core.c 91.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * core.c - DesignWare HS OTG Controller common routines
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * The Core code provides basic services for accessing and managing the
 * DWC_otg hardware. These services are used by both the Host Controller
 * Driver and the Peripheral Controller Driver.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>

#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>

#include "core.h"
#include "hcd.h"

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/**
 * dwc2_backup_host_registers() - Backup controller host registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hregs_backup *hr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup Host regs */
	hr = hsotg->hr_backup;
	if (!hr) {
		hr = devm_kzalloc(hsotg->dev, sizeof(*hr), GFP_KERNEL);
		if (!hr) {
			dev_err(hsotg->dev, "%s: can't allocate host regs\n",
					__func__);
			return -ENOMEM;
		}

		hsotg->hr_backup = hr;
	}
	hr->hcfg = readl(hsotg->regs + HCFG);
	hr->haintmsk = readl(hsotg->regs + HAINTMSK);
	for (i = 0; i < hsotg->core_params->host_channels; ++i)
		hr->hcintmsk[i] = readl(hsotg->regs + HCINTMSK(i));

	hr->hprt0 = readl(hsotg->regs + HPRT0);
	hr->hfir = readl(hsotg->regs + HFIR);

	return 0;
}

/**
 * dwc2_restore_host_registers() - Restore controller host registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hregs_backup *hr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore host regs */
	hr = hsotg->hr_backup;
	if (!hr) {
		dev_err(hsotg->dev, "%s: no host registers to restore\n",
				__func__);
		return -EINVAL;
	}

	writel(hr->hcfg, hsotg->regs + HCFG);
	writel(hr->haintmsk, hsotg->regs + HAINTMSK);

	for (i = 0; i < hsotg->core_params->host_channels; ++i)
		writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));

	writel(hr->hprt0, hsotg->regs + HPRT0);
	writel(hr->hfir, hsotg->regs + HFIR);

	return 0;
}
#else
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = hsotg->dr_backup;
	if (!dr) {
		dr = devm_kzalloc(hsotg->dev, sizeof(*dr), GFP_KERNEL);
		if (!dr) {
			dev_err(hsotg->dev, "%s: can't allocate device regs\n",
					__func__);
			return -ENOMEM;
		}

		hsotg->dr_backup = dr;
	}

	dr->dcfg = readl(hsotg->regs + DCFG);
	dr->dctl = readl(hsotg->regs + DCTL);
	dr->daintmsk = readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = readl(hsotg->regs + DOEPDMA(i));
	}

	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = hsotg->dr_backup;
	if (!dr) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
				__func__);
		return -EINVAL;
	}

	writel(dr->dcfg, hsotg->regs + DCFG);
	writel(dr->dctl, hsotg->regs + DCTL);
	writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	writel(dctl, hsotg->regs + DCTL);

	return 0;
}
#else
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

/**
 * dwc2_backup_global_registers() - Backup global controller registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_gregs_backup *gr;
	int i;

	/* Backup global regs */
	gr = hsotg->gr_backup;
	if (!gr) {
		gr = devm_kzalloc(hsotg->dev, sizeof(*gr), GFP_KERNEL);
		if (!gr) {
			dev_err(hsotg->dev, "%s: can't allocate global regs\n",
					__func__);
			return -ENOMEM;
		}

		hsotg->gr_backup = gr;
	}

	gr->gotgctl = readl(hsotg->regs + GOTGCTL);
	gr->gintmsk = readl(hsotg->regs + GINTMSK);
	gr->gahbcfg = readl(hsotg->regs + GAHBCFG);
	gr->gusbcfg = readl(hsotg->regs + GUSBCFG);
	gr->grxfsiz = readl(hsotg->regs + GRXFSIZ);
	gr->gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
	gr->hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
	gr->gdfifocfg = readl(hsotg->regs + GDFIFOCFG);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		gr->dtxfsiz[i] = readl(hsotg->regs + DPTXFSIZN(i));

	return 0;
}

/**
 * dwc2_restore_global_registers() - Restore controller global registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_gregs_backup *gr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore global regs */
	gr = hsotg->gr_backup;
	if (!gr) {
		dev_err(hsotg->dev, "%s: no global registers to restore\n",
				__func__);
		return -EINVAL;
	}

	writel(0xffffffff, hsotg->regs + GINTSTS);
	writel(gr->gotgctl, hsotg->regs + GOTGCTL);
	writel(gr->gintmsk, hsotg->regs + GINTMSK);
	writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
	writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
	writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
	writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
	writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
	writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));

	return 0;
}

/**
 * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
 *
 * @hsotg: Programming view of the DWC_otg controller
 * @restore: Controller registers need to be restored
 */
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
{
	u32 pcgcctl;
	int ret = 0;

	pcgcctl = readl(hsotg->regs + PCGCTL);
	pcgcctl &= ~PCGCTL_STOPPCLK;
	writel(pcgcctl, hsotg->regs + PCGCTL);

	pcgcctl = readl(hsotg->regs + PCGCTL);
	pcgcctl &= ~PCGCTL_PWRCLMP;
	writel(pcgcctl, hsotg->regs + PCGCTL);

	pcgcctl = readl(hsotg->regs + PCGCTL);
	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
	writel(pcgcctl, hsotg->regs + PCGCTL);

	udelay(100);
	if (restore) {
		ret = dwc2_restore_global_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to restore registers\n",
					__func__);
			return ret;
		}
		if (dwc2_is_host_mode(hsotg)) {
			ret = dwc2_restore_host_registers(hsotg);
			if (ret) {
				dev_err(hsotg->dev, "%s: failed to restore host registers\n",
						__func__);
				return ret;
			}
		} else {
			ret = dwc2_restore_device_registers(hsotg);
			if (ret) {
				dev_err(hsotg->dev, "%s: failed to restore device registers\n",
						__func__);
				return ret;
			}
		}
	}

	return ret;
}

/**
 * dwc2_enter_hibernation() - Put controller in Partial Power Down.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
{
	u32 pcgcctl;
	int ret = 0;

	/* Backup all registers */
	ret = dwc2_backup_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
				__func__);
		return ret;
	}

	if (dwc2_is_host_mode(hsotg)) {
		ret = dwc2_backup_host_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to backup host registers\n",
					__func__);
			return ret;
		}
	} else {
		ret = dwc2_backup_device_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to backup device registers\n",
					__func__);
			return ret;
		}
	}

