fsl_sai.c 22.9 KB
Newer Older
1 2 3
/*
 * Freescale ALSA SoC Digital Audio Interface (SAI) driver.
 *
4
 * Copyright 2012-2015 Freescale Semiconductor, Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software, you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 of the License, or(at your
 * option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
18
#include <linux/regmap.h>
19 20 21 22 23 24
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>

#include "fsl_sai.h"
25
#include "imx-pcm.h"
26

27 28 29
#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

30
static const unsigned int fsl_sai_rates[] = {
31 32 33 34 35
	8000, 11025, 12000, 16000, 22050,
	24000, 32000, 44100, 48000, 64000,
	88200, 96000, 176400, 192000
};

36
static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
37 38 39 40
	.count = ARRAY_SIZE(fsl_sai_rates),
	.list = fsl_sai_rates,
};

41 42 43 44
static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
	struct device *dev = &sai->pdev->dev;
45 46 47 48 49 50 51 52
	u32 flags, xcsr, mask;
	bool irq_none = true;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
53 54 55 56
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
	regmap_read(sai->regmap, FSL_SAI_TCSR, &xcsr);
57 58 59 60 61 62
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto irq_rx;
63

64
	if (flags & FSL_SAI_CSR_WSF)
65 66
		dev_dbg(dev, "isr: Start of Tx word detected\n");

67
	if (flags & FSL_SAI_CSR_SEF)
68 69
		dev_warn(dev, "isr: Tx Frame sync error detected\n");

70
	if (flags & FSL_SAI_CSR_FEF) {
71 72 73 74 75
		dev_warn(dev, "isr: Transmit underrun detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

76
	if (flags & FSL_SAI_CSR_FWF)
77 78
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

79
	if (flags & FSL_SAI_CSR_FRF)
80 81
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

82 83 84 85 86
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_TCSR, flags | xcsr);
87

88
irq_rx:
89 90
	/* Rx IRQ */
	regmap_read(sai->regmap, FSL_SAI_RCSR, &xcsr);
91
	flags = xcsr & mask;
92

93 94 95 96 97 98
	if (flags)
		irq_none = false;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
99 100
		dev_dbg(dev, "isr: Start of Rx word detected\n");

101
	if (flags & FSL_SAI_CSR_SEF)
102 103
		dev_warn(dev, "isr: Rx Frame sync error detected\n");

104
	if (flags & FSL_SAI_CSR_FEF) {
105 106 107 108 109
		dev_warn(dev, "isr: Receive overflow detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

110
	if (flags & FSL_SAI_CSR_FWF)
111 112
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

113
	if (flags & FSL_SAI_CSR_FRF)
114 115
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

116 117
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;
118

119
	if (flags)
120
		regmap_write(sai->regmap, FSL_SAI_RCSR, flags | xcsr);
121 122 123 124 125 126

out:
	if (irq_none)
		return IRQ_NONE;
	else
		return IRQ_HANDLED;
127 128
}

129 130 131 132
static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
133 134
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0;
X
Xiubo Li 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}
X
Xiubo Li 已提交
152

153 154
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
155 156 157 158 159 160 161

	return 0;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
162
	int ret;
163 164 165 166 167 168 169

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_TRANSMITTER);
	if (ret) {
170
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
171
		return ret;
172 173 174 175
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_RECEIVER);
176
	if (ret)
177
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
178

179
	return ret;
180 181 182 183 184 185
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
186 187
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0, val_cr4 = 0;
188

189
	if (!sai->is_lsb_first)
190
		val_cr4 |= FSL_SAI_CR4_MF;
191

192
	/* DAI mode */
193 194
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
195 196 197 198 199 200
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
201
		val_cr2 |= FSL_SAI_CR2_BCP;
202 203 204
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
205 206 207 208
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
209
		val_cr2 |= FSL_SAI_CR2_BCP;
210
		break;
211 212 213 214 215 216 217
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
218
		val_cr2 |= FSL_SAI_CR2_BCP;
219 220 221 222 223 224 225 226
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
227
		val_cr2 |= FSL_SAI_CR2_BCP;
228 229
		sai->is_dsp_mode = true;
		break;
230 231
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
232 233 234 235
	default:
		return -EINVAL;
	}

236
	/* DAI clock inversion */
237 238
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
239 240 241
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
242 243
		break;
	case SND_SOC_DAIFMT_IB_NF:
244 245
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
246 247
		break;
	case SND_SOC_DAIFMT_NB_IF:
248 249
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
250 251
		break;
	case SND_SOC_DAIFMT_NB_NF:
252
		/* Nothing to do for both normal cases */
253 254 255 256 257
		break;
	default:
		return -EINVAL;
	}

258
	/* DAI clock master masks */
259 260 261 262 263 264
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
265
		sai->is_slave_mode = true;
266
		break;
267 268 269 270 271
	case SND_SOC_DAIFMT_CBS_CFM:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFS:
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
272
		sai->is_slave_mode = true;
273
		break;
274 275 276 277
	default:
		return -EINVAL;
	}

