fsl_sai.c 20.0 KB
Newer Older
1 2 3
/*
 * Freescale ALSA SoC Digital Audio Interface (SAI) driver.
 *
4
 * Copyright 2012-2015 Freescale Semiconductor, Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software, you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 of the License, or(at your
 * option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
18
#include <linux/regmap.h>
19 20 21 22 23 24
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>

#include "fsl_sai.h"
25
#include "imx-pcm.h"
26

27 28 29 30 31 32 33
#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
	struct device *dev = &sai->pdev->dev;
34 35 36 37 38 39 40 41
	u32 flags, xcsr, mask;
	bool irq_none = true;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
42 43 44 45
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
	regmap_read(sai->regmap, FSL_SAI_TCSR, &xcsr);
46 47 48 49 50 51
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto irq_rx;
52

53
	if (flags & FSL_SAI_CSR_WSF)
54 55
		dev_dbg(dev, "isr: Start of Tx word detected\n");

56
	if (flags & FSL_SAI_CSR_SEF)
57 58
		dev_warn(dev, "isr: Tx Frame sync error detected\n");

59
	if (flags & FSL_SAI_CSR_FEF) {
60 61 62 63 64
		dev_warn(dev, "isr: Transmit underrun detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

65
	if (flags & FSL_SAI_CSR_FWF)
66 67
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

68
	if (flags & FSL_SAI_CSR_FRF)
69 70
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

71 72 73 74 75
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_TCSR, flags | xcsr);
76

77
irq_rx:
78 79
	/* Rx IRQ */
	regmap_read(sai->regmap, FSL_SAI_RCSR, &xcsr);
80
	flags = xcsr & mask;
81

82 83 84 85 86 87
	if (flags)
		irq_none = false;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
88 89
		dev_dbg(dev, "isr: Start of Rx word detected\n");

90
	if (flags & FSL_SAI_CSR_SEF)
91 92
		dev_warn(dev, "isr: Rx Frame sync error detected\n");

93
	if (flags & FSL_SAI_CSR_FEF) {
94 95 96 97 98
		dev_warn(dev, "isr: Receive overflow detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

99
	if (flags & FSL_SAI_CSR_FWF)
100 101
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

102
	if (flags & FSL_SAI_CSR_FRF)
103 104
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

105 106
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;
107

108
	if (flags)
109
		regmap_write(sai->regmap, FSL_SAI_RCSR, flags | xcsr);
110 111 112 113 114 115

out:
	if (irq_none)
		return IRQ_NONE;
	else
		return IRQ_HANDLED;
116 117
}

118 119 120 121
static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
122 123
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0;
X
Xiubo Li 已提交
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}
X
Xiubo Li 已提交
141

142 143
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
144 145 146 147 148 149 150

	return 0;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
151
	int ret;
152 153 154 155 156 157 158

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_TRANSMITTER);
	if (ret) {
159
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
160
		return ret;
161 162 163 164
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_RECEIVER);
165
	if (ret)
166
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
167

168
	return ret;
169 170 171 172 173 174
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
175 176
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0, val_cr4 = 0;
177

178
	if (!sai->is_lsb_first)
179
		val_cr4 |= FSL_SAI_CR4_MF;
180

181
	/* DAI mode */
182 183
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
184 185 186 187 188 189
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
190
		val_cr2 |= FSL_SAI_CR2_BCP;
191 192 193
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
194 195 196 197
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
198
		val_cr2 |= FSL_SAI_CR2_BCP;
199
		break;
200 201 202 203 204 205 206
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
207
		val_cr2 |= FSL_SAI_CR2_BCP;
208 209 210 211 212 213 214 215
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
216
		val_cr2 |= FSL_SAI_CR2_BCP;
217 218
		sai->is_dsp_mode = true;
		break;
219 220
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
221 222 223 224
	default:
		return -EINVAL;
	}

