
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

135 136
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;
137

138
	if (flags)
139
		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
140 141 142 143 144 145

out:
	if (irq_none)
		return IRQ_NONE;
	else
		return IRQ_HANDLED;
146 147
}

148 149 150 151 152 153 154 155 156 157 158
static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);

	sai->slots = slots;
	sai->slot_width = slot_width;

	return 0;
}

159 160 161 162 163 164 165 166 167 168
static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
				      unsigned int ratio)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);

	sai->bclk_ratio = ratio;

	return 0;
}

169 170 171 172
static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
173
	unsigned int ofs = sai->soc_data->reg_offset;
174 175
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0;
X
Xiubo Li 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}
X
Xiubo Li 已提交
193

194
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
195
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
196 197 198 199 200 201 202

	return 0;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
203
	int ret;
204 205 206 207 208 209 210

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_TRANSMITTER);
	if (ret) {
211
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
212
		return ret;
213 214 215 216
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_RECEIVER);
217
	if (ret)
218
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
219

220
	return ret;
221 222 223 224 225 226
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
227
	unsigned int ofs = sai->soc_data->reg_offset;
228 229
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0, val_cr4 = 0;
230

231
	if (!sai->is_lsb_first)
232
		val_cr4 |= FSL_SAI_CR4_MF;
233

234
	/* DAI mode */
235 236
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
237 238 239 240 241 242
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
243
		val_cr2 |= FSL_SAI_CR2_BCP;
244 245 246
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
247 248 249 250
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
251
		val_cr2 |= FSL_SAI_CR2_BCP;
252
		break;
253 254 255 256 257 258 259
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
260
		val_cr2 |= FSL_SAI_CR2_BCP;
261 262 263 264 265 266 267 268
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
269
		val_cr2 |= FSL_SAI_CR2_BCP;
270 271
		sai->is_dsp_mode = true;
		break;
272 273
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
274 275 276 277
	default:
		return -EINVAL;
	}

278
	/* DAI clock inversion */
279 280
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
281 282 283
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
284 285
		break;
	case SND_SOC_DAIFMT_IB_NF:
286 287
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
288 289
		break;
	case SND_SOC_DAIFMT_NB_IF:
290 291
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
292 293
		break;
	case SND_SOC_DAIFMT_NB_NF:
294
		/* Nothing to do for both normal cases */
295 296 297 298 299
		break;
	default:
		return -EINVAL;
	}

300 301 302
	/* DAI clock provider masks */
	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
	case SND_SOC_DAIFMT_CBC_CFC:
303 304
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
305
		sai->is_consumer_mode = false;
306
		break;
307 308
	case SND_SOC_DAIFMT_CBP_CFP:
		sai->is_consumer_mode = true;
309
		break;
310
	case SND_SOC_DAIFMT_CBC_CFP:
311
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
312
		sai->is_consumer_mode = false;
313
		break;
314
	case SND_SOC_DAIFMT_CBP_CFC:
315
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
316
		sai->is_consumer_mode = true;
317
		break;
318 319 320 321
	default:
		return -EINVAL;
	}

322
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
323
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
324
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
325 326
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
327 328 329 330 331 332

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
333
	int ret;
334 335 336

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
	if (ret) {
337
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
338
		return ret;
339 340 341
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
342
	if (ret)
343
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
344

345
	return ret;
346 347
}

348 349 350
static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
351
	unsigned int ofs = sai->soc_data->reg_offset;
352 353
	unsigned long clk_rate;
	u32 savediv = 0, ratio, savesub = freq;
354 355
	int adir = tx ? RX : TX;
	int dir = tx ? TX : RX;
356 357 358
	u32 id;
	int ret = 0;

359 360
	/* Don't apply to consumer mode */
	if (sai->is_consumer_mode)
361 362
		return 0;

363 364 365 366 367 368 369 370
	/*
	 * There is no point in polling MCLK0 if it is identical to MCLK1.
	 * And given that MQS use case has to use MCLK1 though two clocks
	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
	 */
	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;

	for (; id < FSL_SAI_MCLK_MAX; id++) {
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = clk_rate / freq;

		ret = clk_rate - ratio * freq;

