core.c 95.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * core.c - DesignWare HS OTG Controller common routines
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * The Core code provides basic services for accessing and managing the
 * DWC_otg hardware. These services are used by both the Host Controller
 * Driver and the Peripheral Controller Driver.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>

#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>

#include "core.h"
#include "hcd.h"

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/**
 * dwc2_backup_host_registers() - Backup controller host registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hregs_backup *hr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup Host regs */
75
	hr = &hsotg->hr_backup;
76 77
	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
78
	for (i = 0; i < hsotg->core_params->host_channels; ++i)
79
		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
80

81
	hr->hprt0 = dwc2_read_hprt0(hsotg);
82
	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
83
	hr->valid = true;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

	return 0;
}

/**
 * dwc2_restore_host_registers() - Restore controller host registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hregs_backup *hr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore host regs */
103 104
	hr = &hsotg->hr_backup;
	if (!hr->valid) {
105 106 107 108
		dev_err(hsotg->dev, "%s: no host registers to restore\n",
				__func__);
		return -EINVAL;
	}
109
	hr->valid = false;
110

111 112
	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
113 114

	for (i = 0; i < hsotg->core_params->host_channels; ++i)
115
		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
116

117 118
	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
119
	hsotg->frame_number = 0;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

	return 0;
}
#else
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
148
	dr = &hsotg->dr_backup;
149

150 151 152 153 154
	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
155 156 157

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
158
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
159 160 161 162 163 164 165

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

166 167
		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
168 169

		/* Backup OUT EPs */
170
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
171 172 173 174 175 176 177

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

178 179
		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
180
	}
181
	dr->valid = true;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
201 202
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
203 204 205 206
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
				__func__);
		return -EINVAL;
	}
207
	dr->valid = false;
208

209 210 211 212 213
	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
214 215 216

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
217 218 219
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
220 221

		/* Restore OUT EPs */
222 223 224
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
225 226 227
	}

	/* Set the Power-On Programming done bit */
228
	dctl = dwc2_readl(hsotg->regs + DCTL);
229
	dctl |= DCTL_PWRONPRGDONE;
230
	dwc2_writel(dctl, hsotg->regs + DCTL);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	return 0;
}
#else
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

/**
 * dwc2_backup_global_registers() - Backup global controller registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_gregs_backup *gr;
	int i;

	/* Backup global regs */
255
	gr = &hsotg->gr_backup;
256

257 258 259 260 261 262 263 264
	gr->gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
	gr->gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
	gr->gahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
	gr->gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	gr->grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
	gr->gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
	gr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
	gr->gdfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
265
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
266
		gr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
267

268
	gr->valid = true;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	return 0;
}

/**
 * dwc2_restore_global_registers() - Restore controller global registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_gregs_backup *gr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore global regs */
287 288
	gr = &hsotg->gr_backup;
	if (!gr->valid) {
289 290 291 292
		dev_err(hsotg->dev, "%s: no global registers to restore\n",
				__func__);
		return -EINVAL;
	}
293
	gr->valid = false;
294

295 296 297 298 299 300 301 302 303
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
	dwc2_writel(gr->gotgctl, hsotg->regs + GOTGCTL);
	dwc2_writel(gr->gintmsk, hsotg->regs + GINTMSK);
	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
	dwc2_writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
	dwc2_writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
	dwc2_writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
	dwc2_writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
	dwc2_writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
304
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
305
		dwc2_writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	return 0;
}

/**
 * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
 *
 * @hsotg: Programming view of the DWC_otg controller
 * @restore: Controller registers need to be restored
 */
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
{
	u32 pcgcctl;
	int ret = 0;

321 322 323
	if (!hsotg->core_params->hibernation)
		return -ENOTSUPP;

324
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
325
	pcgcctl &= ~PCGCTL_STOPPCLK;
326
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
327

328
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
329
	pcgcctl &= ~PCGCTL_PWRCLMP;
330
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
331

332
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
333
	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
334
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

	udelay(100);
	if (restore) {
		ret = dwc2_restore_global_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to restore registers\n",
					__func__);
			return ret;
		}
		if (dwc2_is_host_mode(hsotg)) {
			ret = dwc2_restore_host_registers(hsotg);
			if (ret) {
				dev_err(hsotg->dev, "%s: failed to restore host registers\n",
						__func__);
				return ret;
			}
		} else {
			ret = dwc2_restore_device_registers(hsotg);
			if (ret) {
				dev_err(hsotg->dev, "%s: failed to restore device registers\n",
						__func__);
				return ret;
			}
		}
	}

	return ret;
}

/**
 * dwc2_enter_hibernation() - Put controller in Partial Power Down.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
{
	u32 pcgcctl;
	int ret = 0;

374 375 376
	if (!hsotg->core_params->hibernation)
		return -ENOTSUPP;

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/* Backup all registers */
	ret = dwc2_backup_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
				__func__);
		return ret;
	}

	if (dwc2_is_host_mode(hsotg)) {
		ret = dwc2_backup_host_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to backup host registers\n",
					__func__);
			return ret;
		}
	} else {
		ret = dwc2_backup_device_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to backup device registers\n",
					__func__);
			return ret;
		}
	}

401 402 403 404 405 406
	/*
	 * Clear any pending interrupts since dwc2 will not be able to
	 * clear them after entering hibernation.
	 */
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);

407
	/* Put the controller in low power state */
408
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
409 410

	pcgcctl |= PCGCTL_PWRCLMP;
411
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
412 413 414
	ndelay(20);

	pcgcctl |= PCGCTL_RSTPDWNMODULE;
415
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
416 417 418
	ndelay(20);

	pcgcctl |= PCGCTL_STOPPCLK;
419
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
420 421 422 423

	return ret;
}

424 425 426 427 428 429 430 431 432 433 434
/**
 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
 * used in both device and host modes
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk;

	/* Clear any pending OTG Interrupts */
435
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
436 437

	/* Clear any pending interrupts */
438
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
439 440 441 442 443 444

	/* Enable the interrupts in the GINTMSK */
	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;

	if (hsotg->core_params->dma_enable <= 0)
		intmsk |= GINTSTS_RXFLVL;
445 446
	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;
447

448
	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
449 450
		  GINTSTS_SESSREQINT;

451
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
452 453 454 455 456 457 458 459 460 461
}

/*
 * Initializes the FSLSPClkSel field of the HCFG register depending on the
 * PHY type
 */
static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
{
	u32 hcfg, val;

462 463
	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
464 465 466 467 468 469 470 471 472 473
	     hsotg->core_params->ulpi_fs_ls > 0) ||
	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
		/* Full speed PHY */
		val = HCFG_FSLSPCLKSEL_48_MHZ;
	} else {
		/* High speed PHY running at full speed or high speed */
		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
	}

	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
474
	hcfg = dwc2_readl(hsotg->regs + HCFG);
475
	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
476
	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
477
	dwc2_writel(hcfg, hsotg->regs + HCFG);
478 479 480 481 482 483
}

/*
 * Do core a soft reset of the core.  Be careful with this because it
 * resets all the internal state machines of the core.
 */
484
int dwc2_core_reset(struct dwc2_hsotg *hsotg)
485 486 487
{
	u32 greset;
	int count = 0;
488
	u32 gusbcfg;
489 490 491 492 493

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

	/* Wait for AHB master IDLE state */
	do {
494
		udelay(1);
495
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
496 497 498 499
		if (++count > 50) {
			dev_warn(hsotg->dev,
				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
				 __func__, greset);
500
			return -EBUSY;
501 502 503 504 505 506
		}
	} while (!(greset & GRSTCTL_AHBIDLE));

	/* Core Soft Reset */
	count = 0;
	greset |= GRSTCTL_CSFTRST;
507
	dwc2_writel(greset, hsotg->regs + GRSTCTL);
508
	do {
509
		udelay(1);
510
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
511 512 513 514
		if (++count > 50) {
			dev_warn(hsotg->dev,
				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
				 __func__, greset);
515
			return -EBUSY;
516 517 518
		}
	} while (greset & GRSTCTL_CSFTRST);

519
	if (hsotg->dr_mode == USB_DR_MODE_HOST) {
520
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
521 522
		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
		gusbcfg |= GUSBCFG_FORCEHOSTMODE;
523
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
524
	} else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
525
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
526 527
		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
		gusbcfg |= GUSBCFG_FORCEDEVMODE;
528
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
529
	} else if (hsotg->dr_mode == USB_DR_MODE_OTG) {
530
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
531 532
		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
533
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
534 535
	}

536 537 538 539
	/*
	 * NOTE: This long sleep is _very_ important, otherwise the core will
	 * not stay in host mode after a connector ID change!
	 */
540
	usleep_range(150000, 160000);
541 542

	return 0;
543 544
}

545
static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
546 547
{
	u32 usbcfg, i2cctl;
548
	int retval = 0;
549 550 551 552 553 554 555

	/*
	 * core_init() is now called on every switch so only call the
	 * following for the first time through
	 */
	if (select_phy) {
		dev_dbg(hsotg->dev, "FS PHY selected\n");
556

557
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
558 559 560
		if (!(usbcfg & GUSBCFG_PHYSEL)) {
			usbcfg |= GUSBCFG_PHYSEL;
			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
561

562 563 564 565 566 567 568 569
			/* Reset after a PHY select */
			retval = dwc2_core_reset(hsotg);

			if (retval) {
				dev_err(hsotg->dev,
					"%s: Reset failed, aborting", __func__);
				return retval;
			}
570
		}
571 572 573 574 575 576 577 578 579 580 581 582 583 584
	}