	/* Put the controller in low power state */
	pcgcctl = readl(hsotg->regs + PCGCTL);

	pcgcctl |= PCGCTL_PWRCLMP;
	writel(pcgcctl, hsotg->regs + PCGCTL);
	ndelay(20);

	pcgcctl |= PCGCTL_RSTPDWNMODULE;
	writel(pcgcctl, hsotg->regs + PCGCTL);
	ndelay(20);

	pcgcctl |= PCGCTL_STOPPCLK;
	writel(pcgcctl, hsotg->regs + PCGCTL);

	return ret;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
 * used in both device and host modes
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk;

	/* Clear any pending OTG Interrupts */
	writel(0xffffffff, hsotg->regs + GOTGINT);

	/* Clear any pending interrupts */
	writel(0xffffffff, hsotg->regs + GINTSTS);

	/* Enable the interrupts in the GINTMSK */
	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;

	if (hsotg->core_params->dma_enable <= 0)
		intmsk |= GINTSTS_RXFLVL;

	intmsk |= GINTSTS_CONIDSTSCHNG | GINTSTS_WKUPINT | GINTSTS_USBSUSP |
		  GINTSTS_SESSREQINT;

	writel(intmsk, hsotg->regs + GINTMSK);
}

/*
 * Initializes the FSLSPClkSel field of the HCFG register depending on the
 * PHY type
 */
static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
{
	u32 hcfg, val;

472 473
	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
474 475 476 477 478 479 480 481 482 483 484 485
	     hsotg->core_params->ulpi_fs_ls > 0) ||
	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
		/* Full speed PHY */
		val = HCFG_FSLSPCLKSEL_48_MHZ;
	} else {
		/* High speed PHY running at full speed or high speed */
		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
	}

	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
	hcfg = readl(hsotg->regs + HCFG);
	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
486
	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
487 488 489 490 491 492 493
	writel(hcfg, hsotg->regs + HCFG);
}

/*
 * Do core a soft reset of the core.  Be careful with this because it
 * resets all the internal state machines of the core.
 */
494
static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
495 496 497
{
	u32 greset;
	int count = 0;
498
	u32 gusbcfg;
499 500 501 502 503 504 505 506 507 508 509

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

	/* Wait for AHB master IDLE state */
	do {
		usleep_range(20000, 40000);
		greset = readl(hsotg->regs + GRSTCTL);
		if (++count > 50) {
			dev_warn(hsotg->dev,
				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
				 __func__, greset);
510
			return -EBUSY;
511 512 513 514 515 516 517 518 519 520 521 522 523 524
		}
	} while (!(greset & GRSTCTL_AHBIDLE));

	/* Core Soft Reset */
	count = 0;
	greset |= GRSTCTL_CSFTRST;
	writel(greset, hsotg->regs + GRSTCTL);
	do {
		usleep_range(20000, 40000);
		greset = readl(hsotg->regs + GRSTCTL);
		if (++count > 50) {
			dev_warn(hsotg->dev,
				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
				 __func__, greset);
525
			return -EBUSY;
526 527 528
		}
	} while (greset & GRSTCTL_CSFTRST);

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	if (hsotg->dr_mode == USB_DR_MODE_HOST) {
		gusbcfg = readl(hsotg->regs + GUSBCFG);
		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
		gusbcfg |= GUSBCFG_FORCEHOSTMODE;
		writel(gusbcfg, hsotg->regs + GUSBCFG);
	} else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		gusbcfg = readl(hsotg->regs + GUSBCFG);
		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
		gusbcfg |= GUSBCFG_FORCEDEVMODE;
		writel(gusbcfg, hsotg->regs + GUSBCFG);
	} else if (hsotg->dr_mode == USB_DR_MODE_OTG) {
		gusbcfg = readl(hsotg->regs + GUSBCFG);
		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
		writel(gusbcfg, hsotg->regs + GUSBCFG);
	}

546 547 548 549 550
	/*
	 * NOTE: This long sleep is _very_ important, otherwise the core will
	 * not stay in host mode after a connector ID change!
	 */
	usleep_range(150000, 200000);
551 552

	return 0;
553 554
}

555
static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
556 557
{
	u32 usbcfg, i2cctl;
558
	int retval = 0;
559 560 561 562 563 564 565 566 567 568 569 570

	/*
	 * core_init() is now called on every switch so only call the
	 * following for the first time through
	 */
	if (select_phy) {
		dev_dbg(hsotg->dev, "FS PHY selected\n");
		usbcfg = readl(hsotg->regs + GUSBCFG);
		usbcfg |= GUSBCFG_PHYSEL;
		writel(usbcfg, hsotg->regs + GUSBCFG);

		/* Reset after a PHY select */
571 572 573 574 575 576
		retval = dwc2_core_reset(hsotg);
		if (retval) {
			dev_err(hsotg->dev, "%s() Reset failed, aborting",
					__func__);
			return retval;
		}
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	}

	/*
	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
	 * do this on HNP Dev/Host mode switches (done in dev_init and
	 * host_init).
	 */
	if (dwc2_is_host_mode(hsotg))
		dwc2_init_fs_ls_pclk_sel(hsotg);

	if (hsotg->core_params->i2c_enable > 0) {
		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");

		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
		usbcfg = readl(hsotg->regs + GUSBCFG);
		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
		writel(usbcfg, hsotg->regs + GUSBCFG);

		/* Program GI2CCTL.I2CEn */
		i2cctl = readl(hsotg->regs + GI2CCTL);
		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
		i2cctl &= ~GI2CCTL_I2CEN;
		writel(i2cctl, hsotg->regs + GI2CCTL);
		i2cctl |= GI2CCTL_I2CEN;
		writel(i2cctl, hsotg->regs + GI2CCTL);
	}
604 605

	return retval;
606 607
}

608
static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
609 610
{
	u32 usbcfg;
611
	int retval = 0;
612 613

	if (!select_phy)
614
		return 0;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

	usbcfg = readl(hsotg->regs + GUSBCFG);

	/*
	 * HS PHY parameters. These parameters are preserved during soft reset
	 * so only program the first time. Do a soft reset immediately after
	 * setting phyif.
	 */
	switch (hsotg->core_params->phy_type) {
	case DWC2_PHY_TYPE_PARAM_ULPI:
		/* ULPI interface */
		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
		if (hsotg->core_params->phy_ulpi_ddr > 0)
			usbcfg |= GUSBCFG_DDRSEL;
		break;
	case DWC2_PHY_TYPE_PARAM_UTMI:
		/* UTMI+ interface */
		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
		if (hsotg->core_params->phy_utmi_width == 16)
			usbcfg |= GUSBCFG_PHYIF16;
		break;
	default:
		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
		break;
	}

	writel(usbcfg, hsotg->regs + GUSBCFG);

