fsl_sai.c 20.5 KB
Newer Older
1 2 3
/*
 * Freescale ALSA SoC Digital Audio Interface (SAI) driver.
 *
4
 * Copyright 2012-2015 Freescale Semiconductor, Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software, you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 of the License, or(at your
 * option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
18
#include <linux/regmap.h>
19 20 21 22 23 24
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>

#include "fsl_sai.h"
25
#include "imx-pcm.h"
26

27 28 29
#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

30 31 32 33 34 35 36 37 38 39 40
static u32 fsl_sai_rates[] = {
	8000, 11025, 12000, 16000, 22050,
	24000, 32000, 44100, 48000, 64000,
	88200, 96000, 176400, 192000
};

static struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
	.count = ARRAY_SIZE(fsl_sai_rates),
	.list = fsl_sai_rates,
};

41 42 43 44
static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
	struct device *dev = &sai->pdev->dev;
45 46 47 48 49 50 51 52
	u32 flags, xcsr, mask;
	bool irq_none = true;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
53 54 55 56
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
	regmap_read(sai->regmap, FSL_SAI_TCSR, &xcsr);
57 58 59 60 61 62
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto irq_rx;
63

64
	if (flags & FSL_SAI_CSR_WSF)
65 66
		dev_dbg(dev, "isr: Start of Tx word detected\n");

67
	if (flags & FSL_SAI_CSR_SEF)
68 69
		dev_warn(dev, "isr: Tx Frame sync error detected\n");

70
	if (flags & FSL_SAI_CSR_FEF) {
71 72 73 74 75
		dev_warn(dev, "isr: Transmit underrun detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

76
	if (flags & FSL_SAI_CSR_FWF)
77 78
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

79
	if (flags & FSL_SAI_CSR_FRF)
80 81
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

82 83 84 85 86
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_TCSR, flags | xcsr);
87

88
irq_rx:
89 90
	/* Rx IRQ */
	regmap_read(sai->regmap, FSL_SAI_RCSR, &xcsr);
91
	flags = xcsr & mask;
92

93 94 95 96 97 98
	if (flags)
		irq_none = false;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
99 100
		dev_dbg(dev, "isr: Start of Rx word detected\n");

101
	if (flags & FSL_SAI_CSR_SEF)
102 103
		dev_warn(dev, "isr: Rx Frame sync error detected\n");

104
	if (flags & FSL_SAI_CSR_FEF) {
105 106 107 108 109
		dev_warn(dev, "isr: Receive overflow detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

110
	if (flags & FSL_SAI_CSR_FWF)
111 112
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

113
	if (flags & FSL_SAI_CSR_FRF)
114 115
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

116 117
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;
118

119
	if (flags)
120
		regmap_write(sai->regmap, FSL_SAI_RCSR, flags | xcsr);
121 122 123 124 125 126

out:
	if (irq_none)
		return IRQ_NONE;
	else
		return IRQ_HANDLED;
127 128
}

129 130 131 132
static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
133 134
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0;
X
Xiubo Li 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}
X
Xiubo Li 已提交
152

153 154
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
155 156 157 158 159 160 161

	return 0;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
162
	int ret;
163 164 165 166 167 168 169

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_TRANSMITTER);
	if (ret) {
170
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
171
		return ret;
172 173 174 175
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_RECEIVER);
176
	if (ret)
177
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
178

179
	return ret;
180 181 182 183 184 185
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
186 187
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0, val_cr4 = 0;
188

189
	if (!sai->is_lsb_first)
190
		val_cr4 |= FSL_SAI_CR4_MF;
191

192
	/* DAI mode */
193 194
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
195 196 197 198 199 200
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
201
		val_cr2 |= FSL_SAI_CR2_BCP;
202 203 204
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
205 206 207 208
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
209
		val_cr2 |= FSL_SAI_CR2_BCP;
210
		break;
211 212 213 214 215 216 217
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
218
		val_cr2 |= FSL_SAI_CR2_BCP;
219 220 221 222 223 224 225 226
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
227
		val_cr2 |= FSL_SAI_CR2_BCP;
228 229
		sai->is_dsp_mode = true;
		break;
230 231
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
232 233 234 235
	default:
		return -EINVAL;
	}