	/*
	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
	 * do this on HNP Dev/Host mode switches (done in dev_init and
	 * host_init).
	 */
	if (dwc2_is_host_mode(hsotg))
		dwc2_init_fs_ls_pclk_sel(hsotg);

	if (hsotg->core_params->i2c_enable > 0) {
		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");

		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
585
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
586
		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
587
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
588 589

		/* Program GI2CCTL.I2CEn */
590
		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
591 592 593
		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
		i2cctl &= ~GI2CCTL_I2CEN;
594
		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
595
		i2cctl |= GI2CCTL_I2CEN;
596
		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
597
	}
598 599

	return retval;
600 601
}

602
static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
603
{
604
	u32 usbcfg, usbcfg_old;
605
	int retval = 0;
606 607

	if (!select_phy)
608
		return 0;
609

610
	usbcfg = usbcfg_old = dwc2_readl(hsotg->regs + GUSBCFG);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	/*
	 * HS PHY parameters. These parameters are preserved during soft reset
	 * so only program the first time. Do a soft reset immediately after
	 * setting phyif.
	 */
	switch (hsotg->core_params->phy_type) {
	case DWC2_PHY_TYPE_PARAM_ULPI:
		/* ULPI interface */
		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
		if (hsotg->core_params->phy_ulpi_ddr > 0)
			usbcfg |= GUSBCFG_DDRSEL;
		break;
	case DWC2_PHY_TYPE_PARAM_UTMI:
		/* UTMI+ interface */
		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
		if (hsotg->core_params->phy_utmi_width == 16)
			usbcfg |= GUSBCFG_PHYIF16;
		break;
	default:
		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
		break;
	}

638 639
	if (usbcfg != usbcfg_old) {
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
640

641 642 643 644 645 646 647
		/* Reset after setting the PHY parameters */
		retval = dwc2_core_reset(hsotg);
		if (retval) {
			dev_err(hsotg->dev,
				"%s: Reset failed, aborting", __func__);
			return retval;
		}
648 649 650
	}

	return retval;
651 652
}

653
static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
654
{
655
	u32 usbcfg;
656
	int retval = 0;
657 658 659 660

	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
		/* If FS mode with FS PHY */
661 662 663
		retval = dwc2_fs_phy_init(hsotg, select_phy);
		if (retval)
			return retval;
664 665
	} else {
		/* High speed PHY */
666 667 668
		retval = dwc2_hs_phy_init(hsotg, select_phy);
		if (retval)
			return retval;
669 670
	}

671 672
	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
673 674
	    hsotg->core_params->ulpi_fs_ls > 0) {
		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
675
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
676 677
		usbcfg |= GUSBCFG_ULPI_FS_LS;
		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
678
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
679
	} else {
680
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
681 682
		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
683
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
684
	}
685 686

	return retval;
687 688 689 690
}

static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
{
691
	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
692

693
	switch (hsotg->hw_params.arch) {
694 695 696 697 698 699
	case GHWCFG2_EXT_DMA_ARCH:
		dev_err(hsotg->dev, "External DMA Mode not supported\n");
		return -EINVAL;

	case GHWCFG2_INT_DMA_ARCH:
		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
700 701 702 703 704
		if (hsotg->core_params->ahbcfg != -1) {
			ahbcfg &= GAHBCFG_CTRL_MASK;
			ahbcfg |= hsotg->core_params->ahbcfg &
				  ~GAHBCFG_CTRL_MASK;
		}
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
		break;

	case GHWCFG2_SLAVE_ONLY_ARCH:
	default:
		dev_dbg(hsotg->dev, "Slave Only Mode\n");
		break;
	}

	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
		hsotg->core_params->dma_enable,
		hsotg->core_params->dma_desc_enable);

	if (hsotg->core_params->dma_enable > 0) {
		if (hsotg->core_params->dma_desc_enable > 0)
			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
		else
			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
	} else {
		dev_dbg(hsotg->dev, "Using Slave mode\n");
		hsotg->core_params->dma_desc_enable = 0;
	}

	if (hsotg->core_params->dma_enable > 0)
		ahbcfg |= GAHBCFG_DMA_EN;

730
	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
731 732 733 734 735 736 737 738

	return 0;
}

static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
{
	u32 usbcfg;

739
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
740 741
	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);

742
	switch (hsotg->hw_params.op_mode) {
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
		if (hsotg->core_params->otg_cap ==
				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_HNPCAP;
		if (hsotg->core_params->otg_cap !=
				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_SRPCAP;
		break;

	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
		if (hsotg->core_params->otg_cap !=
				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_SRPCAP;
		break;

	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
	default:
		break;
	}

767
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
768 769 770 771 772 773
}

/**
 * dwc2_core_init() - Initializes the DWC_otg controller registers and
 * prepares the core for device mode or host mode operation
 *
774 775
 * @hsotg:         Programming view of the DWC_otg controller
 * @initial_setup: If true then this is the first init for this instance.
776
 */
777
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
778 779 780 781 782 783
{
	u32 usbcfg, otgctl;
	int retval;

	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);

784
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
785 786 787 788 789 790 791 792 793 794 795 796

	/* Set ULPI External VBUS bit if needed */
	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
	if (hsotg->core_params->phy_ulpi_ext_vbus ==
				DWC2_PHY_ULPI_EXTERNAL_VBUS)
		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;

	/* Set external TS Dline pulsing bit if needed */
	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
	if (hsotg->core_params->ts_dline > 0)
		usbcfg |= GUSBCFG_TERMSELDLPULSE;

797
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812
	/*
	 * Reset the Controller
	 *
	 * We only need to reset the controller if this is a re-init.
	 * For the first init we know for sure that earlier code reset us (it
	 * needed to in order to properly detect various parameters).
	 */
	if (!initial_setup) {
		retval = dwc2_core_reset(hsotg);
		if (retval) {
			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
					__func__);
			return retval;
		}
813
	}
814 815 816 817

	/*
	 * This needs to happen in FS mode before any other programming occurs
	 */
818
	retval = dwc2_phy_init(hsotg, initial_setup);
819 820
	if (retval)
		return retval;
821 822 823 824 825 826 827 828 829 830

	/* Program the GAHBCFG Register */
	retval = dwc2_gahbcfg_init(hsotg);
	if (retval)
		return retval;

	/* Program the GUSBCFG register */
	dwc2_gusbcfg_init(hsotg);

	/* Program the GOTGCTL register */
831
	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
832 833 834
	otgctl &= ~GOTGCTL_OTGVER;
	if (hsotg->core_params->otg_ver > 0)
		otgctl |= GOTGCTL_OTGVER;
835
	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
836 837 838 839 840 841 842 843 844
	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);

	/* Clear the SRP success bit for FS-I2c */
	hsotg->srp_success = 0;

	/* Enable common interrupts */
	dwc2_enable_common_interrupts(hsotg);

	/*
845
	 * Do device or host initialization based on mode during PCD and
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	 * HCD initialization
	 */
	if (dwc2_is_host_mode(hsotg)) {
		dev_dbg(hsotg->dev, "Host Mode\n");
		hsotg->op_state = OTG_STATE_A_HOST;
	} else {
		dev_dbg(hsotg->dev, "Device Mode\n");
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
	}

	return 0;
}

/**
 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk;

	dev_dbg(hsotg->dev, "%s()\n", __func__);

	/* Disable all interrupts */
871 872
	dwc2_writel(0, hsotg->regs + GINTMSK);
	dwc2_writel(0, hsotg->regs + HAINTMSK);
873 874 875 876 877

	/* Enable the common interrupts */
	dwc2_enable_common_interrupts(hsotg);

	/* Enable host mode interrupts without disturbing common interrupts */
878
	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
879
	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
880
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
881 882 883 884 885 886 887 888 889
}

/**
 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
{
890
	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
891 892 893

	/* Disable host mode interrupts without disturbing common interrupts */
	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
894
		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
895
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
896 897
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/*
 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 * For system that have a total fifo depth that is smaller than the default
 * RX + TX fifo size.
 *
 * @hsotg: Programming view of DWC_otg controller
 */
static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
{
	struct dwc2_core_params *params = hsotg->core_params;
	struct dwc2_hw_params *hw = &hsotg->hw_params;
	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;

	total_fifo_size = hw->total_fifo_size;
	rxfsiz = params->host_rx_fifo_size;
	nptxfsiz = params->host_nperio_tx_fifo_size;
	ptxfsiz = params->host_perio_tx_fifo_size;

	/*
	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
	 * allocation with support for high bandwidth endpoints. Synopsys
	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
	 * non-periodic as 512.
	 */
	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
		/*
		 * For Buffer DMA mode/Scatter Gather DMA mode
		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
		 * with n = number of host channel.
		 * 2 * ((1024/4) + 2) = 516
		 */
		rxfsiz = 516 + hw->host_channels;

		/*
		 * min non-periodic tx fifo depth
		 * 2 * (largest non-periodic USB packet used / 4)
		 * 2 * (512/4) = 256
		 */
		nptxfsiz = 256;

		/*
		 * min periodic tx fifo depth
		 * (largest packet size*MC)/4
		 * (1024 * 3)/4 = 768
		 */
		ptxfsiz = 768;

		params->host_rx_fifo_size = rxfsiz;
		params->host_nperio_tx_fifo_size = nptxfsiz;
		params->host_perio_tx_fifo_size = ptxfsiz;
	}