	/* Reset after setting the PHY parameters */
647 648 649 650 651 652 653 654
	retval = dwc2_core_reset(hsotg);
	if (retval) {
		dev_err(hsotg->dev, "%s() Reset failed, aborting",
				__func__);
		return retval;
	}

	return retval;
655 656
}

657
static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
658
{
659
	u32 usbcfg;
660
	int retval = 0;
661 662 663 664

	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
		/* If FS mode with FS PHY */
665 666 667
		retval = dwc2_fs_phy_init(hsotg, select_phy);
		if (retval)
			return retval;
668 669
	} else {
		/* High speed PHY */
670 671 672
		retval = dwc2_hs_phy_init(hsotg, select_phy);
		if (retval)
			return retval;
673 674
	}

675 676
	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
677 678 679 680 681 682 683 684 685 686 687 688
	    hsotg->core_params->ulpi_fs_ls > 0) {
		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
		usbcfg = readl(hsotg->regs + GUSBCFG);
		usbcfg |= GUSBCFG_ULPI_FS_LS;
		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
		writel(usbcfg, hsotg->regs + GUSBCFG);
	} else {
		usbcfg = readl(hsotg->regs + GUSBCFG);
		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
		writel(usbcfg, hsotg->regs + GUSBCFG);
	}
689 690

	return retval;
691 692 693 694
}

static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
{
695
	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
696

697
	switch (hsotg->hw_params.arch) {
698 699 700 701 702 703
	case GHWCFG2_EXT_DMA_ARCH:
		dev_err(hsotg->dev, "External DMA Mode not supported\n");
		return -EINVAL;

	case GHWCFG2_INT_DMA_ARCH:
		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
704 705 706 707 708
		if (hsotg->core_params->ahbcfg != -1) {
			ahbcfg &= GAHBCFG_CTRL_MASK;
			ahbcfg |= hsotg->core_params->ahbcfg &
				  ~GAHBCFG_CTRL_MASK;
		}
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
		break;

	case GHWCFG2_SLAVE_ONLY_ARCH:
	default:
		dev_dbg(hsotg->dev, "Slave Only Mode\n");
		break;
	}

	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
		hsotg->core_params->dma_enable,
		hsotg->core_params->dma_desc_enable);

	if (hsotg->core_params->dma_enable > 0) {
		if (hsotg->core_params->dma_desc_enable > 0)
			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
		else
			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
	} else {
		dev_dbg(hsotg->dev, "Using Slave mode\n");
		hsotg->core_params->dma_desc_enable = 0;
	}

	if (hsotg->core_params->dma_enable > 0)
		ahbcfg |= GAHBCFG_DMA_EN;

	writel(ahbcfg, hsotg->regs + GAHBCFG);

	return 0;
}

static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
{
	u32 usbcfg;

	usbcfg = readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);

746
	switch (hsotg->hw_params.op_mode) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
		if (hsotg->core_params->otg_cap ==
				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_HNPCAP;
		if (hsotg->core_params->otg_cap !=
				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_SRPCAP;
		break;

	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
		if (hsotg->core_params->otg_cap !=
				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_SRPCAP;
		break;

	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
	default:
		break;
	}

	writel(usbcfg, hsotg->regs + GUSBCFG);
}

/**
 * dwc2_core_init() - Initializes the DWC_otg controller registers and
 * prepares the core for device mode or host mode operation
 *
 * @hsotg:      Programming view of the DWC_otg controller
 * @select_phy: If true then also set the Phy type
780
 * @irq:        If >= 0, the irq to register
781
 */
782
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
{
	u32 usbcfg, otgctl;
	int retval;

	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);

	usbcfg = readl(hsotg->regs + GUSBCFG);

	/* Set ULPI External VBUS bit if needed */
	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
	if (hsotg->core_params->phy_ulpi_ext_vbus ==
				DWC2_PHY_ULPI_EXTERNAL_VBUS)
		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;

	/* Set external TS Dline pulsing bit if needed */
	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
	if (hsotg->core_params->ts_dline > 0)
		usbcfg |= GUSBCFG_TERMSELDLPULSE;

	writel(usbcfg, hsotg->regs + GUSBCFG);

	/* Reset the Controller */
805 806 807 808 809 810
	retval = dwc2_core_reset(hsotg);
	if (retval) {
		dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
				__func__);
		return retval;
	}
811 812 813 814

	/*
	 * This needs to happen in FS mode before any other programming occurs
	 */
815 816 817
	retval = dwc2_phy_init(hsotg, select_phy);
	if (retval)
		return retval;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

	/* Program the GAHBCFG Register */
	retval = dwc2_gahbcfg_init(hsotg);
	if (retval)
		return retval;

	/* Program the GUSBCFG register */
	dwc2_gusbcfg_init(hsotg);

	/* Program the GOTGCTL register */
	otgctl = readl(hsotg->regs + GOTGCTL);
	otgctl &= ~GOTGCTL_OTGVER;
	if (hsotg->core_params->otg_ver > 0)
		otgctl |= GOTGCTL_OTGVER;
	writel(otgctl, hsotg->regs + GOTGCTL);
	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);

	/* Clear the SRP success bit for FS-I2c */
	hsotg->srp_success = 0;

	/* Enable common interrupts */
	dwc2_enable_common_interrupts(hsotg);

	/*
842
	 * Do device or host initialization based on mode during PCD and
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	 * HCD initialization
	 */
	if (dwc2_is_host_mode(hsotg)) {
		dev_dbg(hsotg->dev, "Host Mode\n");
		hsotg->op_state = OTG_STATE_A_HOST;
	} else {
		dev_dbg(hsotg->dev, "Device Mode\n");
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
	}

	return 0;
}

/**
 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk;

	dev_dbg(hsotg->dev, "%s()\n", __func__);

	/* Disable all interrupts */
	writel(0, hsotg->regs + GINTMSK);
	writel(0, hsotg->regs + HAINTMSK);

	/* Enable the common interrupts */
	dwc2_enable_common_interrupts(hsotg);

	/* Enable host mode interrupts without disturbing common interrupts */
	intmsk = readl(hsotg->regs + GINTMSK);
	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
	writel(intmsk, hsotg->regs + GINTMSK);
}