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (ret != 0 && clk_rate / ret < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);

		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
			ratio /= 2;
		else
			continue;

		if (ret < savesub) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			savesub = ret;
		}

		if (ret == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

411 412 413 414 415 416 417 418 419 420
	/*
	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
	 *    set TCR2 register for playback.
	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
	 *    and capture.
	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
	 *    and capture.
	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
	 *    ignore it.
	 */
421 422
	if (fsl_sai_dir_is_synced(sai, adir)) {
		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
423 424
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
425
		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
426
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
427 428
	} else if (!sai->synchronous[dir]) {
		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
429 430
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
431
		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
432 433 434 435 436 437 438 439 440
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, savesub);

	return 0;
}

441 442 443 444
static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
445
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
446
	unsigned int ofs = sai->soc_data->reg_offset;
447
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
448
	unsigned int channels = params_channels(params);
449
	u32 word_width = params_width(params);
450
	u32 val_cr4 = 0, val_cr5 = 0;
451 452
	u32 slots = (channels == 1) ? 2 : channels;
	u32 slot_width = word_width;
453
	int adir = tx ? RX : TX;
454
	u32 pins;
455 456
	int ret;

457 458 459 460 461 462
	if (sai->slots)
		slots = sai->slots;

	if (sai->slot_width)
		slot_width = sai->slot_width;

463 464
	pins = DIV_ROUND_UP(channels, slots);

465
	if (!sai->is_consumer_mode) {
466 467 468 469 470 471 472 473
		if (sai->bclk_ratio)
			ret = fsl_sai_set_bclk(cpu_dai, tx,
					       sai->bclk_ratio *
					       params_rate(params));
		else
			ret = fsl_sai_set_bclk(cpu_dai, tx,
					       slots * slot_width *
					       params_rate(params));
474 475 476 477 478 479 480 481 482 483 484 485
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}
	}
486

487
	if (!sai->is_dsp_mode)
488
		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
489

490 491
	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
492

493
	if (sai->is_lsb_first)
494
		val_cr5 |= FSL_SAI_CR5_FBT(0);
495 496
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
497

498
	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
499

500 501 502 503
	/* Set to output mode to avoid tri-stated data pins */
	if (tx)
		val_cr4 |= FSL_SAI_CR4_CHMOD;

504
	/*
505
	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
506
	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
507
	 * RCR5(TCR5) for playback(capture), or there will be sync error.
508 509
	 */

510
	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
511
		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
512 513
				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
				   FSL_SAI_CR4_CHMOD_MASK,
514 515 516 517
				   val_cr4);
		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				   FSL_SAI_CR5_FBT_MASK, val_cr5);
518
	}
519

520 521 522 523
	if (sai->soc_data->pins > 1)
		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);

524 525 526
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
			   FSL_SAI_CR3_TRCE_MASK,
			   FSL_SAI_CR3_TRCE((1 << pins) - 1));
527
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
528 529
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
			   FSL_SAI_CR4_CHMOD_MASK,
530
			   val_cr4);
531
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
532 533
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
534 535
	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
		     ~0UL - ((1 << min(channels, slots)) - 1));
536 537 538 539

	return 0;
}

540 541 542 543 544
static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
545 546 547 548
	unsigned int ofs = sai->soc_data->reg_offset;

	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
			   FSL_SAI_CR3_TRCE_MASK, 0);
549

550
	if (!sai->is_consumer_mode &&
551 552 553 554 555 556 557 558
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
{
	unsigned int ofs = sai->soc_data->reg_offset;
	bool tx = dir == TX;
	u32 xcsr, count = 100;

	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
			   FSL_SAI_CSR_TERE, 0);

	/* TERE will remain set till the end of current frame */
	do {
		udelay(10);
		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
	} while (--count && xcsr & FSL_SAI_CSR_TERE);