278 279 280 281 282
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
283 284 285 286 287 288

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
289
	int ret;
290 291 292

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
	if (ret) {
293
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
294
		return ret;
295 296 297
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
298
	if (ret)
299
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
300

301
	return ret;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	unsigned long clk_rate;
	u32 savediv = 0, ratio, savesub = freq;
	u32 id;
	int ret = 0;

	/* Don't apply to slave mode */
	if (sai->is_slave_mode)
		return 0;

	for (id = 0; id < FSL_SAI_MCLK_MAX; id++) {
		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = clk_rate / freq;

		ret = clk_rate - ratio * freq;

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (ret != 0 && clk_rate / ret < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);

		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
			ratio /= 2;
		else
			continue;

		if (ret < savesub) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			savesub = ret;
		}

		if (ret == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

357 358 359 360 361 362 363 364 365 366 367 368
	/*
	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
	 *    set TCR2 register for playback.
	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
	 *    and capture.
	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
	 *    and capture.
	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
	 *    ignore it.
	 */
	if ((sai->synchronous[TX] && !sai->synchronous[RX]) ||
	    (!tx && !sai->synchronous[RX])) {
369 370 371 372 373
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
374 375
	} else if ((sai->synchronous[RX] && !sai->synchronous[TX]) ||
		   (tx && !sai->synchronous[TX])) {
376 377 378 379 380 381 382 383 384 385 386 387 388
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, savesub);

	return 0;
}

389 390 391 392
static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
393
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
394
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
395
	unsigned int channels = params_channels(params);
396
	u32 word_width = snd_pcm_format_width(params_format(params));
397
	u32 val_cr4 = 0, val_cr5 = 0;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	int ret;

	if (!sai->is_slave_mode) {
		ret = fsl_sai_set_bclk(cpu_dai, tx,
			2 * word_width * params_rate(params));
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}

	}
416

417 418 419
	if (!sai->is_dsp_mode)
		val_cr4 |= FSL_SAI_CR4_SYWD(word_width);

420 421 422
	val_cr5 |= FSL_SAI_CR5_WNW(word_width);
	val_cr5 |= FSL_SAI_CR5_W0W(word_width);

423
	if (sai->is_lsb_first)
424
		val_cr5 |= FSL_SAI_CR5_FBT(0);
425 426
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
427 428 429

	val_cr4 |= FSL_SAI_CR4_FRSZ(channels);

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	/*
	 * For SAI master mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
	 * RCR5(TCR5) and RMR(TMR) for playback(capture), or there will be sync
	 * error.
	 */

	if (!sai->is_slave_mode) {
		if (!sai->synchronous[TX] && sai->synchronous[RX] && !tx) {
			regmap_update_bits(sai->regmap, FSL_SAI_TCR4,
				FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
				val_cr4);
			regmap_update_bits(sai->regmap, FSL_SAI_TCR5,
				FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				FSL_SAI_CR5_FBT_MASK, val_cr5);
			regmap_write(sai->regmap, FSL_SAI_TMR,
				~0UL - ((1 << channels) - 1));
		} else if (!sai->synchronous[RX] && sai->synchronous[TX] && tx) {
			regmap_update_bits(sai->regmap, FSL_SAI_RCR4,
				FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
				val_cr4);
			regmap_update_bits(sai->regmap, FSL_SAI_RCR5,
				FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				FSL_SAI_CR5_FBT_MASK, val_cr5);
			regmap_write(sai->regmap, FSL_SAI_RMR,
				~0UL - ((1 << channels) - 1));
		}
	}

459 460 461 462 463 464 465
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
			   val_cr4);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx),
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
	regmap_write(sai->regmap, FSL_SAI_xMR(tx), ~0UL - ((1 << channels) - 1));
466 467 468 469

	return 0;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	if (!sai->is_slave_mode &&
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}


486 487 488 489
static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
490
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
491
	u32 xcsr, count = 100;
492

493
	/*
494 495 496
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
497
	 */
498
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_SYNC, 0);
499
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_SYNC,
500
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
501

502 503 504 505
	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
506 507 508 509
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
510 511 512
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

513 514 515 516
		regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
		regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
517

518 519
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
520 521 522 523
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
524 525
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, 0);
526 527
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, 0);
528

529
		/* Check if the opposite FRDE is also disabled */
530 531
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx), &xcsr);
		if (!(xcsr & FSL_SAI_CSR_FRDE)) {
532
			/* Disable both directions and reset their FIFOs */
533
			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
534
					   FSL_SAI_CSR_TERE, 0);
535
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
536 537 538 539 540 541 542 543 544 545 546 547
					   FSL_SAI_CSR_TERE, 0);

			/* TERE will remain set till the end of current frame */
			do {
				udelay(10);
				regmap_read(sai->regmap, FSL_SAI_xCSR(tx), &xcsr);
			} while (--count && xcsr & FSL_SAI_CSR_TERE);