/**
 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk = readl(hsotg->regs + GINTMSK);

	/* Disable host mode interrupts without disturbing common interrupts */
	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
	writel(intmsk, hsotg->regs + GINTMSK);
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 * For system that have a total fifo depth that is smaller than the default
 * RX + TX fifo size.
 *
 * @hsotg: Programming view of DWC_otg controller
 */
static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
{
	struct dwc2_core_params *params = hsotg->core_params;
	struct dwc2_hw_params *hw = &hsotg->hw_params;
	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;

	total_fifo_size = hw->total_fifo_size;
	rxfsiz = params->host_rx_fifo_size;
	nptxfsiz = params->host_nperio_tx_fifo_size;
	ptxfsiz = params->host_perio_tx_fifo_size;

	/*
	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
	 * allocation with support for high bandwidth endpoints. Synopsys
	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
	 * non-periodic as 512.
	 */
	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
		/*
		 * For Buffer DMA mode/Scatter Gather DMA mode
		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
		 * with n = number of host channel.
		 * 2 * ((1024/4) + 2) = 516
		 */
		rxfsiz = 516 + hw->host_channels;

		/*
		 * min non-periodic tx fifo depth
		 * 2 * (largest non-periodic USB packet used / 4)
		 * 2 * (512/4) = 256
		 */
		nptxfsiz = 256;

		/*
		 * min periodic tx fifo depth
		 * (largest packet size*MC)/4
		 * (1024 * 3)/4 = 768
		 */
		ptxfsiz = 768;

		params->host_rx_fifo_size = rxfsiz;
		params->host_nperio_tx_fifo_size = nptxfsiz;
		params->host_perio_tx_fifo_size = ptxfsiz;
	}

	/*
	 * If the summation of RX, NPTX and PTX fifo sizes is still
	 * bigger than the total_fifo_size, then we have a problem.
	 *
	 * We won't be able to allocate as many endpoints. Right now,
	 * we're just printing an error message, but ideally this FIFO
	 * allocation algorithm would be improved in the future.
	 *
	 * FIXME improve this FIFO allocation algorithm.
	 */
	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
		dev_err(hsotg->dev, "invalid fifo sizes\n");
}

961 962 963
static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
{
	struct dwc2_core_params *params = hsotg->core_params;
964
	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
965

966
	if (!params->enable_dynamic_fifo)
967 968
		return;

969 970
	dwc2_calculate_dynamic_fifo(hsotg);

971
	/* Rx FIFO */
972 973 974 975 976 977
	grxfsiz = readl(hsotg->regs + GRXFSIZ);
	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
	grxfsiz |= params->host_rx_fifo_size <<
		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
	writel(grxfsiz, hsotg->regs + GRXFSIZ);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));

	/* Non-periodic Tx FIFO */
	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
		readl(hsotg->regs + GNPTXFSIZ));
	nptxfsiz = params->host_nperio_tx_fifo_size <<
		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
	nptxfsiz |= params->host_rx_fifo_size <<
		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
	writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
		readl(hsotg->regs + GNPTXFSIZ));

	/* Periodic Tx FIFO */
	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
		readl(hsotg->regs + HPTXFSIZ));
994 995 996 997 998 999
	hptxfsiz = params->host_perio_tx_fifo_size <<
		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
	hptxfsiz |= (params->host_rx_fifo_size +
		     params->host_nperio_tx_fifo_size) <<
		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
	writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
1000 1001 1002 1003
	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
		readl(hsotg->regs + HPTXFSIZ));

	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
1004
	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
1005 1006 1007 1008 1009 1010
		/*
		 * Global DFIFOCFG calculation for Host mode -
		 * include RxFIFO, NPTXFIFO and HPTXFIFO
		 */
		dfifocfg = readl(hsotg->regs + GDFIFOCFG);
		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
1011 1012 1013
		dfifocfg |= (params->host_rx_fifo_size +
			     params->host_nperio_tx_fifo_size +
			     params->host_perio_tx_fifo_size) <<
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
			    GDFIFOCFG_EPINFOBASE_SHIFT &
			    GDFIFOCFG_EPINFOBASE_MASK;
		writel(dfifocfg, hsotg->regs + GDFIFOCFG);
	}
}

/**
 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
 * Host mode
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
 * request queues. Host channels are reset to ensure that they are ready for
 * performing transfers.
 */
void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
{
	u32 hcfg, hfir, otgctl;

	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);

	/* Restart the Phy Clock */
	writel(0, hsotg->regs + PCGCTL);

	/* Initialize Host Configuration Register */
	dwc2_init_fs_ls_pclk_sel(hsotg);
	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
		hcfg = readl(hsotg->regs + HCFG);
		hcfg |= HCFG_FSLSSUPP;
		writel(hcfg, hsotg->regs + HCFG);
	}

	/*
	 * This bit allows dynamic reloading of the HFIR register during
1049
	 * runtime. This bit needs to be programmed during initial configuration
1050 1051 1052 1053 1054 1055 1056 1057 1058
	 * and its value must not be changed during runtime.
	 */
	if (hsotg->core_params->reload_ctl > 0) {
		hfir = readl(hsotg->regs + HFIR);
		hfir |= HFIR_RLDCTRL;
		writel(hfir, hsotg->regs + HFIR);
	}

	if (hsotg->core_params->dma_desc_enable > 0) {
1059 1060 1061
		u32 op_mode = hsotg->hw_params.op_mode;
		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
		    !hsotg->hw_params.dma_desc_enable ||
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
			dev_err(hsotg->dev,
				"Hardware does not support descriptor DMA mode -\n");
			dev_err(hsotg->dev,
				"falling back to buffer DMA mode.\n");
			hsotg->core_params->dma_desc_enable = 0;
		} else {
			hcfg = readl(hsotg->regs + HCFG);
			hcfg |= HCFG_DESCDMA;
			writel(hcfg, hsotg->regs + HCFG);
		}
	}

	/* Configure data FIFO sizes */
	dwc2_config_fifos(hsotg);

	/* TODO - check this */
	/* Clear Host Set HNP Enable in the OTG Control Register */
	otgctl = readl(hsotg->regs + GOTGCTL);
	otgctl &= ~GOTGCTL_HSTSETHNPEN;
	writel(otgctl, hsotg->regs + GOTGCTL);

	/* Make sure the FIFOs are flushed */
	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
	dwc2_flush_rx_fifo(hsotg);