	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);

	/*
	 * For sai master mode, after several open/close sai,
	 * there will be no frame clock, and can't recover
	 * anymore. Add software reset to fix this issue.
	 * This is a hardware bug, and will be fix in the
	 * next sai version.
	 */
584
	if (!sai->is_consumer_mode) {
585 586 587 588 589 590
		/* Software Reset */
		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
		/* Clear SR bit to finish the reset */
		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
	}
}
591

592 593 594 595
static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
596 597
	unsigned int ofs = sai->soc_data->reg_offset;

598
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
599 600 601
	int adir = tx ? RX : TX;
	int dir = tx ? TX : RX;
	u32 xcsr;
602

603
	/*
604 605 606
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
607
	 */
608 609 610
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
611
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
612

613 614 615 616
	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
617 618 619 620
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
621
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
622 623
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

624
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
625
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
626 627 628 629 630 631 632 633 634 635 636 637 638 639
		/*
		 * Enable the opposite direction for synchronous mode
		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
		 *
		 * RM recommends to enable RE after TE for case 1 and to enable
		 * TE after RE for case 2, but we here may not always guarantee
		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
		 * TE after RE, which is against what RM recommends but should
		 * be safe to do, judging by years of testing results.
		 */
		if (fsl_sai_dir_is_synced(sai, adir))
			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
640

641
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
642
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
643 644 645 646
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
647
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
648
				   FSL_SAI_CSR_FRDE, 0);
649
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
650
				   FSL_SAI_CSR_xIE_MASK, 0);
651

652
		/* Check if the opposite FRDE is also disabled */
653
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

		/*
		 * If opposite stream provides clocks for synchronous mode and
		 * it is inactive, disable it before disabling the current one
		 */
		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
			fsl_sai_config_disable(sai, adir);

		/*
		 * Disable current stream if either of:
		 * 1. current stream doesn't provide clocks for synchronous mode
		 * 2. current stream provides clocks for synchronous mode but no
		 *    more stream is active.
		 */
		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
			fsl_sai_config_disable(sai, dir);

671 672 673 674 675 676 677 678 679 680 681 682
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
683
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
684 685
	int ret;

686 687 688 689 690 691 692 693 694 695
	/*
	 * EDMA controller needs period size to be a multiple of
	 * tx/rx maxburst
	 */
	if (sai->soc_data->use_edma)
		snd_pcm_hw_constraint_step(substream->runtime, 0,
					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
					   tx ? sai->dma_params_tx.maxburst :
					   sai->dma_params_rx.maxburst);

696 697 698 699
	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);

	return ret;
700 701 702
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
703
	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
704 705
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
706
	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
707
	.hw_params	= fsl_sai_hw_params,
708
	.hw_free	= fsl_sai_hw_free,
709 710 711 712 713 714 715
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
716
	unsigned int ofs = sai->soc_data->reg_offset;
717

718
	/* Software Reset for both Tx and Rx */
719 720
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
721
	/* Clear SR bit to finish the reset */
722 723
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
724

725
	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
726
			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
727
			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
728
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
729 730
			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
			   FSL_SAI_MAXBURST_RX - 1);
731

732 733
	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);
734 735 736 737

	return 0;
}

738
static struct snd_soc_dai_driver fsl_sai_dai_template = {
739 740
	.probe = fsl_sai_dai_probe,
	.playback = {
741
		.stream_name = "CPU-Playback",
742
		.channels_min = 1,
743
		.channels_max = 32,
744 745 746
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
747 748 749
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
750
		.stream_name = "CPU-Capture",
751
		.channels_min = 1,
752
		.channels_max = 32,
753 754 755
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
756 757 758 759 760 761 762 763 764
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