	/*
	 * If the summation of RX, NPTX and PTX fifo sizes is still
	 * bigger than the total_fifo_size, then we have a problem.
	 *
	 * We won't be able to allocate as many endpoints. Right now,
	 * we're just printing an error message, but ideally this FIFO
	 * allocation algorithm would be improved in the future.
	 *
	 * FIXME improve this FIFO allocation algorithm.
	 */
	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
		dev_err(hsotg->dev, "invalid fifo sizes\n");
}

964 965 966
static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
{
	struct dwc2_core_params *params = hsotg->core_params;
967
	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
968

969
	if (!params->enable_dynamic_fifo)
970 971
		return;

972 973
	dwc2_calculate_dynamic_fifo(hsotg);

974
	/* Rx FIFO */
975
	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
976 977 978 979
	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
	grxfsiz |= params->host_rx_fifo_size <<
		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
980 981 982
	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
		dwc2_readl(hsotg->regs + GRXFSIZ));
983 984 985

	/* Non-periodic Tx FIFO */
	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
986
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
987 988 989 990
	nptxfsiz = params->host_nperio_tx_fifo_size <<
		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
	nptxfsiz |= params->host_rx_fifo_size <<
		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
991
	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
992
	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
993
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
994 995 996

	/* Periodic Tx FIFO */
	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
997
		dwc2_readl(hsotg->regs + HPTXFSIZ));
998 999 1000 1001 1002
	hptxfsiz = params->host_perio_tx_fifo_size <<
		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
	hptxfsiz |= (params->host_rx_fifo_size +
		     params->host_nperio_tx_fifo_size) <<
		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
1003
	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
1004
	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
1005
		dwc2_readl(hsotg->regs + HPTXFSIZ));
1006 1007

	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
1008
	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
1009 1010 1011 1012
		/*
		 * Global DFIFOCFG calculation for Host mode -
		 * include RxFIFO, NPTXFIFO and HPTXFIFO
		 */
1013
		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
1014
		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
1015 1016 1017
		dfifocfg |= (params->host_rx_fifo_size +
			     params->host_nperio_tx_fifo_size +
			     params->host_perio_tx_fifo_size) <<
1018 1019
			    GDFIFOCFG_EPINFOBASE_SHIFT &
			    GDFIFOCFG_EPINFOBASE_MASK;
1020
		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	}
}

/**
 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
 * Host mode
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
 * request queues. Host channels are reset to ensure that they are ready for
 * performing transfers.
 */
void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
{
	u32 hcfg, hfir, otgctl;

	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);

	/* Restart the Phy Clock */
1041
	dwc2_writel(0, hsotg->regs + PCGCTL);
1042 1043 1044 1045

	/* Initialize Host Configuration Register */
	dwc2_init_fs_ls_pclk_sel(hsotg);
	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
1046
		hcfg = dwc2_readl(hsotg->regs + HCFG);
1047
		hcfg |= HCFG_FSLSSUPP;
1048
		dwc2_writel(hcfg, hsotg->regs + HCFG);
1049 1050 1051 1052
	}

	/*
	 * This bit allows dynamic reloading of the HFIR register during
1053
	 * runtime. This bit needs to be programmed during initial configuration
1054 1055 1056
	 * and its value must not be changed during runtime.
	 */
	if (hsotg->core_params->reload_ctl > 0) {
1057
		hfir = dwc2_readl(hsotg->regs + HFIR);
1058
		hfir |= HFIR_RLDCTRL;
1059
		dwc2_writel(hfir, hsotg->regs + HFIR);
1060 1061 1062
	}

	if (hsotg->core_params->dma_desc_enable > 0) {
1063 1064 1065
		u32 op_mode = hsotg->hw_params.op_mode;
		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
		    !hsotg->hw_params.dma_desc_enable ||
1066 1067 1068 1069 1070 1071 1072 1073 1074
		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
			dev_err(hsotg->dev,
				"Hardware does not support descriptor DMA mode -\n");
			dev_err(hsotg->dev,
				"falling back to buffer DMA mode.\n");
			hsotg->core_params->dma_desc_enable = 0;
		} else {
1075
			hcfg = dwc2_readl(hsotg->regs + HCFG);
1076
			hcfg |= HCFG_DESCDMA;
1077
			dwc2_writel(hcfg, hsotg->regs + HCFG);
1078 1079 1080 1081 1082 1083 1084 1085
		}
	}

	/* Configure data FIFO sizes */
	dwc2_config_fifos(hsotg);

	/* TODO - check this */
	/* Clear Host Set HNP Enable in the OTG Control Register */
1086
	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1087
	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1088
	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1089 1090 1091 1092 1093 1094

	/* Make sure the FIFOs are flushed */
	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
	dwc2_flush_rx_fifo(hsotg);

	/* Clear Host Set HNP Enable in the OTG Control Register */
1095
	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1096
	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1097
	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1098 1099 1100 1101 1102 1103 1104 1105

	if (hsotg->core_params->dma_desc_enable <= 0) {
		int num_channels, i;
		u32 hcchar;

		/* Flush out any leftover queued requests */
		num_channels = hsotg->core_params->host_channels;
		for (i = 0; i < num_channels; i++) {
1106
			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1107 1108 1109
			hcchar &= ~HCCHAR_CHENA;
			hcchar |= HCCHAR_CHDIS;
			hcchar &= ~HCCHAR_EPDIR;
1110
			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1111 1112 1113 1114 1115 1116
		}

		/* Halt all channels to put them into a known state */
		for (i = 0; i < num_channels; i++) {
			int count = 0;

1117
			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1118 1119
			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
			hcchar &= ~HCCHAR_EPDIR;
1120
			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1121 1122 1123
			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
				__func__, i);
			do {
1124
				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
				if (++count > 1000) {
					dev_err(hsotg->dev,
						"Unable to clear enable on channel %d\n",
						i);
					break;
				}
				udelay(1);
			} while (hcchar & HCCHAR_CHENA);
		}
	}

	/* Turn on the vbus power */
	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
	if (hsotg->op_state == OTG_STATE_A_HOST) {
		u32 hprt0 = dwc2_read_hprt0(hsotg);

		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
			!!(hprt0 & HPRT0_PWR));
		if (!(hprt0 & HPRT0_PWR)) {
			hprt0 |= HPRT0_PWR;
1145
			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		}
	}

	dwc2_enable_host_interrupts(hsotg);
}

static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
				      struct dwc2_host_chan *chan)
{
	u32 hcintmsk = HCINTMSK_CHHLTD;

	switch (chan->ep_type) {
	case USB_ENDPOINT_XFER_CONTROL:
	case USB_ENDPOINT_XFER_BULK:
		dev_vdbg(hsotg->dev, "control/bulk\n");
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_STALL;
		hcintmsk |= HCINTMSK_XACTERR;
		hcintmsk |= HCINTMSK_DATATGLERR;
		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_BBLERR;
		} else {
			hcintmsk |= HCINTMSK_NAK;
			hcintmsk |= HCINTMSK_NYET;
			if (chan->do_ping)
				hcintmsk |= HCINTMSK_ACK;
		}

		if (chan->do_split) {
			hcintmsk |= HCINTMSK_NAK;
			if (chan->complete_split)
				hcintmsk |= HCINTMSK_NYET;
			else
				hcintmsk |= HCINTMSK_ACK;
		}

		if (chan->error_state)
			hcintmsk |= HCINTMSK_ACK;
		break;

	case USB_ENDPOINT_XFER_INT:
1187 1188
		if (dbg_perio())
			dev_vdbg(hsotg->dev, "intr\n");
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_NAK;
		hcintmsk |= HCINTMSK_STALL;
		hcintmsk |= HCINTMSK_XACTERR;
		hcintmsk |= HCINTMSK_DATATGLERR;
		hcintmsk |= HCINTMSK_FRMOVRUN;

		if (chan->ep_is_in)
			hcintmsk |= HCINTMSK_BBLERR;
		if (chan->error_state)
			hcintmsk |= HCINTMSK_ACK;
		if (chan->do_split) {
			if (chan->complete_split)
				hcintmsk |= HCINTMSK_NYET;
			else
				hcintmsk |= HCINTMSK_ACK;
		}
		break;

	case USB_ENDPOINT_XFER_ISOC:
1209 1210
		if (dbg_perio())
			dev_vdbg(hsotg->dev, "isoc\n");
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_FRMOVRUN;
		hcintmsk |= HCINTMSK_ACK;

		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_XACTERR;
			hcintmsk |= HCINTMSK_BBLERR;
		}
		break;
	default:
		dev_err(hsotg->dev, "## Unknown EP type ##\n");
		break;
	}

1225
	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1226 1227
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
}

static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
				    struct dwc2_host_chan *chan)
{
	u32 hcintmsk = HCINTMSK_CHHLTD;

	/*
	 * For Descriptor DMA mode core halts the channel on AHB error.
	 * Interrupt is not required.
	 */
	if (hsotg->core_params->dma_desc_enable <= 0) {
1240 1241
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1242 1243
		hcintmsk |= HCINTMSK_AHBERR;
	} else {
1244 1245
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1246 1247 1248 1249 1250 1251
		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			hcintmsk |= HCINTMSK_XFERCOMPL;
	}

	if (chan->error_state && !chan->do_split &&
	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1252 1253
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "setting ACK\n");
1254 1255 1256 1257 1258 1259 1260 1261
		hcintmsk |= HCINTMSK_ACK;
		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_DATATGLERR;
			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
				hcintmsk |= HCINTMSK_NAK;
		}
	}