236
	/* DAI clock inversion */
237 238
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
239 240 241
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
242 243
		break;
	case SND_SOC_DAIFMT_IB_NF:
244 245
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
246 247
		break;
	case SND_SOC_DAIFMT_NB_IF:
248 249
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
250 251
		break;
	case SND_SOC_DAIFMT_NB_NF:
252
		/* Nothing to do for both normal cases */
253 254 255 256 257
		break;
	default:
		return -EINVAL;
	}

258
	/* DAI clock master masks */
259 260 261 262 263 264
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
265
		sai->is_slave_mode = true;
266
		break;
267 268 269 270 271
	case SND_SOC_DAIFMT_CBS_CFM:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFS:
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
272
		sai->is_slave_mode = true;
273
		break;
274 275 276 277
	default:
		return -EINVAL;
	}

278 279 280 281 282
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
283 284 285 286 287 288

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
289
	int ret;
290 291 292

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
	if (ret) {
293
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
294
		return ret;
295 296 297
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
298
	if (ret)
299
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
300

301
	return ret;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	unsigned long clk_rate;
	u32 savediv = 0, ratio, savesub = freq;
	u32 id;
	int ret = 0;

	/* Don't apply to slave mode */
	if (sai->is_slave_mode)
		return 0;

	for (id = 0; id < FSL_SAI_MCLK_MAX; id++) {
		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = clk_rate / freq;

		ret = clk_rate - ratio * freq;

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (ret != 0 && clk_rate / ret < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);

		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
			ratio /= 2;
		else
			continue;

		if (ret < savesub) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			savesub = ret;
		}

		if (ret == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

	if ((tx && sai->synchronous[TX]) || (!tx && !sai->synchronous[RX])) {
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	} else {
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, savesub);

	return 0;
}

377 378 379 380
static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
381
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
382
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
383
	unsigned int channels = params_channels(params);
384
	u32 word_width = snd_pcm_format_width(params_format(params));
385
	u32 val_cr4 = 0, val_cr5 = 0;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	int ret;

	if (!sai->is_slave_mode) {
		ret = fsl_sai_set_bclk(cpu_dai, tx,
			2 * word_width * params_rate(params));
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}

	}
404

405 406 407
	if (!sai->is_dsp_mode)
		val_cr4 |= FSL_SAI_CR4_SYWD(word_width);

408 409 410
	val_cr5 |= FSL_SAI_CR5_WNW(word_width);
	val_cr5 |= FSL_SAI_CR5_W0W(word_width);

411
	if (sai->is_lsb_first)
412
		val_cr5 |= FSL_SAI_CR5_FBT(0);
413 414
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
415 416 417

	val_cr4 |= FSL_SAI_CR4_FRSZ(channels);

418 419 420 421 422 423 424
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
			   val_cr4);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx),
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
	regmap_write(sai->regmap, FSL_SAI_xMR(tx), ~0UL - ((1 << channels) - 1));
425 426 427 428

	return 0;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	if (!sai->is_slave_mode &&
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}


445 446 447 448
static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
449
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
450
	u32 xcsr, count = 100;
451

452
	/*
453 454 455
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
456
	 */
457
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_SYNC, 0);
458
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_SYNC,
459
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
460

461 462 463 464
	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
465 466 467 468
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
469 470 471
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

472 473 474 475
		regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
		regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
476

477 478
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
479 480 481 482
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
483 484
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, 0);
485 486
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, 0);
487

488
		/* Check if the opposite FRDE is also disabled */
489 490
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx), &xcsr);
		if (!(xcsr & FSL_SAI_CSR_FRDE)) {
491
			/* Disable both directions and reset their FIFOs */
492
			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
493
					   FSL_SAI_CSR_TERE, 0);
494
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
495 496 497 498 499 500 501 502 503 504 505 506
					   FSL_SAI_CSR_TERE, 0);

			/* TERE will remain set till the end of current frame */
			do {
				udelay(10);
				regmap_read(sai->regmap, FSL_SAI_xCSR(tx), &xcsr);
			} while (--count && xcsr & FSL_SAI_CSR_TERE);

			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
507 508 509 510 511 512 513 514 515 516 517 518 519
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
520
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
521 522 523 524 525 526 527 528
	struct device *dev = &sai->pdev->dev;
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}
529