765 766 767 768 769 770
static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
	{FSL_SAI_TCR1(0), 0},
	{FSL_SAI_TCR2(0), 0},
	{FSL_SAI_TCR3(0), 0},
	{FSL_SAI_TCR4(0), 0},
	{FSL_SAI_TCR5(0), 0},
771 772 773 774 775 776 777 778
	{FSL_SAI_TDR0, 0},
	{FSL_SAI_TDR1, 0},
	{FSL_SAI_TDR2, 0},
	{FSL_SAI_TDR3, 0},
	{FSL_SAI_TDR4, 0},
	{FSL_SAI_TDR5, 0},
	{FSL_SAI_TDR6, 0},
	{FSL_SAI_TDR7, 0},
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	{FSL_SAI_TMR, 0},
	{FSL_SAI_RCR1(0), 0},
	{FSL_SAI_RCR2(0), 0},
	{FSL_SAI_RCR3(0), 0},
	{FSL_SAI_RCR4(0), 0},
	{FSL_SAI_RCR5(0), 0},
	{FSL_SAI_RMR, 0},
};

static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
	{FSL_SAI_TCR1(8), 0},
	{FSL_SAI_TCR2(8), 0},
	{FSL_SAI_TCR3(8), 0},
	{FSL_SAI_TCR4(8), 0},
	{FSL_SAI_TCR5(8), 0},
	{FSL_SAI_TDR0, 0},
	{FSL_SAI_TDR1, 0},
	{FSL_SAI_TDR2, 0},
	{FSL_SAI_TDR3, 0},
	{FSL_SAI_TDR4, 0},
	{FSL_SAI_TDR5, 0},
	{FSL_SAI_TDR6, 0},
	{FSL_SAI_TDR7, 0},
	{FSL_SAI_TMR, 0},
	{FSL_SAI_RCR1(8), 0},
	{FSL_SAI_RCR2(8), 0},
	{FSL_SAI_RCR3(8), 0},
	{FSL_SAI_RCR4(8), 0},
	{FSL_SAI_RCR5(8), 0},
	{FSL_SAI_RMR, 0},
809 810
	{FSL_SAI_MCTL, 0},
	{FSL_SAI_MDIV, 0},
811 812
};

813 814
static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
815 816 817 818 819 820 821 822 823
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
		return true;

	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
		return true;

824
	switch (reg) {
825 826 827 828 829 830 831 832
	case FSL_SAI_TFR0:
	case FSL_SAI_TFR1:
	case FSL_SAI_TFR2:
	case FSL_SAI_TFR3:
	case FSL_SAI_TFR4:
	case FSL_SAI_TFR5:
	case FSL_SAI_TFR6:
	case FSL_SAI_TFR7:
833
	case FSL_SAI_TMR:
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	case FSL_SAI_RDR0:
	case FSL_SAI_RDR1:
	case FSL_SAI_RDR2:
	case FSL_SAI_RDR3:
	case FSL_SAI_RDR4:
	case FSL_SAI_RDR5:
	case FSL_SAI_RDR6:
	case FSL_SAI_RDR7:
	case FSL_SAI_RFR0:
	case FSL_SAI_RFR1:
	case FSL_SAI_RFR2:
	case FSL_SAI_RFR3:
	case FSL_SAI_RFR4:
	case FSL_SAI_RFR5:
	case FSL_SAI_RFR6:
	case FSL_SAI_RFR7:
850
	case FSL_SAI_RMR:
851 852 853 854 855 856 857 858 859 860 861 862
	case FSL_SAI_MCTL:
	case FSL_SAI_MDIV:
	case FSL_SAI_VERID:
	case FSL_SAI_PARAM:
	case FSL_SAI_TTCTN:
	case FSL_SAI_RTCTN:
	case FSL_SAI_TTCTL:
	case FSL_SAI_TBCTN:
	case FSL_SAI_TTCAP:
	case FSL_SAI_RTCTL:
	case FSL_SAI_RBCTN:
	case FSL_SAI_RTCAP:
863 864 865 866 867 868 869 870
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
871 872 873 874 875 876
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
		return true;

877 878 879 880
	/* Set VERID and PARAM be volatile for reading value in probe */
	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
		return true;