1262
	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1263 1264
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1265 1266 1267 1268 1269 1270 1271 1272
}

static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
				struct dwc2_host_chan *chan)
{
	u32 intmsk;

	if (hsotg->core_params->dma_enable > 0) {
1273 1274
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA enabled\n");
1275 1276
		dwc2_hc_enable_dma_ints(hsotg, chan);
	} else {
1277 1278
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA disabled\n");
1279 1280 1281 1282
		dwc2_hc_enable_slave_ints(hsotg, chan);
	}

	/* Enable the top level host channel interrupt */
1283
	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
1284
	intmsk |= 1 << chan->hc_num;
1285
	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
1286 1287
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1288 1289

	/* Make sure host channel interrupts are enabled */
1290
	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
1291
	intmsk |= GINTSTS_HCHINT;
1292
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
1293 1294
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
}

/**
 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 * a specific endpoint
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * The HCCHARn register is set up with the characteristics specified in chan.
 * Host channel interrupts that may need to be serviced while this transfer is
 * in progress are enabled.
 */
void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u8 hc_num = chan->hc_num;
	u32 hcintmsk;
	u32 hcchar;
	u32 hcsplt = 0;

1315 1316
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1317 1318 1319 1320

	/* Clear old interrupt conditions for this host channel */
	hcintmsk = 0xffffffff;
	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1321
	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/* Enable channel interrupts required for this transfer */
	dwc2_hc_enable_ints(hsotg, chan);

	/*
	 * Program the HCCHARn register with the endpoint characteristics for
	 * the current transfer
	 */
	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
	if (chan->ep_is_in)
		hcchar |= HCCHAR_EPDIR;
	if (chan->speed == USB_SPEED_LOW)
		hcchar |= HCCHAR_LSPDDEV;
	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1338
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1339 1340 1341 1342
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
			 hc_num, hcchar);

1343 1344
		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
			 __func__, hc_num);
1345
		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
1346
			 chan->dev_addr);
1347
		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
1348
			 chan->ep_num);
1349
		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
1350
			 chan->ep_is_in);
1351
		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
1352
			 chan->speed == USB_SPEED_LOW);
1353
		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
1354
			 chan->ep_type);
1355
		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
1356
			 chan->max_packet);
1357
	}
1358 1359 1360

	/* Program the HCSPLT register for SPLITs */
	if (chan->do_split) {
1361 1362 1363 1364 1365
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev,
				 "Programming HC %d with split --> %s\n",
				 hc_num,
				 chan->complete_split ? "CSPLIT" : "SSPLIT");
1366 1367 1368 1369 1370 1371 1372 1373
		if (chan->complete_split)
			hcsplt |= HCSPLT_COMPSPLT;
		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
			  HCSPLT_XACTPOS_MASK;
		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
			  HCSPLT_HUBADDR_MASK;
		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
			  HCSPLT_PRTADDR_MASK;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		if (dbg_hc(chan)) {
			dev_vdbg(hsotg->dev, "	  comp split %d\n",
				 chan->complete_split);
			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
				 chan->xact_pos);
			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
				 chan->hub_addr);
			dev_vdbg(hsotg->dev, "	  hub port %d\n",
				 chan->hub_port);
			dev_vdbg(hsotg->dev, "	  is_in %d\n",
				 chan->ep_is_in);
			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
1386
				 chan->max_packet);
1387 1388 1389
			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
				 chan->xfer_len);
		}
1390 1391
	}

1392
	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
}

/**
 * dwc2_hc_halt() - Attempts to halt a host channel
 *
 * @hsotg:       Controller register interface
 * @chan:        Host channel to halt
 * @halt_status: Reason for halting the channel
 *
 * This function should only be called in Slave mode or to abort a transfer in
 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 * controller halts the channel when the transfer is complete or a condition
 * occurs that requires application intervention.
 *
 * In slave mode, checks for a free request queue entry, then sets the Channel
 * Enable and Channel Disable bits of the Host Channel Characteristics
 * register of the specified channel to intiate the halt. If there is no free
 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 * register to flush requests for this channel. In the latter case, sets a
 * flag to indicate that the host channel needs to be halted when a request
 * queue slot is open.
 *
 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 * HCCHARn register. The controller ensures there is space in the request
 * queue before submitting the halt request.
 *
 * Some time may elapse before the core flushes any posted requests for this
 * host channel and halts. The Channel Halted interrupt handler completes the
 * deactivation of the host channel.
 */
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
		  enum dwc2_halt_status halt_status)
{
	u32 nptxsts, hptxsts, hcchar;

1428 1429
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);

	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
	    halt_status == DWC2_HC_XFER_AHB_ERR) {
		/*
		 * Disable all channel interrupts except Ch Halted. The QTD
		 * and QH state associated with this transfer has been cleared
		 * (in the case of URB_DEQUEUE), so the channel needs to be
		 * shut down carefully to prevent crashes.
		 */
		u32 hcintmsk = HCINTMSK_CHHLTD;

		dev_vdbg(hsotg->dev, "dequeue/error\n");
1444
		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1445 1446 1447 1448 1449 1450

		/*
		 * Make sure no other interrupts besides halt are currently
		 * pending. Handling another interrupt could cause a crash due
		 * to the QTD and QH state.
		 */
1451
		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1452 1453 1454 1455 1456 1457 1458 1459

		/*
		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
		 * even if the channel was already halted for some other
		 * reason
		 */
		chan->halt_status = halt_status;

1460
		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		if (!(hcchar & HCCHAR_CHENA)) {
			/*
			 * The channel is either already halted or it hasn't
			 * started yet. In DMA mode, the transfer may halt if
			 * it finishes normally or a condition occurs that
			 * requires driver intervention. Don't want to halt
			 * the channel again. In either Slave or DMA mode,
			 * it's possible that the transfer has been assigned
			 * to a channel, but not started yet when an URB is
			 * dequeued. Don't want to halt a channel that hasn't
			 * started yet.
			 */
			return;
		}
	}
	if (chan->halt_pending) {
		/*
		 * A halt has already been issued for this channel. This might
		 * happen when a transfer is aborted by a higher level in
		 * the stack.
		 */
		dev_vdbg(hsotg->dev,
			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
			 __func__, chan->hc_num);
		return;
	}

1488
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1489 1490 1491 1492

	/* No need to set the bit in DDMA for disabling the channel */
	/* TODO check it everywhere channel is disabled */
	if (hsotg->core_params->dma_desc_enable <= 0) {
1493 1494
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1495 1496
		hcchar |= HCCHAR_CHENA;
	} else {
1497 1498
		if (dbg_hc(chan))
			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1499 1500 1501 1502
	}
	hcchar |= HCCHAR_CHDIS;

	if (hsotg->core_params->dma_enable <= 0) {
1503 1504
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1505 1506 1507 1508 1509 1510
		hcchar |= HCCHAR_CHENA;

		/* Check for space in the request queue to issue the halt */
		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
			dev_vdbg(hsotg->dev, "control/bulk\n");
1511
			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1512 1513 1514 1515 1516
			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
				dev_vdbg(hsotg->dev, "Disabling channel\n");
				hcchar &= ~HCCHAR_CHENA;
			}
		} else {
1517 1518
			if (dbg_perio())
				dev_vdbg(hsotg->dev, "isoc/intr\n");
1519
			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1520 1521
			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
			    hsotg->queuing_high_bandwidth) {
1522 1523
				if (dbg_perio())
					dev_vdbg(hsotg->dev, "Disabling channel\n");
1524 1525 1526 1527
				hcchar &= ~HCCHAR_CHENA;
			}
		}
	} else {
1528 1529
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA enabled\n");
1530 1531
	}

1532
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1533 1534 1535
	chan->halt_status = halt_status;

	if (hcchar & HCCHAR_CHENA) {
1536 1537
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Channel enabled\n");
1538 1539 1540
		chan->halt_pending = 1;
		chan->halt_on_queue = 0;
	} else {
1541 1542
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Channel disabled\n");
1543 1544 1545
		chan->halt_on_queue = 1;
	}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
			 hcchar);
		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
			 chan->halt_pending);
		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
			 chan->halt_on_queue);
		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
			 chan->halt_status);
	}
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
}

/**
 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Identifies the host channel to clean up
 *
 * This function is normally called after a transfer is done and the host
 * channel is being released
 */
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u32 hcintmsk;

	chan->xfer_started = 0;

	/*
	 * Clear channel interrupt enables and any unhandled channel interrupt
	 * conditions
	 */
1579
	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1580 1581
	hcintmsk = 0xffffffff;
	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1582
	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
}

/**
 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 * which frame a periodic transfer should occur
 *
 * @hsotg:  Programming view of DWC_otg controller
 * @chan:   Identifies the host channel to set up and its properties
 * @hcchar: Current value of the HCCHAR register for the specified host channel
 *
 * This function has no effect on non-periodic transfers
 */
static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
				       struct dwc2_host_chan *chan, u32 *hcchar)
{
	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
		/* 1 if _next_ frame is odd, 0 if it's even */
1601
		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			*hcchar |= HCCHAR_ODDFRM;
	}
}

static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
{
	/* Set up the initial PID for the transfer */
	if (chan->speed == USB_SPEED_HIGH) {
		if (chan->ep_is_in) {
			if (chan->multi_count == 1)
				chan->data_pid_start = DWC2_HC_PID_DATA0;
			else if (chan->multi_count == 2)
				chan->data_pid_start = DWC2_HC_PID_DATA1;
			else
				chan->data_pid_start = DWC2_HC_PID_DATA2;
		} else {
			if (chan->multi_count == 1)
				chan->data_pid_start = DWC2_HC_PID_DATA0;
			else
				chan->data_pid_start = DWC2_HC_PID_MDATA;
		}
	} else {
		chan->data_pid_start = DWC2_HC_PID_DATA0;
	}
}