	/* Clear Host Set HNP Enable in the OTG Control Register */
	otgctl = readl(hsotg->regs + GOTGCTL);
	otgctl &= ~GOTGCTL_HSTSETHNPEN;
	writel(otgctl, hsotg->regs + GOTGCTL);

	if (hsotg->core_params->dma_desc_enable <= 0) {
		int num_channels, i;
		u32 hcchar;

		/* Flush out any leftover queued requests */
		num_channels = hsotg->core_params->host_channels;
		for (i = 0; i < num_channels; i++) {
			hcchar = readl(hsotg->regs + HCCHAR(i));
			hcchar &= ~HCCHAR_CHENA;
			hcchar |= HCCHAR_CHDIS;
			hcchar &= ~HCCHAR_EPDIR;
			writel(hcchar, hsotg->regs + HCCHAR(i));
		}

		/* Halt all channels to put them into a known state */
		for (i = 0; i < num_channels; i++) {
			int count = 0;

			hcchar = readl(hsotg->regs + HCCHAR(i));
			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
			hcchar &= ~HCCHAR_EPDIR;
			writel(hcchar, hsotg->regs + HCCHAR(i));
			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
				__func__, i);
			do {
				hcchar = readl(hsotg->regs + HCCHAR(i));
				if (++count > 1000) {
					dev_err(hsotg->dev,
						"Unable to clear enable on channel %d\n",
						i);
					break;
				}
				udelay(1);
			} while (hcchar & HCCHAR_CHENA);
		}
	}

	/* Turn on the vbus power */
	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
	if (hsotg->op_state == OTG_STATE_A_HOST) {
		u32 hprt0 = dwc2_read_hprt0(hsotg);

		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
			!!(hprt0 & HPRT0_PWR));
		if (!(hprt0 & HPRT0_PWR)) {
			hprt0 |= HPRT0_PWR;
			writel(hprt0, hsotg->regs + HPRT0);
		}
	}

	dwc2_enable_host_interrupts(hsotg);
}

static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
				      struct dwc2_host_chan *chan)
{
	u32 hcintmsk = HCINTMSK_CHHLTD;

	switch (chan->ep_type) {
	case USB_ENDPOINT_XFER_CONTROL:
	case USB_ENDPOINT_XFER_BULK:
		dev_vdbg(hsotg->dev, "control/bulk\n");
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_STALL;
		hcintmsk |= HCINTMSK_XACTERR;
		hcintmsk |= HCINTMSK_DATATGLERR;
		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_BBLERR;
		} else {
			hcintmsk |= HCINTMSK_NAK;
			hcintmsk |= HCINTMSK_NYET;
			if (chan->do_ping)
				hcintmsk |= HCINTMSK_ACK;
		}

		if (chan->do_split) {
			hcintmsk |= HCINTMSK_NAK;
			if (chan->complete_split)
				hcintmsk |= HCINTMSK_NYET;
			else
				hcintmsk |= HCINTMSK_ACK;
		}

		if (chan->error_state)
			hcintmsk |= HCINTMSK_ACK;
		break;

	case USB_ENDPOINT_XFER_INT:
1183 1184
		if (dbg_perio())
			dev_vdbg(hsotg->dev, "intr\n");
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_NAK;
		hcintmsk |= HCINTMSK_STALL;
		hcintmsk |= HCINTMSK_XACTERR;
		hcintmsk |= HCINTMSK_DATATGLERR;
		hcintmsk |= HCINTMSK_FRMOVRUN;

		if (chan->ep_is_in)
			hcintmsk |= HCINTMSK_BBLERR;
		if (chan->error_state)
			hcintmsk |= HCINTMSK_ACK;
		if (chan->do_split) {
			if (chan->complete_split)
				hcintmsk |= HCINTMSK_NYET;
			else
				hcintmsk |= HCINTMSK_ACK;
		}
		break;

	case USB_ENDPOINT_XFER_ISOC:
1205 1206
		if (dbg_perio())
			dev_vdbg(hsotg->dev, "isoc\n");
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_FRMOVRUN;
		hcintmsk |= HCINTMSK_ACK;

		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_XACTERR;
			hcintmsk |= HCINTMSK_BBLERR;
		}
		break;
	default:
		dev_err(hsotg->dev, "## Unknown EP type ##\n");
		break;
	}

	writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1222 1223
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
}

static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
				    struct dwc2_host_chan *chan)
{
	u32 hcintmsk = HCINTMSK_CHHLTD;

	/*
	 * For Descriptor DMA mode core halts the channel on AHB error.
	 * Interrupt is not required.
	 */
	if (hsotg->core_params->dma_desc_enable <= 0) {
1236 1237
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1238 1239
		hcintmsk |= HCINTMSK_AHBERR;
	} else {
1240 1241
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1242 1243 1244 1245 1246 1247
		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			hcintmsk |= HCINTMSK_XFERCOMPL;
	}

	if (chan->error_state && !chan->do_split &&
	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1248 1249
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "setting ACK\n");
1250 1251 1252 1253 1254 1255 1256 1257 1258
		hcintmsk |= HCINTMSK_ACK;
		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_DATATGLERR;
			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
				hcintmsk |= HCINTMSK_NAK;
		}
	}

	writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1259 1260
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1261 1262 1263 1264 1265 1266 1267 1268
}

static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
				struct dwc2_host_chan *chan)
{
	u32 intmsk;

	if (hsotg->core_params->dma_enable > 0) {
1269 1270
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA enabled\n");
1271 1272
		dwc2_hc_enable_dma_ints(hsotg, chan);
	} else {
1273 1274
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA disabled\n");
1275 1276 1277 1278 1279 1280 1281
		dwc2_hc_enable_slave_ints(hsotg, chan);
	}

	/* Enable the top level host channel interrupt */
	intmsk = readl(hsotg->regs + HAINTMSK);
	intmsk |= 1 << chan->hc_num;
	writel(intmsk, hsotg->regs + HAINTMSK);
1282 1283
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1284 1285 1286 1287 1288

	/* Make sure host channel interrupts are enabled */
	intmsk = readl(hsotg->regs + GINTMSK);
	intmsk |= GINTSTS_HCHINT;
	writel(intmsk, hsotg->regs + GINTMSK);
1289 1290
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
}

/**
 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 * a specific endpoint
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * The HCCHARn register is set up with the characteristics specified in chan.
 * Host channel interrupts that may need to be serviced while this transfer is
 * in progress are enabled.
 */
void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u8 hc_num = chan->hc_num;
	u32 hcintmsk;
	u32 hcchar;
	u32 hcsplt = 0;