881
	switch (reg) {
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	case FSL_SAI_TFR0:
	case FSL_SAI_TFR1:
	case FSL_SAI_TFR2:
	case FSL_SAI_TFR3:
	case FSL_SAI_TFR4:
	case FSL_SAI_TFR5:
	case FSL_SAI_TFR6:
	case FSL_SAI_TFR7:
	case FSL_SAI_RFR0:
	case FSL_SAI_RFR1:
	case FSL_SAI_RFR2:
	case FSL_SAI_RFR3:
	case FSL_SAI_RFR4:
	case FSL_SAI_RFR5:
	case FSL_SAI_RFR6:
	case FSL_SAI_RFR7:
	case FSL_SAI_RDR0:
	case FSL_SAI_RDR1:
	case FSL_SAI_RDR2:
	case FSL_SAI_RDR3:
	case FSL_SAI_RDR4:
	case FSL_SAI_RDR5:
	case FSL_SAI_RDR6:
	case FSL_SAI_RDR7:
906 907 908 909 910 911 912 913
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
914 915 916 917 918 919 920 921 922
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
		return true;

	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
		return true;

923
	switch (reg) {
924 925 926 927 928 929 930 931
	case FSL_SAI_TDR0:
	case FSL_SAI_TDR1:
	case FSL_SAI_TDR2:
	case FSL_SAI_TDR3:
	case FSL_SAI_TDR4:
	case FSL_SAI_TDR5:
	case FSL_SAI_TDR6:
	case FSL_SAI_TDR7:
932 933
	case FSL_SAI_TMR:
	case FSL_SAI_RMR:
934 935 936 937
	case FSL_SAI_MCTL:
	case FSL_SAI_MDIV:
	case FSL_SAI_TTCTL:
	case FSL_SAI_RTCTL:
938 939 940 941 942 943
		return true;
	default:
		return false;
	}
}

944
static struct regmap_config fsl_sai_regmap_config = {
945 946 947
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,
948
	.fast_io = true,
949 950

	.max_register = FSL_SAI_RMR,
951 952
	.reg_defaults = fsl_sai_reg_defaults_ofs0,
	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
953 954 955
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
956
	.cache_type = REGCACHE_FLAT,
957 958
};

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static int fsl_sai_check_version(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned char ofs = sai->soc_data->reg_offset;
	unsigned int val;
	int ret;

	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
		return 0;

	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
	if (ret < 0)
		return ret;

	dev_dbg(dev, "VERID: 0x%016X\n", val);

	sai->verid.major = (val & FSL_SAI_VERID_MAJOR_MASK) >>
			   FSL_SAI_VERID_MAJOR_SHIFT;
	sai->verid.minor = (val & FSL_SAI_VERID_MINOR_MASK) >>
			   FSL_SAI_VERID_MINOR_SHIFT;
	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;

	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
	if (ret < 0)
		return ret;

	dev_dbg(dev, "PARAM: 0x%016X\n", val);

	/* Max slots per frame, power of 2 */
	sai->param.slot_num = 1 <<
		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);

	/* Words per fifo, power of 2 */
	sai->param.fifo_depth = 1 <<
		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);

	/* Number of datalines implemented */
	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;

	return 0;
}

1001 1002 1003
static int fsl_sai_runtime_suspend(struct device *dev);
static int fsl_sai_runtime_resume(struct device *dev);

1004 1005
static int fsl_sai_probe(struct platform_device *pdev)
{
1006
	struct device_node *np = pdev->dev.of_node;
1007
	struct fsl_sai *sai;
1008
	struct regmap *gpr;
1009
	struct resource *res;
1010
	void __iomem *base;
1011 1012
	char tmp[8];
	int irq, ret, i;
1013
	int index;
1014 1015 1016 1017 1018

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

1019
	sai->pdev = pdev;
L
Lucas Stach 已提交
1020
	sai->soc_data = of_device_get_match_data(&pdev->dev);
1021

1022
	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1023

1024
	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1025 1026 1027
	if (IS_ERR(base))
		return PTR_ERR(base);