/**
 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
 * the Host Channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * This function should only be called in Slave mode. For a channel associated
 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
 * associated with a periodic EP, the periodic Tx FIFO is written.
 *
 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
 * the number of bytes written to the Tx FIFO.
 */
static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan)
{
	u32 i;
	u32 remaining_count;
	u32 byte_count;
	u32 dword_count;
	u32 __iomem *data_fifo;
	u32 *data_buf = (u32 *)chan->xfer_buf;

1652 1653
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));

	remaining_count = chan->xfer_len - chan->xfer_count;
	if (remaining_count > chan->max_packet)
		byte_count = chan->max_packet;
	else
		byte_count = remaining_count;

	dword_count = (byte_count + 3) / 4;

	if (((unsigned long)data_buf & 0x3) == 0) {
		/* xfer_buf is DWORD aligned */
		for (i = 0; i < dword_count; i++, data_buf++)
1668
			dwc2_writel(*data_buf, data_fifo);
1669 1670 1671 1672 1673
	} else {
		/* xfer_buf is not DWORD aligned */
		for (i = 0; i < dword_count; i++, data_buf++) {
			u32 data = data_buf[0] | data_buf[1] << 8 |
				   data_buf[2] << 16 | data_buf[3] << 24;
1674
			dwc2_writel(data, data_fifo);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		}
	}

	chan->xfer_count += byte_count;
	chan->xfer_buf += byte_count;
}

/**
 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
 * channel and starts the transfer
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel. The xfer_len value
 *         may be reduced to accommodate the max widths of the XferSize and
 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
 *         changed to reflect the final xfer_len value.
 *
 * This function may be called in either Slave mode or DMA mode. In Slave mode,
 * the caller must ensure that there is sufficient space in the request queue
 * and Tx Data FIFO.
 *
 * For an OUT transfer in Slave mode, it loads a data packet into the
 * appropriate FIFO. If necessary, additional data packets are loaded in the
 * Host ISR.
 *
 * For an IN transfer in Slave mode, a data packet is requested. The data
 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
 * additional data packets are requested in the Host ISR.
 *
 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
 * register along with a packet count of 1 and the channel is enabled. This
 * causes a single PING transaction to occur. Other fields in HCTSIZ are
 * simply set to 0 since no data transfer occurs in this case.
 *
 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
 * all the information required to perform the subsequent data transfer. In
 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
 * controller performs the entire PING protocol, then starts the data
 * transfer.
 */
void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
			    struct dwc2_host_chan *chan)
{
	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
	u32 hcchar;
	u32 hctsiz = 0;
	u16 num_packets;
1723
	u32 ec_mc;
1724

1725 1726
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1727 1728 1729

	if (chan->do_ping) {
		if (hsotg->core_params->dma_enable <= 0) {
1730 1731
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1732 1733 1734 1735
			dwc2_hc_do_ping(hsotg, chan);
			chan->xfer_started = 1;
			return;
		} else {
1736 1737
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "ping, DMA\n");
1738 1739 1740 1741 1742
			hctsiz |= TSIZ_DOPNG;
		}
	}

	if (chan->do_split) {
1743 1744
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "split\n");
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		num_packets = 1;

		if (chan->complete_split && !chan->ep_is_in)
			/*
			 * For CSPLIT OUT Transfer, set the size to 0 so the
			 * core doesn't expect any data written to the FIFO
			 */
			chan->xfer_len = 0;
		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
			chan->xfer_len = chan->max_packet;
		else if (!chan->ep_is_in && chan->xfer_len > 188)
			chan->xfer_len = 188;

		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
			  TSIZ_XFERSIZE_MASK;
1760 1761 1762 1763 1764 1765 1766

		/* For split set ec_mc for immediate retries */
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			ec_mc = 3;
		else
			ec_mc = 1;
1767
	} else {
1768 1769
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "no split\n");
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		/*
		 * Ensure that the transfer length and packet count will fit
		 * in the widths allocated for them in the HCTSIZn register
		 */
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
			/*
			 * Make sure the transfer size is no larger than one
			 * (micro)frame's worth of data. (A check was done
			 * when the periodic transfer was accepted to ensure
			 * that a (micro)frame's worth of data can be
			 * programmed into a channel.)
			 */
			u32 max_periodic_len =
				chan->multi_count * chan->max_packet;

			if (chan->xfer_len > max_periodic_len)
				chan->xfer_len = max_periodic_len;
		} else if (chan->xfer_len > max_hc_xfer_size) {
			/*
			 * Make sure that xfer_len is a multiple of max packet
			 * size
			 */
			chan->xfer_len =
				max_hc_xfer_size - chan->max_packet + 1;
		}

		if (chan->xfer_len > 0) {
			num_packets = (chan->xfer_len + chan->max_packet - 1) /
					chan->max_packet;
			if (num_packets > max_hc_pkt_count) {
				num_packets = max_hc_pkt_count;
				chan->xfer_len = num_packets * chan->max_packet;
			}
		} else {
			/* Need 1 packet for transfer length of 0 */
			num_packets = 1;
		}

		if (chan->ep_is_in)
			/*
			 * Always program an integral # of max packets for IN
			 * transfers
			 */
			chan->xfer_len = num_packets * chan->max_packet;

		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			/*
			 * Make sure that the multi_count field matches the
			 * actual transfer length
			 */
			chan->multi_count = num_packets;

		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			dwc2_set_pid_isoc(chan);

		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
			  TSIZ_XFERSIZE_MASK;
1829 1830 1831

		/* The ec_mc gets the multi_count for non-split */
		ec_mc = chan->multi_count;
1832 1833 1834 1835 1836 1837
	}

	chan->start_pkt_count = num_packets;
	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
		  TSIZ_SC_MC_PID_MASK;
1838
	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1839 1840 1841 1842 1843 1844 1845
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
			 hctsiz, chan->hc_num);

		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1846 1847
			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
			 TSIZ_XFERSIZE_SHIFT);
1848
		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1849 1850
			 (hctsiz & TSIZ_PKTCNT_MASK) >>
			 TSIZ_PKTCNT_SHIFT);
1851
		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1852 1853
			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
			 TSIZ_SC_MC_PID_SHIFT);
1854
	}
1855 1856 1857 1858 1859

	if (hsotg->core_params->dma_enable > 0) {
		dma_addr_t dma_addr;

		if (chan->align_buf) {
1860 1861
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "align_buf\n");
1862 1863 1864 1865
			dma_addr = chan->align_buf;
		} else {
			dma_addr = chan->xfer_dma;
		}
1866
		dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1867 1868 1869
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
				 (unsigned long)dma_addr, chan->hc_num);
1870 1871 1872 1873
	}

	/* Start the split */
	if (chan->do_split) {
1874
		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1875 1876

		hcsplt |= HCSPLT_SPLTENA;
1877
		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1878 1879
	}

1880
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1881
	hcchar &= ~HCCHAR_MULTICNT_MASK;
1882
	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);

	if (hcchar & HCCHAR_CHDIS)
		dev_warn(hsotg->dev,
			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
			 __func__, chan->hc_num, hcchar);

	/* Set host channel enable after all other setup is complete */
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;

1894 1895
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1896 1897
			 (hcchar & HCCHAR_MULTICNT_MASK) >>
			 HCCHAR_MULTICNT_SHIFT);
1898

1899
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1900 1901 1902
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
			 chan->hc_num);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	chan->xfer_started = 1;
	chan->requests++;

	if (hsotg->core_params->dma_enable <= 0 &&
	    !chan->ep_is_in && chan->xfer_len > 0)
		/* Load OUT packet into the appropriate Tx FIFO */
		dwc2_hc_write_packet(hsotg, chan);
}

/**
 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
 * host channel and starts the transfer in Descriptor DMA mode
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
 * with micro-frame bitmap.
 *
 * Initializes HCDMA register with descriptor list address and CTD value then
 * starts the transfer via enabling the channel.
 */
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan)
{
	u32 hcchar;
	u32 hctsiz = 0;

	if (chan->do_ping)
		hctsiz |= TSIZ_DOPNG;

	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
		dwc2_set_pid_isoc(chan);

	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
		  TSIZ_SC_MC_PID_MASK;

	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;

	/* Non-zero only for high-speed interrupt endpoints */
	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;

1949 1950 1951 1952 1953 1954 1955
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
			 chan->data_pid_start);
		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
	}
1956

1957
	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1958 1959 1960

	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
				   chan->desc_list_sz, DMA_TO_DEVICE);
1961

1962
	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1963

1964
	if (dbg_hc(chan))
1965 1966
		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
			 &chan->desc_list_addr, chan->hc_num);
1967

1968
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	hcchar &= ~HCCHAR_MULTICNT_MASK;
	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
		  HCCHAR_MULTICNT_MASK;

	if (hcchar & HCCHAR_CHDIS)
		dev_warn(hsotg->dev,
			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
			 __func__, chan->hc_num, hcchar);

	/* Set host channel enable after all other setup is complete */
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;

1982 1983
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1984 1985
			 (hcchar & HCCHAR_MULTICNT_MASK) >>
			 HCCHAR_MULTICNT_SHIFT);
1986

1987
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1988 1989 1990
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
			 chan->hc_num);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	chan->xfer_started = 1;
	chan->requests++;
}