1311 1312
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	/* Clear old interrupt conditions for this host channel */
	hcintmsk = 0xffffffff;
	hcintmsk &= ~HCINTMSK_RESERVED14_31;
	writel(hcintmsk, hsotg->regs + HCINT(hc_num));

	/* Enable channel interrupts required for this transfer */
	dwc2_hc_enable_ints(hsotg, chan);

	/*
	 * Program the HCCHARn register with the endpoint characteristics for
	 * the current transfer
	 */
	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
	if (chan->ep_is_in)
		hcchar |= HCCHAR_EPDIR;
	if (chan->speed == USB_SPEED_LOW)
		hcchar |= HCCHAR_LSPDDEV;
	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
	writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1335 1336 1337 1338
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
			 hc_num, hcchar);

1339 1340
		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
			 __func__, hc_num);
1341
		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
1342
			 chan->dev_addr);
1343
		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
1344
			 chan->ep_num);
1345
		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
1346
			 chan->ep_is_in);
1347
		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
1348
			 chan->speed == USB_SPEED_LOW);
1349
		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
1350
			 chan->ep_type);
1351
		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
1352
			 chan->max_packet);
1353
	}
1354 1355 1356

	/* Program the HCSPLT register for SPLITs */
	if (chan->do_split) {
1357 1358 1359 1360 1361
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev,
				 "Programming HC %d with split --> %s\n",
				 hc_num,
				 chan->complete_split ? "CSPLIT" : "SSPLIT");
1362 1363 1364 1365 1366 1367 1368 1369
		if (chan->complete_split)
			hcsplt |= HCSPLT_COMPSPLT;
		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
			  HCSPLT_XACTPOS_MASK;
		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
			  HCSPLT_HUBADDR_MASK;
		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
			  HCSPLT_PRTADDR_MASK;
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
		if (dbg_hc(chan)) {
			dev_vdbg(hsotg->dev, "	  comp split %d\n",
				 chan->complete_split);
			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
				 chan->xact_pos);
			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
				 chan->hub_addr);
			dev_vdbg(hsotg->dev, "	  hub port %d\n",
				 chan->hub_port);
			dev_vdbg(hsotg->dev, "	  is_in %d\n",
				 chan->ep_is_in);
			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
1382
				 chan->max_packet);
1383 1384 1385
			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
				 chan->xfer_len);
		}
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	}

	writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
}

/**
 * dwc2_hc_halt() - Attempts to halt a host channel
 *
 * @hsotg:       Controller register interface
 * @chan:        Host channel to halt
 * @halt_status: Reason for halting the channel
 *
 * This function should only be called in Slave mode or to abort a transfer in
 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 * controller halts the channel when the transfer is complete or a condition
 * occurs that requires application intervention.
 *
 * In slave mode, checks for a free request queue entry, then sets the Channel
 * Enable and Channel Disable bits of the Host Channel Characteristics
 * register of the specified channel to intiate the halt. If there is no free
 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 * register to flush requests for this channel. In the latter case, sets a
 * flag to indicate that the host channel needs to be halted when a request
 * queue slot is open.
 *
 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 * HCCHARn register. The controller ensures there is space in the request
 * queue before submitting the halt request.
 *
 * Some time may elapse before the core flushes any posted requests for this
 * host channel and halts. The Channel Halted interrupt handler completes the
 * deactivation of the host channel.
 */
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
		  enum dwc2_halt_status halt_status)
{
	u32 nptxsts, hptxsts, hcchar;

1424 1425
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);

	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
	    halt_status == DWC2_HC_XFER_AHB_ERR) {
		/*
		 * Disable all channel interrupts except Ch Halted. The QTD
		 * and QH state associated with this transfer has been cleared
		 * (in the case of URB_DEQUEUE), so the channel needs to be
		 * shut down carefully to prevent crashes.
		 */
		u32 hcintmsk = HCINTMSK_CHHLTD;

		dev_vdbg(hsotg->dev, "dequeue/error\n");
		writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));

		/*
		 * Make sure no other interrupts besides halt are currently
		 * pending. Handling another interrupt could cause a crash due
		 * to the QTD and QH state.
		 */
		writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));

		/*
		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
		 * even if the channel was already halted for some other
		 * reason
		 */
		chan->halt_status = halt_status;

		hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
		if (!(hcchar & HCCHAR_CHENA)) {
			/*
			 * The channel is either already halted or it hasn't
			 * started yet. In DMA mode, the transfer may halt if
			 * it finishes normally or a condition occurs that
			 * requires driver intervention. Don't want to halt
			 * the channel again. In either Slave or DMA mode,
			 * it's possible that the transfer has been assigned
			 * to a channel, but not started yet when an URB is
			 * dequeued. Don't want to halt a channel that hasn't
			 * started yet.
			 */
			return;
		}
	}
	if (chan->halt_pending) {
		/*
		 * A halt has already been issued for this channel. This might
		 * happen when a transfer is aborted by a higher level in
		 * the stack.
		 */
		dev_vdbg(hsotg->dev,
			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
			 __func__, chan->hc_num);
		return;
	}

	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));

	/* No need to set the bit in DDMA for disabling the channel */
	/* TODO check it everywhere channel is disabled */
	if (hsotg->core_params->dma_desc_enable <= 0) {
1489 1490
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1491 1492
		hcchar |= HCCHAR_CHENA;
	} else {
1493 1494
		if (dbg_hc(chan))
			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1495 1496 1497 1498
	}
	hcchar |= HCCHAR_CHDIS;

	if (hsotg->core_params->dma_enable <= 0) {
1499 1500
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		hcchar |= HCCHAR_CHENA;

		/* Check for space in the request queue to issue the halt */
		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
			dev_vdbg(hsotg->dev, "control/bulk\n");
			nptxsts = readl(hsotg->regs + GNPTXSTS);
			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
				dev_vdbg(hsotg->dev, "Disabling channel\n");
				hcchar &= ~HCCHAR_CHENA;
			}
		} else {
1513 1514
			if (dbg_perio())
				dev_vdbg(hsotg->dev, "isoc/intr\n");
1515 1516 1517
			hptxsts = readl(hsotg->regs + HPTXSTS);
			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
			    hsotg->queuing_high_bandwidth) {
1518 1519
				if (dbg_perio())
					dev_vdbg(hsotg->dev, "Disabling channel\n");
1520 1521 1522 1523
				hcchar &= ~HCCHAR_CHENA;
			}
		}
	} else {
1524 1525
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA enabled\n");
1526 1527 1528 1529 1530 1531
	}