225
	/* DAI clock inversion */
226 227
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
228 229 230
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
231 232
		break;
	case SND_SOC_DAIFMT_IB_NF:
233 234
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
235 236
		break;
	case SND_SOC_DAIFMT_NB_IF:
237 238
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
239 240
		break;
	case SND_SOC_DAIFMT_NB_NF:
241
		/* Nothing to do for both normal cases */
242 243 244 245 246
		break;
	default:
		return -EINVAL;
	}

247
	/* DAI clock master masks */
248 249 250 251 252 253
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
254
		sai->is_slave_mode = true;
255
		break;
256 257 258 259 260
	case SND_SOC_DAIFMT_CBS_CFM:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFS:
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
261
		sai->is_slave_mode = true;
262
		break;
263 264 265 266
	default:
		return -EINVAL;
	}

267 268 269 270 271
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
272 273 274 275 276 277

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
278
	int ret;
279 280 281

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
	if (ret) {
282
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
283
		return ret;
284 285 286
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
287
	if (ret)
288
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
289

290
	return ret;
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	unsigned long clk_rate;
	u32 savediv = 0, ratio, savesub = freq;
	u32 id;
	int ret = 0;

	/* Don't apply to slave mode */
	if (sai->is_slave_mode)
		return 0;

	for (id = 0; id < FSL_SAI_MCLK_MAX; id++) {
		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = clk_rate / freq;

		ret = clk_rate - ratio * freq;

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (ret != 0 && clk_rate / ret < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);

		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
			ratio /= 2;
		else
			continue;

		if (ret < savesub) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			savesub = ret;
		}

		if (ret == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

	if ((tx && sai->synchronous[TX]) || (!tx && !sai->synchronous[RX])) {
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	} else {
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, savesub);

	return 0;
}

366 367 368 369
static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
370
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
371
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
372
	unsigned int channels = params_channels(params);
373
	u32 word_width = snd_pcm_format_width(params_format(params));
374
	u32 val_cr4 = 0, val_cr5 = 0;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	int ret;

	if (!sai->is_slave_mode) {
		ret = fsl_sai_set_bclk(cpu_dai, tx,
			2 * word_width * params_rate(params));
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}

	}
393

394 395 396
	if (!sai->is_dsp_mode)
		val_cr4 |= FSL_SAI_CR4_SYWD(word_width);

397 398 399
	val_cr5 |= FSL_SAI_CR5_WNW(word_width);
	val_cr5 |= FSL_SAI_CR5_W0W(word_width);

400
	if (sai->is_lsb_first)
401
		val_cr5 |= FSL_SAI_CR5_FBT(0);
402 403
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
404 405 406

	val_cr4 |= FSL_SAI_CR4_FRSZ(channels);

407 408 409 410 411 412 413
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
			   val_cr4);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx),
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
	regmap_write(sai->regmap, FSL_SAI_xMR(tx), ~0UL - ((1 << channels) - 1));
414 415 416 417

	return 0;
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	if (!sai->is_slave_mode &&
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}


434 435 436 437
static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
438
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
439
	u32 xcsr, count = 100;
440

441
	/*
442 443 444
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
445
	 */
446
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_SYNC, 0);
447
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_SYNC,
448
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
449

450 451 452 453
	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
454 455 456 457
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
458 459 460
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

461 462 463 464
		regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
		regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
465

466 467
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
468 469 470 471
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
472 473
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, 0);
474 475
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, 0);
476

477
		/* Check if the opposite FRDE is also disabled */
478 479
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx), &xcsr);
		if (!(xcsr & FSL_SAI_CSR_FRDE)) {
480
			/* Disable both directions and reset their FIFOs */
481
			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
482
					   FSL_SAI_CSR_TERE, 0);
483
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
484 485 486 487 488 489 490 491 492 493 494 495
					   FSL_SAI_CSR_TERE, 0);

			/* TERE will remain set till the end of current frame */
			do {
				udelay(10);
				regmap_read(sai->regmap, FSL_SAI_xCSR(tx), &xcsr);
			} while (--count && xcsr & FSL_SAI_CSR_TERE);

			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
496 497 498 499 500 501 502 503 504 505 506 507 508
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
509
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
510 511 512 513 514 515 516 517
	struct device *dev = &sai->pdev->dev;
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}
518