1028 1029
	if (sai->soc_data->reg_offset == 8) {
		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1030
		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1031 1032 1033 1034
		fsl_sai_regmap_config.num_reg_defaults =
			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
	}

1035
	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base, &fsl_sai_regmap_config);
1036 1037 1038
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
1039 1040
	}

1041
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
1042 1043 1044
	/* Compatible with old DTB cases */
	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
		sai->bus_clk = devm_clk_get(&pdev->dev, "sai");
1045 1046 1047
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
1048 1049
		/* -EPROBE_DEFER */
		return PTR_ERR(sai->bus_clk);
1050 1051
	}

1052 1053
	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
1054 1055 1056 1057 1058 1059 1060 1061
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

1062 1063 1064 1065 1066
	if (sai->soc_data->mclk0_is_mclk1)
		sai->mclk_clk[0] = sai->mclk_clk[1];
	else
		sai->mclk_clk[0] = sai->bus_clk;

1067
	irq = platform_get_irq(pdev, 0);
1068
	if (irq < 0)
1069 1070
		return irq;

M
Michael Walle 已提交
1071 1072
	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, IRQF_SHARED,
			       np->name, sai);
1073 1074 1075 1076 1077
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

1078 1079 1080
	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
	       sizeof(fsl_sai_dai_template));

1081 1082 1083
	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
1084
	sai->cpu_dai_drv.symmetric_rate = 1;
1085
	sai->cpu_dai_drv.symmetric_channels = 1;
1086
	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1087

1088 1089 1090 1091 1092 1093 1094
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

1095 1096 1097 1098 1099 1100 1101 1102
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
1103
		sai->cpu_dai_drv.symmetric_rate = 0;
1104
		sai->cpu_dai_drv.symmetric_channels = 0;
1105
		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1106 1107
	}

1108
	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
F
Fabio Estevam 已提交
1109
	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
		if (IS_ERR(gpr)) {
			dev_err(&pdev->dev, "cannot find iomuxc registers\n");
			return PTR_ERR(gpr);
		}

		index = of_alias_get_id(np, "sai");
		if (index < 0)
			return index;

		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
				   MCLK_DIR(index));
	}

1124 1125
	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
1126 1127 1128 1129
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	platform_set_drvdata(pdev, sai);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	pm_runtime_enable(&pdev->dev);
	if (!pm_runtime_enabled(&pdev->dev)) {
		ret = fsl_sai_runtime_resume(&pdev->dev);
		if (ret)
			goto err_pm_disable;
	}

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		goto err_pm_get_sync;
	}
1142

1143 1144 1145 1146 1147
	/* Get sai version */
	ret = fsl_sai_check_version(&pdev->dev);
	if (ret < 0)
		dev_warn(&pdev->dev, "Error reading SAI version: %d\n", ret);

1148 1149 1150 1151 1152 1153 1154
	/* Select MCLK direction */
	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
	    sai->verid.major >= 3 && sai->verid.minor >= 1) {
		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
	}

1155 1156 1157
	ret = pm_runtime_put_sync(&pdev->dev);
	if (ret < 0)
		goto err_pm_get_sync;
1158

1159 1160 1161 1162
	/*
	 * Register platform component before registering cpu dai for there
	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
	 */
1163 1164 1165
	if (sai->soc_data->use_imx_pcm) {
		ret = imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
		if (ret)
1166
			goto err_pm_get_sync;
1167 1168 1169
	} else {
		ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
		if (ret)
1170
			goto err_pm_get_sync;
1171 1172
	}

1173 1174 1175 1176 1177
	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
					      &sai->cpu_dai_drv, 1);
	if (ret)
		goto err_pm_get_sync;

1178 1179
	return ret;