	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
	chan->halt_status = halt_status;

	if (hcchar & HCCHAR_CHENA) {
1532 1533
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Channel enabled\n");
1534 1535 1536
		chan->halt_pending = 1;
		chan->halt_on_queue = 0;
	} else {
1537 1538
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Channel disabled\n");
1539 1540 1541
		chan->halt_on_queue = 1;
	}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
			 hcchar);
		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
			 chan->halt_pending);
		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
			 chan->halt_on_queue);
		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
			 chan->halt_status);
	}
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
}

/**
 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Identifies the host channel to clean up
 *
 * This function is normally called after a transfer is done and the host
 * channel is being released
 */
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u32 hcintmsk;

	chan->xfer_started = 0;

	/*
	 * Clear channel interrupt enables and any unhandled channel interrupt
	 * conditions
	 */
	writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
	hcintmsk = 0xffffffff;
	hcintmsk &= ~HCINTMSK_RESERVED14_31;
	writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
}

/**
 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 * which frame a periodic transfer should occur
 *
 * @hsotg:  Programming view of DWC_otg controller
 * @chan:   Identifies the host channel to set up and its properties
 * @hcchar: Current value of the HCCHAR register for the specified host channel
 *
 * This function has no effect on non-periodic transfers
 */
static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
				       struct dwc2_host_chan *chan, u32 *hcchar)
{
	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
		/* 1 if _next_ frame is odd, 0 if it's even */
1597
		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
			*hcchar |= HCCHAR_ODDFRM;
	}
}

static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
{
	/* Set up the initial PID for the transfer */
	if (chan->speed == USB_SPEED_HIGH) {
		if (chan->ep_is_in) {
			if (chan->multi_count == 1)
				chan->data_pid_start = DWC2_HC_PID_DATA0;
			else if (chan->multi_count == 2)
				chan->data_pid_start = DWC2_HC_PID_DATA1;
			else
				chan->data_pid_start = DWC2_HC_PID_DATA2;
		} else {
			if (chan->multi_count == 1)
				chan->data_pid_start = DWC2_HC_PID_DATA0;
			else
				chan->data_pid_start = DWC2_HC_PID_MDATA;
		}
	} else {
		chan->data_pid_start = DWC2_HC_PID_DATA0;
	}
}

/**
 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
 * the Host Channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * This function should only be called in Slave mode. For a channel associated
 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
 * associated with a periodic EP, the periodic Tx FIFO is written.
 *
 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
 * the number of bytes written to the Tx FIFO.
 */
static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan)
{
	u32 i;
	u32 remaining_count;
	u32 byte_count;
	u32 dword_count;
	u32 __iomem *data_fifo;
	u32 *data_buf = (u32 *)chan->xfer_buf;

1648 1649
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));

	remaining_count = chan->xfer_len - chan->xfer_count;
	if (remaining_count > chan->max_packet)
		byte_count = chan->max_packet;
	else
		byte_count = remaining_count;

	dword_count = (byte_count + 3) / 4;

	if (((unsigned long)data_buf & 0x3) == 0) {
		/* xfer_buf is DWORD aligned */
		for (i = 0; i < dword_count; i++, data_buf++)
			writel(*data_buf, data_fifo);
	} else {
		/* xfer_buf is not DWORD aligned */
		for (i = 0; i < dword_count; i++, data_buf++) {
			u32 data = data_buf[0] | data_buf[1] << 8 |
				   data_buf[2] << 16 | data_buf[3] << 24;
			writel(data, data_fifo);
		}
	}

	chan->xfer_count += byte_count;
	chan->xfer_buf += byte_count;
}

/**
 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
 * channel and starts the transfer
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel. The xfer_len value
 *         may be reduced to accommodate the max widths of the XferSize and
 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
 *         changed to reflect the final xfer_len value.
 *
 * This function may be called in either Slave mode or DMA mode. In Slave mode,
 * the caller must ensure that there is sufficient space in the request queue
 * and Tx Data FIFO.
 *
 * For an OUT transfer in Slave mode, it loads a data packet into the
 * appropriate FIFO. If necessary, additional data packets are loaded in the
 * Host ISR.
 *
 * For an IN transfer in Slave mode, a data packet is requested. The data
 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
 * additional data packets are requested in the Host ISR.
 *
 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
 * register along with a packet count of 1 and the channel is enabled. This
 * causes a single PING transaction to occur. Other fields in HCTSIZ are
 * simply set to 0 since no data transfer occurs in this case.
 *
 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
 * all the information required to perform the subsequent data transfer. In
 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
 * controller performs the entire PING protocol, then starts the data
 * transfer.
 */
void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
			    struct dwc2_host_chan *chan)
{
	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
	u32 hcchar;
	u32 hctsiz = 0;
	u16 num_packets;

1720 1721
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1722 1723 1724

	if (chan->do_ping) {
		if (hsotg->core_params->dma_enable <= 0) {
1725 1726
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1727 1728 1729 1730
			dwc2_hc_do_ping(hsotg, chan);
			chan->xfer_started = 1;
			return;
		} else {
1731 1732
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "ping, DMA\n");
1733 1734 1735 1736 1737
			hctsiz |= TSIZ_DOPNG;
		}
	}

	if (chan->do_split) {
1738 1739
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "split\n");
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		num_packets = 1;

		if (chan->complete_split && !chan->ep_is_in)
			/*
			 * For CSPLIT OUT Transfer, set the size to 0 so the
			 * core doesn't expect any data written to the FIFO
			 */
			chan->xfer_len = 0;
		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
			chan->xfer_len = chan->max_packet;
		else if (!chan->ep_is_in && chan->xfer_len > 188)
			chan->xfer_len = 188;