/**
 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
 * a previous call to dwc2_hc_start_transfer()
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * The caller must ensure there is sufficient space in the request queue and Tx
 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
 * the controller acts autonomously to complete transfers programmed to a host
 * channel.
 *
 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
 * if there is any data remaining to be queued. For an IN transfer, another
 * data packet is always requested. For the SETUP phase of a control transfer,
 * this function does nothing.
 *
 * Return: 1 if a new request is queued, 0 if no more requests are required
 * for this transfer
 */
int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
			      struct dwc2_host_chan *chan)
{
2019 2020 2021
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

	if (chan->do_split)
		/* SPLITs always queue just once per channel */
		return 0;

	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
		/* SETUPs are queued only once since they can't be NAK'd */
		return 0;

	if (chan->ep_is_in) {
		/*
		 * Always queue another request for other IN transfers. If
		 * back-to-back INs are issued and NAKs are received for both,
		 * the driver may still be processing the first NAK when the
		 * second NAK is received. When the interrupt handler clears
		 * the NAK interrupt for the first NAK, the second NAK will
		 * not be seen. So we can't depend on the NAK interrupt
		 * handler to requeue a NAK'd request. Instead, IN requests
		 * are issued each time this function is called. When the
		 * transfer completes, the extra requests for the channel will
		 * be flushed.
		 */
2044
		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2045 2046 2047 2048

		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
		hcchar |= HCCHAR_CHENA;
		hcchar &= ~HCCHAR_CHDIS;
2049 2050 2051
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
				 hcchar);
2052
		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2053 2054 2055 2056 2057 2058 2059 2060 2061
		chan->requests++;
		return 1;
	}

	/* OUT transfers */

	if (chan->xfer_count < chan->xfer_len) {
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2062 2063
			u32 hcchar = dwc2_readl(hsotg->regs +
						HCCHAR(chan->hc_num));
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

			dwc2_hc_set_even_odd_frame(hsotg, chan,
						   &hcchar);
		}

		/* Load OUT packet into the appropriate Tx FIFO */
		dwc2_hc_write_packet(hsotg, chan);
		chan->requests++;
		return 1;
	}

	return 0;
}

/**
 * dwc2_hc_do_ping() - Starts a PING transfer
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * This function should only be called in Slave mode. The Do Ping bit is set in
 * the HCTSIZ register, then the channel is enabled.
 */
void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u32 hcchar;
	u32 hctsiz;

2092 2093 2094 2095
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);

2096 2097 2098

	hctsiz = TSIZ_DOPNG;
	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2099
	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2100

2101
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2102 2103
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;
2104
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
}

/**
 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 * the HFIR register according to PHY type and speed
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: The caller can modify the value of the HFIR register only after the
 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 * has been set
 */
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
{
	u32 usbcfg;
	u32 hprt0;
	int clock = 60;	/* default value */

2123 2124
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2125 2126 2127 2128

	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
	    !(usbcfg & GUSBCFG_PHYIF16))
		clock = 60;
2129
	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
		clock = 48;
	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
		clock = 30;
	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
		clock = 60;
	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
		clock = 48;
	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2142
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2143
		clock = 48;
2144
	if ((usbcfg & GUSBCFG_PHYSEL) &&
2145
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2146 2147
		clock = 48;

2148
	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		/* High speed case */
		return 125 * clock;
	else
		/* FS/LS case */
		return 1000 * clock;
}

/**
 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 * buffer
 *
 * @core_if: Programming view of DWC_otg controller
 * @dest:    Destination buffer for the packet
 * @bytes:   Number of bytes to copy to the destination
 */
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
{
	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
	u32 *data_buf = (u32 *)dest;
	int word_count = (bytes + 3) / 4;
	int i;

	/*
	 * Todo: Account for the case where dest is not dword aligned. This
	 * requires reading data from the FIFO into a u32 temp buffer, then
	 * moving it into the data buffer.
	 */

	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);

	for (i = 0; i < word_count; i++, data_buf++)
2180
		*data_buf = dwc2_readl(fifo);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
}

/**
 * dwc2_dump_host_registers() - Prints the host registers
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	u32 __iomem *addr;
	int i;

	dev_dbg(hsotg->dev, "Host Global Registers\n");
	addr = hsotg->regs + HCFG;
	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
2200
		(unsigned long)addr, dwc2_readl(addr));
2201 2202
	addr = hsotg->regs + HFIR;
	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
2203
		(unsigned long)addr, dwc2_readl(addr));
2204 2205
	addr = hsotg->regs + HFNUM;
	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
2206
		(unsigned long)addr, dwc2_readl(addr));
2207 2208
	addr = hsotg->regs + HPTXSTS;
	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
2209
		(unsigned long)addr, dwc2_readl(addr));
2210 2211
	addr = hsotg->regs + HAINT;
	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
2212
		(unsigned long)addr, dwc2_readl(addr));
2213 2214
	addr = hsotg->regs + HAINTMSK;
	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
2215
		(unsigned long)addr, dwc2_readl(addr));
2216 2217 2218
	if (hsotg->core_params->dma_desc_enable > 0) {
		addr = hsotg->regs + HFLBADDR;
		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
2219
			(unsigned long)addr, dwc2_readl(addr));
2220 2221 2222 2223
	}

	addr = hsotg->regs + HPRT0;
	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
2224
		(unsigned long)addr, dwc2_readl(addr));
2225 2226 2227 2228 2229

	for (i = 0; i < hsotg->core_params->host_channels; i++) {
		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
		addr = hsotg->regs + HCCHAR(i);
		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
2230
			(unsigned long)addr, dwc2_readl(addr));
2231 2232
		addr = hsotg->regs + HCSPLT(i);
		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
2233
			(unsigned long)addr, dwc2_readl(addr));
2234 2235
		addr = hsotg->regs + HCINT(i);
		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
2236
			(unsigned long)addr, dwc2_readl(addr));
2237 2238
		addr = hsotg->regs + HCINTMSK(i);
		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
2239
			(unsigned long)addr, dwc2_readl(addr));
2240 2241
		addr = hsotg->regs + HCTSIZ(i);
		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
2242
			(unsigned long)addr, dwc2_readl(addr));
2243 2244
		addr = hsotg->regs + HCDMA(i);
		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
2245
			(unsigned long)addr, dwc2_readl(addr));
2246 2247 2248
		if (hsotg->core_params->dma_desc_enable > 0) {
			addr = hsotg->regs + HCDMAB(i);
			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
2249
				(unsigned long)addr, dwc2_readl(addr));
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		}
	}
#endif
}

/**
 * dwc2_dump_global_registers() - Prints the core global registers
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	u32 __iomem *addr;

	dev_dbg(hsotg->dev, "Core Global Registers\n");
	addr = hsotg->regs + GOTGCTL;
	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
2271
		(unsigned long)addr, dwc2_readl(addr));
2272 2273
	addr = hsotg->regs + GOTGINT;
	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
2274
		(unsigned long)addr, dwc2_readl(addr));
2275 2276
	addr = hsotg->regs + GAHBCFG;
	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
2277
		(unsigned long)addr, dwc2_readl(addr));
2278 2279
	addr = hsotg->regs + GUSBCFG;
	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
2280
		(unsigned long)addr, dwc2_readl(addr));
2281 2282
	addr = hsotg->regs + GRSTCTL;
	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
2283
		(unsigned long)addr, dwc2_readl(addr));
2284 2285
	addr = hsotg->regs + GINTSTS;
	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
2286
		(unsigned long)addr, dwc2_readl(addr));
2287 2288
	addr = hsotg->regs + GINTMSK;
	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
2289
		(unsigned long)addr, dwc2_readl(addr));
2290 2291
	addr = hsotg->regs + GRXSTSR;
	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
2292
		(unsigned long)addr, dwc2_readl(addr));
2293 2294
	addr = hsotg->regs + GRXFSIZ;
	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
2295
		(unsigned long)addr, dwc2_readl(addr));
2296 2297
	addr = hsotg->regs + GNPTXFSIZ;
	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
2298
		(unsigned long)addr, dwc2_readl(addr));
2299 2300
	addr = hsotg->regs + GNPTXSTS;
	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
2301
		(unsigned long)addr, dwc2_readl(addr));
2302 2303
	addr = hsotg->regs + GI2CCTL;
	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
2304
		(unsigned long)addr, dwc2_readl(addr));
2305 2306
	addr = hsotg->regs + GPVNDCTL;
	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
2307
		(unsigned long)addr, dwc2_readl(addr));
2308 2309
	addr = hsotg->regs + GGPIO;
	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
2310
		(unsigned long)addr, dwc2_readl(addr));
2311 2312
	addr = hsotg->regs + GUID;
	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
2313
		(unsigned long)addr, dwc2_readl(addr));
2314 2315
	addr = hsotg->regs + GSNPSID;
	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
2316
		(unsigned long)addr, dwc2_readl(addr));
2317 2318
	addr = hsotg->regs + GHWCFG1;
	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
2319
		(unsigned long)addr, dwc2_readl(addr));
2320 2321
	addr = hsotg->regs + GHWCFG2;
	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
2322
		(unsigned long)addr, dwc2_readl(addr));
2323 2324
	addr = hsotg->regs + GHWCFG3;
	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
2325
		(unsigned long)addr, dwc2_readl(addr));
2326 2327
	addr = hsotg->regs + GHWCFG4;
	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
2328
		(unsigned long)addr, dwc2_readl(addr));
2329 2330
	addr = hsotg->regs + GLPMCFG;
	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
2331
		(unsigned long)addr, dwc2_readl(addr));
2332 2333
	addr = hsotg->regs + GPWRDN;
	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
2334
		(unsigned long)addr, dwc2_readl(addr));
2335 2336
	addr = hsotg->regs + GDFIFOCFG;
	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
2337
		(unsigned long)addr, dwc2_readl(addr));
2338 2339
	addr = hsotg->regs + HPTXFSIZ;
	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
2340
		(unsigned long)addr, dwc2_readl(addr));
2341 2342 2343

	addr = hsotg->regs + PCGCTL;
	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
2344
		(unsigned long)addr, dwc2_readl(addr));
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
#endif
}