1180 1181 1182
err_pm_get_sync:
	if (!pm_runtime_status_suspended(&pdev->dev))
		fsl_sai_runtime_suspend(&pdev->dev);
1183 1184 1185 1186
err_pm_disable:
	pm_runtime_disable(&pdev->dev);

	return ret;
1187 1188
}

1189 1190 1191
static int fsl_sai_remove(struct platform_device *pdev)
{
	pm_runtime_disable(&pdev->dev);
1192 1193
	if (!pm_runtime_status_suspended(&pdev->dev))
		fsl_sai_runtime_suspend(&pdev->dev);
1194 1195

	return 0;
1196 1197
}

L
Lucas Stach 已提交
1198 1199
static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
	.use_imx_pcm = false,
1200
	.use_edma = false,
1201
	.fifo_depth = 32,
1202
	.pins = 1,
1203
	.reg_offset = 0,
1204
	.mclk0_is_mclk1 = false,
1205
	.flags = 0,
L
Lucas Stach 已提交
1206 1207 1208 1209
};

static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
	.use_imx_pcm = true,
1210
	.use_edma = false,
1211
	.fifo_depth = 32,
1212
	.pins = 1,
1213
	.reg_offset = 0,
1214
	.mclk0_is_mclk1 = true,
1215
	.flags = 0,
L
Lucas Stach 已提交
1216 1217
};

1218 1219
static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
	.use_imx_pcm = true,
1220
	.use_edma = false,
1221
	.fifo_depth = 16,
1222
	.pins = 2,
1223
	.reg_offset = 8,
1224
	.mclk0_is_mclk1 = false,
1225
	.flags = PMQOS_CPU_LATENCY,
1226 1227 1228 1229
};

static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
	.use_imx_pcm = true,
1230
	.use_edma = false,
1231
	.fifo_depth = 128,
1232
	.pins = 8,
1233
	.reg_offset = 8,
1234
	.mclk0_is_mclk1 = false,
1235
	.flags = 0,
1236 1237
};

1238 1239
static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
	.use_imx_pcm = true,
1240
	.use_edma = true,
1241
	.fifo_depth = 64,
1242
	.pins = 1,
1243
	.reg_offset = 0,
1244
	.mclk0_is_mclk1 = false,
1245
	.flags = 0,
1246 1247
};

1248
static const struct of_device_id fsl_sai_ids[] = {
L
Lucas Stach 已提交
1249 1250 1251
	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1252 1253
	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1254
	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1255 1256
	{ /* sentinel */ }
};
1257
MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1258

1259
static int fsl_sai_runtime_suspend(struct device *dev)
1260 1261 1262
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

1263 1264 1265 1266 1267 1268 1269 1270
	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);

	clk_disable_unprepare(sai->bus_clk);

1271 1272 1273
	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
		cpu_latency_qos_remove_request(&sai->pm_qos_req);

1274 1275 1276 1277 1278
	regcache_cache_only(sai->regmap, true);

	return 0;
}

1279
static int fsl_sai_runtime_resume(struct device *dev)
1280 1281
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
1282
	unsigned int ofs = sai->soc_data->reg_offset;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
		if (ret)
			goto disable_bus_clk;
	}

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
		if (ret)
			goto disable_tx_clk;
	}
1302

1303 1304 1305
	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);

1306
	regcache_cache_only(sai->regmap, false);
1307
	regcache_mark_dirty(sai->regmap);
1308 1309
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1310
	usleep_range(1000, 2000);
1311 1312
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	ret = regcache_sync(sai->regmap);
	if (ret)
		goto disable_rx_clk;

	return 0;

disable_rx_clk:
	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
disable_tx_clk:
	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
disable_bus_clk:
	clk_disable_unprepare(sai->bus_clk);

	return ret;
1330 1331 1332
}

static const struct dev_pm_ops fsl_sai_pm_ops = {
1333 1334 1335 1336
	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
			   fsl_sai_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
1337 1338
};

1339 1340
static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
1341
	.remove = fsl_sai_remove,
1342 1343
	.driver = {
		.name = "fsl-sai",
1344
		.pm = &fsl_sai_pm_ops,
1345 1346 1347 1348 1349 1350 1351 1352 1353
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");