519
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE,
520 521 522
			   FSL_SAI_CR3_TRCE);

	return 0;
523 524 525 526 527 528
}

static void fsl_sai_shutdown(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
529
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
530

531
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE, 0);
532 533

	clk_disable_unprepare(sai->bus_clk);
534 535 536 537 538 539
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
	.hw_params	= fsl_sai_hw_params,
540
	.hw_free	= fsl_sai_hw_free,
541 542 543 544 545 546 547 548
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
	.shutdown	= fsl_sai_shutdown,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
549

550 551 552 553 554 555 556
	/* Software Reset for both Tx and Rx */
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	/* Clear SR bit to finish the reset */
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);

557 558 559 560
	regmap_update_bits(sai->regmap, FSL_SAI_TCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_TX * 2);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_RX - 1);
561

562 563
	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);
564 565 566 567 568 569 570 571 572

	snd_soc_dai_set_drvdata(cpu_dai, sai);

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_dai = {
	.probe = fsl_sai_dai_probe,
	.playback = {
573
		.stream_name = "CPU-Playback",
574 575 576 577 578 579
		.channels_min = 1,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_96000,
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
580
		.stream_name = "CPU-Capture",
581 582 583 584 585 586 587 588 589 590 591 592
		.channels_min = 1,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_96000,
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TFR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RDR:
	case FSL_SAI_RFR:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TFR:
	case FSL_SAI_RFR:
	case FSL_SAI_TDR:
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}

}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TDR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

657
static const struct regmap_config fsl_sai_regmap_config = {
658 659 660 661 662 663 664 665 666 667
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = FSL_SAI_RMR,
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
};

668 669
static int fsl_sai_probe(struct platform_device *pdev)
{
670
	struct device_node *np = pdev->dev.of_node;
671 672
	struct fsl_sai *sai;
	struct resource *res;
673
	void __iomem *base;
674 675
	char tmp[8];
	int irq, ret, i;
676 677 678 679 680

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

681 682
	sai->pdev = pdev;

683 684 685
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx6sx-sai"))
		sai->sai_on_imx = true;

686
	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
687

688
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
689 690 691 692 693
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
694 695 696 697 698 699
			"bus", base, &fsl_sai_regmap_config);

	/* Compatible with old DTB cases */
	if (IS_ERR(sai->regmap))
		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
				"sai", base, &fsl_sai_regmap_config);
700 701 702
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
703 704
	}

705 706 707 708 709 710 711 712
	/* No error out for old DTB cases but only mark the clock NULL */
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		sai->bus_clk = NULL;
	}

713 714 715
	sai->mclk_clk[0] = sai->bus_clk;
	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
716 717 718 719 720 721 722 723
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

724 725
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
726
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
727 728 729 730 731 732 733 734 735
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, 0, np->name, sai);
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

736 737 738 739 740 741 742
	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
	fsl_sai_dai.symmetric_rates = 1;
	fsl_sai_dai.symmetric_channels = 1;
	fsl_sai_dai.symmetric_samplebits = 1;

743 744 745 746 747 748 749
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

750 751 752 753 754 755 756 757 758 759 760 761 762
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
		fsl_sai_dai.symmetric_rates = 0;
		fsl_sai_dai.symmetric_channels = 0;
		fsl_sai_dai.symmetric_samplebits = 0;
	}

763 764 765 766 767 768 769 770 771 772 773 774
	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR;
	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR;
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	platform_set_drvdata(pdev, sai);

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
			&fsl_sai_dai, 1);
	if (ret)
		return ret;

775 776 777 778 779
	if (sai->sai_on_imx)
		return imx_pcm_dma_init(pdev);
	else
		return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL,
				SND_DMAENGINE_PCM_FLAG_NO_RESIDUE);
780 781 782 783
}

static const struct of_device_id fsl_sai_ids[] = {
	{ .compatible = "fsl,vf610-sai", },
784
	{ .compatible = "fsl,imx6sx-sai", },
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	{ /* sentinel */ }
};

static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
	.driver = {
		.name = "fsl-sai",
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");