/**
 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
 *
 * @hsotg: Programming view of DWC_otg controller
 * @num:   Tx FIFO to flush
 */
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
{
	u32 greset;
	int count = 0;

	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);

	greset = GRSTCTL_TXFFLSH;
	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
2363
	dwc2_writel(greset, hsotg->regs + GRSTCTL);
2364 2365

	do {
2366
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
2367 2368 2369 2370
		if (++count > 10000) {
			dev_warn(hsotg->dev,
				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
				 __func__, greset,
2371
				 dwc2_readl(hsotg->regs + GNPTXSTS));
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
			break;
		}
		udelay(1);
	} while (greset & GRSTCTL_TXFFLSH);

	/* Wait for at least 3 PHY Clocks */
	udelay(1);
}

/**
 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
{
	u32 greset;
	int count = 0;

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

	greset = GRSTCTL_RXFFLSH;
2394
	dwc2_writel(greset, hsotg->regs + GRSTCTL);
2395 2396

	do {
2397
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		if (++count > 10000) {
			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
				 __func__, greset);
			break;
		}
		udelay(1);
	} while (greset & GRSTCTL_RXFFLSH);

	/* Wait for at least 3 PHY Clocks */
	udelay(1);
}

2410
#define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
2411 2412

/* Parameter access functions */
2413
void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2414 2415 2416 2417 2418
{
	int valid = 1;

	switch (val) {
	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2419
		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2420 2421 2422
			valid = 0;
		break;
	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2423
		switch (hsotg->hw_params.op_mode) {
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
			break;
		default:
			valid = 0;
			break;
		}
		break;
	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
		/* always valid */
		break;
	default:
		valid = 0;
		break;
	}

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for otg_cap parameter. Check HW configuration.\n",
				val);
2447
		switch (hsotg->hw_params.op_mode) {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
			break;
		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
			break;
		default:
			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
			break;
		}
		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
	}

	hsotg->core_params->otg_cap = val;
}

2466
void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2467 2468 2469
{
	int valid = 1;

2470
	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2471 2472 2473 2474 2475 2476 2477 2478 2479
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_enable parameter. Check HW configuration.\n",
				val);
2480
		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2481 2482 2483 2484 2485 2486
		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
	}

	hsotg->core_params->dma_enable = val;
}

2487
void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2488 2489 2490 2491
{
	int valid = 1;

	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2492
			!hsotg->hw_params.dma_desc_enable))
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
				val);
		val = (hsotg->core_params->dma_enable > 0 &&
2503
			hsotg->hw_params.dma_desc_enable);
2504 2505 2506 2507 2508 2509
		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
	}

	hsotg->core_params->dma_desc_enable = val;
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg, int val)
{
	int valid = 1;

	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
			!hsotg->hw_params.dma_desc_enable))
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_desc_fs_enable parameter. Check HW configuration.\n",
				val);
		val = (hsotg->core_params->dma_enable > 0 &&
			hsotg->hw_params.dma_desc_enable);
	}

	hsotg->core_params->dma_desc_fs_enable = val;
	dev_dbg(hsotg->dev, "Setting dma_desc_fs_enable to %d\n", val);
}

2533 2534
void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
						 int val)
2535
{
2536
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for host_support_fs_low_power\n");
			dev_err(hsotg->dev,
				"host_support_fs_low_power must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev,
			"Setting host_support_fs_low_power to %d\n", val);
	}

	hsotg->core_params->host_support_fs_ls_low_power = val;
}

2551
void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2552 2553 2554
{
	int valid = 1;

2555
	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2556 2557 2558 2559 2560 2561 2562 2563 2564
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
				val);
2565
		val = hsotg->hw_params.enable_dynamic_fifo;
2566 2567 2568 2569 2570 2571
		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
	}

	hsotg->core_params->enable_dynamic_fifo = val;
}

2572
void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2573 2574 2575
{
	int valid = 1;

2576
	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2577 2578 2579 2580 2581 2582 2583
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
				val);
2584
		val = hsotg->hw_params.host_rx_fifo_size;
2585 2586 2587 2588 2589 2590
		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
	}

	hsotg->core_params->host_rx_fifo_size = val;
}

2591
void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2592 2593 2594
{
	int valid = 1;

2595
	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2596 2597 2598 2599 2600 2601 2602
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
				val);
2603
		val = hsotg->hw_params.host_nperio_tx_fifo_size;
2604 2605 2606 2607 2608 2609 2610
		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
			val);
	}

	hsotg->core_params->host_nperio_tx_fifo_size = val;
}

2611
void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2612 2613 2614
{
	int valid = 1;

2615
	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2616 2617 2618 2619 2620 2621 2622
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
				val);
2623
		val = hsotg->hw_params.host_perio_tx_fifo_size;
2624 2625 2626 2627 2628 2629 2630
		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
			val);
	}

	hsotg->core_params->host_perio_tx_fifo_size = val;
}

2631
void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2632 2633 2634
{
	int valid = 1;

2635
	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2636 2637 2638 2639 2640 2641 2642
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for max_transfer_size. Check HW configuration.\n",
				val);
2643
		val = hsotg->hw_params.max_transfer_size;
2644 2645 2646 2647 2648 2649
		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
	}

	hsotg->core_params->max_transfer_size = val;
}

2650
void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2651 2652 2653
{
	int valid = 1;

2654
	if (val < 15 || val > hsotg->hw_params.max_packet_count)
2655 2656 2657 2658 2659 2660 2661
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for max_packet_count. Check HW configuration.\n",
				val);
2662
		val = hsotg->hw_params.max_packet_count;
2663 2664 2665 2666 2667 2668
		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
	}

	hsotg->core_params->max_packet_count = val;
}

2669
void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2670 2671 2672
{
	int valid = 1;

2673
	if (val < 1 || val > hsotg->hw_params.host_channels)
2674 2675 2676 2677 2678 2679 2680
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_channels. Check HW configuration.\n",
				val);
2681
		val = hsotg->hw_params.host_channels;
2682 2683 2684 2685 2686 2687
		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
	}

	hsotg->core_params->host_channels = val;
}

2688
void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2689 2690
{
	int valid = 0;
2691
	u32 hs_phy_type, fs_phy_type;
2692

2693 2694
	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
			       DWC2_PHY_TYPE_PARAM_ULPI)) {
2695 2696 2697 2698 2699 2700 2701 2702
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for phy_type\n");
			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
		}

		valid = 0;
	}

2703 2704
	hs_phy_type = hsotg->hw_params.hs_phy_type;
	fs_phy_type = hsotg->hw_params.fs_phy_type;
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
		valid = 1;
	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
		valid = 1;
	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
		valid = 1;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for phy_type. Check HW configuration.\n",
				val);
2722
		val = DWC2_PHY_TYPE_PARAM_FS;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
				val = DWC2_PHY_TYPE_PARAM_UTMI;
			else
				val = DWC2_PHY_TYPE_PARAM_ULPI;
		}
		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
	}

	hsotg->core_params->phy_type = val;
}

static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
{
	return hsotg->core_params->phy_type;
}

2741
void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2742 2743 2744
{
	int valid = 1;

2745
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2746 2747 2748 2749 2750 2751 2752
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
		}
		valid = 0;
	}

2753 2754
	if (val == DWC2_SPEED_PARAM_HIGH &&
	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2755 2756 2757 2758 2759 2760 2761 2762
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for speed parameter. Check HW configuration.\n",
				val);
		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2763
				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2764 2765 2766 2767 2768 2769
		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
	}

	hsotg->core_params->speed = val;
}

2770
void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2771 2772 2773
{
	int valid = 1;

2774 2775
	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for host_ls_low_power_phy_clk parameter\n");
			dev_err(hsotg->dev,
				"host_ls_low_power_phy_clk must be 0 or 1\n");
		}
		valid = 0;
	}

	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
				val);
		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
			val);
	}

	hsotg->core_params->host_ls_low_power_phy_clk = val;
}

2804
void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2805
{
2806
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
	}

	hsotg->core_params->phy_ulpi_ddr = val;
}

2818
void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2819
{
2820
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for phy_ulpi_ext_vbus\n");
			dev_err(hsotg->dev,
				"phy_ulpi_ext_vbus must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
	}

	hsotg->core_params->phy_ulpi_ext_vbus = val;
}

2834
void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2835
{
2836
	int valid = 0;
2837

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	switch (hsotg->hw_params.utmi_phy_data_width) {
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
		valid = (val == 8);
		break;
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
		valid = (val == 16);
		break;
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
		valid = (val == 8 || val == 16);
		break;
	}

	if (!valid) {
2851
		if (val >= 0) {
2852 2853 2854
			dev_err(hsotg->dev,
				"%d invalid for phy_utmi_width. Check HW configuration.\n",
				val);
2855
		}
2856 2857
		val = (hsotg->hw_params.utmi_phy_data_width ==
		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2858 2859 2860 2861 2862 2863
		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
	}

	hsotg->core_params->phy_utmi_width = val;
}

2864
void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2865
{
2866
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
	}

	hsotg->core_params->ulpi_fs_ls = val;
}

2878
void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2879
{
2880
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
	}

	hsotg->core_params->ts_dline = val;
}

2892
void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2893 2894 2895
{
	int valid = 1;