530
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE,
531 532
			   FSL_SAI_CR3_TRCE);

533 534 535 536
	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);

	return ret;
537 538 539 540 541 542
}

static void fsl_sai_shutdown(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
543
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
544

545
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE, 0);
546 547

	clk_disable_unprepare(sai->bus_clk);
548 549 550 551 552 553
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
	.hw_params	= fsl_sai_hw_params,
554
	.hw_free	= fsl_sai_hw_free,
555 556 557 558 559 560 561 562
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
	.shutdown	= fsl_sai_shutdown,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
563

564 565 566 567 568 569 570
	/* Software Reset for both Tx and Rx */
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	/* Clear SR bit to finish the reset */
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);

571 572 573 574
	regmap_update_bits(sai->regmap, FSL_SAI_TCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_TX * 2);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_RX - 1);
575

576 577
	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);
578 579 580 581 582 583 584 585 586

	snd_soc_dai_set_drvdata(cpu_dai, sai);

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_dai = {
	.probe = fsl_sai_dai_probe,
	.playback = {
587
		.stream_name = "CPU-Playback",
588 589
		.channels_min = 1,
		.channels_max = 2,
590 591 592
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
593 594 595
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
596
		.stream_name = "CPU-Capture",
597 598
		.channels_min = 1,
		.channels_max = 2,
599 600 601
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
602 603 604 605 606 607 608 609 610
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TFR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RDR:
	case FSL_SAI_RFR:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TFR:
	case FSL_SAI_RFR:
	case FSL_SAI_TDR:
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}

}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TDR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

675
static const struct regmap_config fsl_sai_regmap_config = {
676 677 678 679 680 681 682 683 684 685
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = FSL_SAI_RMR,
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
};

686 687
static int fsl_sai_probe(struct platform_device *pdev)
{
688
	struct device_node *np = pdev->dev.of_node;
689 690
	struct fsl_sai *sai;
	struct resource *res;
691
	void __iomem *base;
692 693
	char tmp[8];
	int irq, ret, i;
694 695 696 697 698

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

699 700
	sai->pdev = pdev;

701 702 703
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx6sx-sai"))
		sai->sai_on_imx = true;

704
	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
705

706
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
707 708 709 710 711
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
712 713 714 715 716 717
			"bus", base, &fsl_sai_regmap_config);

	/* Compatible with old DTB cases */
	if (IS_ERR(sai->regmap))
		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
				"sai", base, &fsl_sai_regmap_config);
718 719 720
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
721 722
	}

723 724 725 726 727 728 729 730
	/* No error out for old DTB cases but only mark the clock NULL */
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		sai->bus_clk = NULL;
	}

731 732 733
	sai->mclk_clk[0] = sai->bus_clk;
	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
734 735 736 737 738 739 740 741
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

742 743
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
744
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
745 746 747 748 749 750 751 752 753
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, 0, np->name, sai);
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

754 755 756 757 758 759 760
	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
	fsl_sai_dai.symmetric_rates = 1;
	fsl_sai_dai.symmetric_channels = 1;
	fsl_sai_dai.symmetric_samplebits = 1;

761 762 763 764 765 766 767
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

768 769 770 771 772 773 774 775 776 777 778 779 780
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
		fsl_sai_dai.symmetric_rates = 0;
		fsl_sai_dai.symmetric_channels = 0;
		fsl_sai_dai.symmetric_samplebits = 0;
	}

781 782 783 784 785 786 787 788 789 790 791 792
	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR;
	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR;
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	platform_set_drvdata(pdev, sai);

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
			&fsl_sai_dai, 1);
	if (ret)
		return ret;

793
	if (sai->sai_on_imx)
794
		return imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
795
	else
796
		return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
797 798 799 800
}

static const struct of_device_id fsl_sai_ids[] = {
	{ .compatible = "fsl,vf610-sai", },
801
	{ .compatible = "fsl,imx6sx-sai", },
802 803
	{ /* sentinel */ }
};
804
MODULE_DEVICE_TABLE(of, fsl_sai_ids);
805 806 807 808 809 810 811 812 813 814 815 816 817 818

static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
	.driver = {
		.name = "fsl-sai",
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");