			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
548 549 550 551 552 553 554 555 556 557 558 559 560
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
561
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
562 563 564 565 566 567 568 569
	struct device *dev = &sai->pdev->dev;
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}
570

571
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE,
572 573
			   FSL_SAI_CR3_TRCE);

574 575 576 577
	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);

	return ret;
578 579 580 581 582 583
}

static void fsl_sai_shutdown(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
584
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
585

586
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE, 0);
587 588

	clk_disable_unprepare(sai->bus_clk);
589 590 591 592 593 594
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
	.hw_params	= fsl_sai_hw_params,
595
	.hw_free	= fsl_sai_hw_free,
596 597 598 599 600 601 602 603
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
	.shutdown	= fsl_sai_shutdown,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
604

605 606 607 608 609 610 611
	/* Software Reset for both Tx and Rx */
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	/* Clear SR bit to finish the reset */
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);

612 613 614 615
	regmap_update_bits(sai->regmap, FSL_SAI_TCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_TX * 2);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_RX - 1);
616

617 618
	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);
619 620 621 622 623 624 625 626 627

	snd_soc_dai_set_drvdata(cpu_dai, sai);

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_dai = {
	.probe = fsl_sai_dai_probe,
	.playback = {
628
		.stream_name = "CPU-Playback",
629 630
		.channels_min = 1,
		.channels_max = 2,
631 632 633
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
634 635 636
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
637
		.stream_name = "CPU-Capture",
638 639
		.channels_min = 1,
		.channels_max = 2,
640 641 642
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
643 644 645 646 647 648 649 650 651
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TFR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RDR:
	case FSL_SAI_RFR:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
681 682
	case FSL_SAI_TCSR:
	case FSL_SAI_RCSR:
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	case FSL_SAI_TFR:
	case FSL_SAI_RFR:
	case FSL_SAI_TDR:
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}

}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TDR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

718
static const struct regmap_config fsl_sai_regmap_config = {
719 720 721 722 723 724 725 726
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = FSL_SAI_RMR,
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
727
	.cache_type = REGCACHE_FLAT,
728 729
};

730 731
static int fsl_sai_probe(struct platform_device *pdev)
{
732
	struct device_node *np = pdev->dev.of_node;
733 734
	struct fsl_sai *sai;
	struct resource *res;
735
	void __iomem *base;
736 737
	char tmp[8];
	int irq, ret, i;
738 739 740 741 742

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

743 744
	sai->pdev = pdev;

745 746 747
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx6sx-sai"))
		sai->sai_on_imx = true;

748
	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
749

750
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
751 752 753 754 755
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
756 757 758 759 760 761
			"bus", base, &fsl_sai_regmap_config);

	/* Compatible with old DTB cases */
	if (IS_ERR(sai->regmap))
		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
				"sai", base, &fsl_sai_regmap_config);
762 763 764
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
765 766
	}

767 768 769 770 771 772 773 774
	/* No error out for old DTB cases but only mark the clock NULL */
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		sai->bus_clk = NULL;
	}

775 776 777
	sai->mclk_clk[0] = sai->bus_clk;
	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
778 779 780 781 782 783 784 785
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

786 787
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
788
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
789 790 791 792 793 794 795 796 797
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, 0, np->name, sai);
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

798 799 800 801 802 803 804
	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
	fsl_sai_dai.symmetric_rates = 1;
	fsl_sai_dai.symmetric_channels = 1;
	fsl_sai_dai.symmetric_samplebits = 1;

805 806 807 808 809 810 811
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

812 813 814 815 816 817 818 819 820 821 822 823 824
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
		fsl_sai_dai.symmetric_rates = 0;
		fsl_sai_dai.symmetric_channels = 0;
		fsl_sai_dai.symmetric_samplebits = 0;
	}

825 826 827 828 829 830 831 832 833 834 835 836
	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR;
	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR;
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	platform_set_drvdata(pdev, sai);

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
			&fsl_sai_dai, 1);
	if (ret)
		return ret;

837
	if (sai->sai_on_imx)
838
		return imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
839
	else
840
		return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
841 842 843 844
}

static const struct of_device_id fsl_sai_ids[] = {
	{ .compatible = "fsl,vf610-sai", },
845
	{ .compatible = "fsl,imx6sx-sai", },
846 847
	{ /* sentinel */ }
};
848
MODULE_DEVICE_TABLE(of, fsl_sai_ids);
849

850
#ifdef CONFIG_PM_SLEEP
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static int fsl_sai_suspend(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	regcache_cache_only(sai->regmap, true);
	regcache_mark_dirty(sai->regmap);

	return 0;
}

static int fsl_sai_resume(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	regcache_cache_only(sai->regmap, false);
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	msleep(1);
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);
	return regcache_sync(sai->regmap);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops fsl_sai_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_sai_suspend, fsl_sai_resume)
};

879 880 881 882
static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
	.driver = {
		.name = "fsl-sai",
883
		.pm = &fsl_sai_pm_ops,
884 885 886 887 888 889 890 891 892
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");