2896
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2897 2898 2899 2900 2901 2902 2903 2904
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
		}

		valid = 0;
	}

2905
	if (val == 1 && !(hsotg->hw_params.i2c_enable))
2906 2907 2908 2909 2910 2911 2912
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for i2c_enable. Check HW configuration.\n",
				val);
2913
		val = hsotg->hw_params.i2c_enable;
2914 2915 2916 2917 2918 2919
		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
	}

	hsotg->core_params->i2c_enable = val;
}

2920
void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
2921 2922 2923
{
	int valid = 1;

2924
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2925 2926 2927 2928 2929 2930 2931 2932 2933
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for en_multiple_tx_fifo,\n");
			dev_err(hsotg->dev,
				"en_multiple_tx_fifo must be 0 or 1\n");
		}
		valid = 0;
	}

2934
	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
2935 2936 2937 2938 2939 2940 2941
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
				val);
2942
		val = hsotg->hw_params.en_multiple_tx_fifo;
2943 2944 2945 2946 2947 2948
		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
	}

	hsotg->core_params->en_multiple_tx_fifo = val;
}

2949
void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
2950 2951 2952
{
	int valid = 1;

2953
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2954 2955 2956 2957 2958 2959 2960 2961
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter reload_ctl\n", val);
			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
		}
		valid = 0;
	}

2962
	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
2963 2964 2965 2966 2967 2968 2969
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
				val);
2970
		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
2971 2972 2973 2974 2975 2976
		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
	}

	hsotg->core_params->reload_ctl = val;
}

2977
void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
2978
{
2979 2980 2981
	if (val != -1)
		hsotg->core_params->ahbcfg = val;
	else
2982
		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
2983
						GAHBCFG_HBSTLEN_SHIFT;
2984 2985
}

2986
void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
2987
{
2988
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter otg_ver\n", val);
			dev_err(hsotg->dev,
				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
	}

	hsotg->core_params->otg_ver = val;
}

3002
static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter uframe_sched\n",
				val);
			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
		}
		val = 1;
		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
	}

	hsotg->core_params->uframe_sched = val;
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
		int val)
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter external_id_pin_ctl\n",
				val);
			dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
	}

	hsotg->core_params->external_id_pin_ctl = val;
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
		int val)
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter hibernation\n",
				val);
			dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
	}

	hsotg->core_params->hibernation = val;
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/*
 * This function is called during module intialization to pass module parameters
 * for the DWC_otg core.
 */
void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
			 const struct dwc2_core_params *params)
{
	dev_dbg(hsotg->dev, "%s()\n", __func__);

	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
3064
	dwc2_set_param_dma_desc_fs_enable(hsotg, params->dma_desc_fs_enable);
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
			params->host_support_fs_ls_low_power);
	dwc2_set_param_enable_dynamic_fifo(hsotg,
			params->enable_dynamic_fifo);
	dwc2_set_param_host_rx_fifo_size(hsotg,
			params->host_rx_fifo_size);
	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
			params->host_nperio_tx_fifo_size);
	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
			params->host_perio_tx_fifo_size);
	dwc2_set_param_max_transfer_size(hsotg,
			params->max_transfer_size);
	dwc2_set_param_max_packet_count(hsotg,
			params->max_packet_count);
	dwc2_set_param_host_channels(hsotg, params->host_channels);
	dwc2_set_param_phy_type(hsotg, params->phy_type);
	dwc2_set_param_speed(hsotg, params->speed);
	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
			params->host_ls_low_power_phy_clk);
	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
			params->phy_ulpi_ext_vbus);
	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
	dwc2_set_param_en_multiple_tx_fifo(hsotg,
			params->en_multiple_tx_fifo);
	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
3097
	dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
3098
	dwc2_set_param_hibernation(hsotg, params->hibernation);
3099 3100
}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/**
 * During device initialization, read various hardware configuration
 * registers and interpret the contents.
 */
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hw_params *hw = &hsotg->hw_params;
	unsigned width;
	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
	u32 hptxfsiz, grxfsiz, gnptxfsiz;
3111
	u32 gusbcfg = 0;
3112 3113 3114 3115 3116 3117 3118

	/*
	 * Attempt to ensure this device is really a DWC_otg Controller.
	 * Read and verify the GSNPSID register contents. The value should be
	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
	 * as in "OTG version 2.xx" or "OTG version 3.xx".
	 */
3119
	hw->snpsid = dwc2_readl(hsotg->regs + GSNPSID);
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
			hw->snpsid);
		return -ENODEV;
	}

	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);

3131 3132 3133 3134 3135
	hwcfg1 = dwc2_readl(hsotg->regs + GHWCFG1);
	hwcfg2 = dwc2_readl(hsotg->regs + GHWCFG2);
	hwcfg3 = dwc2_readl(hsotg->regs + GHWCFG3);
	hwcfg4 = dwc2_readl(hsotg->regs + GHWCFG4);
	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
3136 3137 3138 3139 3140 3141 3142

	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);

3143
	/* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */
3144 3145
	if (hsotg->dr_mode != USB_DR_MODE_HOST) {
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3146 3147
		dwc2_writel(gusbcfg | GUSBCFG_FORCEHOSTMODE,
			    hsotg->regs + GUSBCFG);
3148
		usleep_range(25000, 50000);
3149
	}
3150

3151 3152
	gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
	hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
3153
	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3154
	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
3155
	if (hsotg->dr_mode != USB_DR_MODE_HOST) {
3156
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
3157
		usleep_range(25000, 50000);
3158
	}
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

	/* hwcfg2 */
	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
		      GHWCFG2_OP_MODE_SHIFT;
	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
		   GHWCFG2_ARCHITECTURE_SHIFT;
	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
				GHWCFG2_NUM_HOST_CHAN_SHIFT);
	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
			  GHWCFG2_HS_PHY_TYPE_SHIFT;
	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
			  GHWCFG2_FS_PHY_TYPE_SHIFT;
	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
			 GHWCFG2_NUM_DEV_EP_SHIFT;
	hw->nperio_tx_q_depth =
		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
	hw->host_perio_tx_q_depth =
		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
	hw->dev_token_q_depth =
		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;

	/* hwcfg3 */
	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
	hw->max_transfer_size = (1 << (width + 11)) - 1;
3188 3189 3190 3191 3192 3193 3194
	/*
	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
	 * coherent buffers with this size, and if it's too large we can
	 * exhaust the coherent DMA pool.
	 */
	if (hw->max_transfer_size > 65535)
		hw->max_transfer_size = 65535;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
	hw->max_packet_count = (1 << (width + 4)) - 1;
	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
			      GHWCFG3_DFIFO_DEPTH_SHIFT;

	/* hwcfg4 */
	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
3208 3209
	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	/* fifo sizes */
	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
				GRXFSIZ_DEPTH_SHIFT;
	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
				       FIFOSIZE_DEPTH_SHIFT;
	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
				      FIFOSIZE_DEPTH_SHIFT;

	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
	dev_dbg(hsotg->dev, "  op_mode=%d\n",
		hw->op_mode);
	dev_dbg(hsotg->dev, "  arch=%d\n",
		hw->arch);
	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
		hw->dma_desc_enable);
	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
		hw->power_optimized);
	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
		hw->i2c_enable);
	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
		hw->hs_phy_type);
	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
		hw->fs_phy_type);
M
Masanari Iida 已提交
3234
	dev_dbg(hsotg->dev, "  utmi_phy_data_width=%d\n",
3235
		hw->utmi_phy_data_width);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
		hw->num_dev_ep);
	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
		hw->num_dev_perio_in_ep);
	dev_dbg(hsotg->dev, "  host_channels=%d\n",
		hw->host_channels);
	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
		hw->max_transfer_size);
	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
		hw->max_packet_count);
	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
		hw->nperio_tx_q_depth);
	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
		hw->host_perio_tx_q_depth);
	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
		hw->dev_token_q_depth);
	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
		hw->enable_dynamic_fifo);
	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
		hw->en_multiple_tx_fifo);
	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
		hw->total_fifo_size);
	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
		hw->host_rx_fifo_size);
	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
		hw->host_nperio_tx_fifo_size);
	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
		hw->host_perio_tx_fifo_size);
	dev_dbg(hsotg->dev, "\n");

	return 0;
}
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

/*
 * Sets all parameters to the given value.
 *
 * Assumes that the dwc2_core_params struct contains only integers.
 */
void dwc2_set_all_params(struct dwc2_core_params *params, int value)
{
	int *p = (int *)params;
	size_t size = sizeof(*params) / sizeof(*p);
	int i;

	for (i = 0; i < size; i++)
		p[i] = value;
}

3284

3285 3286
u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
{
3287
	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
3288 3289
}

3290
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
3291
{
3292
	if (dwc2_readl(hsotg->regs + GSNPSID) == 0xffffffff)
3293
		return false;
3294
	else
3295
		return true;
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
}

/**
 * dwc2_enable_global_interrupts() - Enables the controller's Global
 * Interrupt in the AHB Config register
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
{
3306
	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3307 3308

	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
3309
	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
}

/**
 * dwc2_disable_global_interrupts() - Disables the controller's Global
 * Interrupt in the AHB Config register
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
{
3320
	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3321 3322

	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3323
	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3324 3325 3326 3327 3328
}

MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
MODULE_AUTHOR("Synopsys, Inc.");
MODULE_LICENSE("Dual BSD/GPL");