		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
			  TSIZ_XFERSIZE_MASK;
	} else {
1756 1757
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "no split\n");
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		/*
		 * Ensure that the transfer length and packet count will fit
		 * in the widths allocated for them in the HCTSIZn register
		 */
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
			/*
			 * Make sure the transfer size is no larger than one
			 * (micro)frame's worth of data. (A check was done
			 * when the periodic transfer was accepted to ensure
			 * that a (micro)frame's worth of data can be
			 * programmed into a channel.)
			 */
			u32 max_periodic_len =
				chan->multi_count * chan->max_packet;

			if (chan->xfer_len > max_periodic_len)
				chan->xfer_len = max_periodic_len;
		} else if (chan->xfer_len > max_hc_xfer_size) {
			/*
			 * Make sure that xfer_len is a multiple of max packet
			 * size
			 */
			chan->xfer_len =
				max_hc_xfer_size - chan->max_packet + 1;
		}

		if (chan->xfer_len > 0) {
			num_packets = (chan->xfer_len + chan->max_packet - 1) /
					chan->max_packet;
			if (num_packets > max_hc_pkt_count) {
				num_packets = max_hc_pkt_count;
				chan->xfer_len = num_packets * chan->max_packet;
			}
		} else {
			/* Need 1 packet for transfer length of 0 */
			num_packets = 1;
		}

		if (chan->ep_is_in)
			/*
			 * Always program an integral # of max packets for IN
			 * transfers
			 */
			chan->xfer_len = num_packets * chan->max_packet;

		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			/*
			 * Make sure that the multi_count field matches the
			 * actual transfer length
			 */
			chan->multi_count = num_packets;

		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			dwc2_set_pid_isoc(chan);

		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
			  TSIZ_XFERSIZE_MASK;
	}

	chan->start_pkt_count = num_packets;
	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
		  TSIZ_SC_MC_PID_MASK;
	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1824 1825 1826 1827 1828 1829 1830
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
			 hctsiz, chan->hc_num);

		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1831 1832
			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
			 TSIZ_XFERSIZE_SHIFT);
1833
		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1834 1835
			 (hctsiz & TSIZ_PKTCNT_MASK) >>
			 TSIZ_PKTCNT_SHIFT);
1836
		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1837 1838
			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
			 TSIZ_SC_MC_PID_SHIFT);
1839
	}
1840 1841 1842 1843 1844

	if (hsotg->core_params->dma_enable > 0) {
		dma_addr_t dma_addr;

		if (chan->align_buf) {
1845 1846
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "align_buf\n");
1847 1848 1849 1850 1851
			dma_addr = chan->align_buf;
		} else {
			dma_addr = chan->xfer_dma;
		}
		writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1852 1853 1854
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
				 (unsigned long)dma_addr, chan->hc_num);
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	}

	/* Start the split */
	if (chan->do_split) {
		u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));

		hcsplt |= HCSPLT_SPLTENA;
		writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
	}

	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
	hcchar &= ~HCCHAR_MULTICNT_MASK;
	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
		  HCCHAR_MULTICNT_MASK;
	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);

	if (hcchar & HCCHAR_CHDIS)
		dev_warn(hsotg->dev,
			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
			 __func__, chan->hc_num, hcchar);

	/* Set host channel enable after all other setup is complete */
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;

1880 1881
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1882 1883
			 (hcchar & HCCHAR_MULTICNT_MASK) >>
			 HCCHAR_MULTICNT_SHIFT);
1884 1885

	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1886 1887 1888
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
			 chan->hc_num);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

	chan->xfer_started = 1;
	chan->requests++;

	if (hsotg->core_params->dma_enable <= 0 &&
	    !chan->ep_is_in && chan->xfer_len > 0)
		/* Load OUT packet into the appropriate Tx FIFO */
		dwc2_hc_write_packet(hsotg, chan);
}

/**
 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
 * host channel and starts the transfer in Descriptor DMA mode
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
 * with micro-frame bitmap.
 *
 * Initializes HCDMA register with descriptor list address and CTD value then
 * starts the transfer via enabling the channel.
 */
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan)
{
	u32 hcchar;
	u32 hc_dma;
	u32 hctsiz = 0;

	if (chan->do_ping)
		hctsiz |= TSIZ_DOPNG;

	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
		dwc2_set_pid_isoc(chan);

	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
		  TSIZ_SC_MC_PID_MASK;

	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;

	/* Non-zero only for high-speed interrupt endpoints */
	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;

1936 1937 1938 1939 1940 1941 1942
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
			 chan->data_pid_start);
		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
	}
1943 1944 1945 1946 1947 1948 1949 1950

	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));

	hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;

	/* Always start from first descriptor */
	hc_dma &= ~HCDMA_CTD_MASK;
	writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
1951 1952 1953
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
			 hc_dma, chan->hc_num);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
	hcchar &= ~HCCHAR_MULTICNT_MASK;
	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
		  HCCHAR_MULTICNT_MASK;

	if (hcchar & HCCHAR_CHDIS)
		dev_warn(hsotg->dev,
			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
			 __func__, chan->hc_num, hcchar);

	/* Set host channel enable after all other setup is complete */
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;

1969 1970
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1971 1972
			 (hcchar & HCCHAR_MULTICNT_MASK) >>
			 HCCHAR_MULTICNT_SHIFT);
1973 1974

	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1975 1976 1977
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
			 chan->hc_num);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

	chan->xfer_started = 1;
	chan->requests++;
}

/**
 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
 * a previous call to dwc2_hc_start_transfer()
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * The caller must ensure there is sufficient space in the request queue and Tx
 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
 * the controller acts autonomously to complete transfers programmed to a host
 * channel.
 *
 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
 * if there is any data remaining to be queued. For an IN transfer, another
 * data packet is always requested. For the SETUP phase of a control transfer,
 * this function does nothing.
 *
 * Return: 1 if a new request is queued, 0 if no more requests are required
 * for this transfer
 */
int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
			      struct dwc2_host_chan *chan)
{
2006 2007 2008
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

	if (chan->do_split)
		/* SPLITs always queue just once per channel */
		return 0;

	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
		/* SETUPs are queued only once since they can't be NAK'd */
		return 0;

	if (chan->ep_is_in) {
		/*
		 * Always queue another request for other IN transfers. If
		 * back-to-back INs are issued and NAKs are received for both,
		 * the driver may still be processing the first NAK when the
		 * second NAK is received. When the interrupt handler clears
		 * the NAK interrupt for the first NAK, the second NAK will
		 * not be seen. So we can't depend on the NAK interrupt
		 * handler to requeue a NAK'd request. Instead, IN requests
		 * are issued each time this function is called. When the
		 * transfer completes, the extra requests for the channel will
		 * be flushed.
		 */
		u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));

		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
		hcchar |= HCCHAR_CHENA;
		hcchar &= ~HCCHAR_CHDIS;
2036 2037 2038
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
				 hcchar);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
		chan->requests++;
		return 1;
	}

	/* OUT transfers */

	if (chan->xfer_count < chan->xfer_len) {
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
			u32 hcchar = readl(hsotg->regs +
					   HCCHAR(chan->hc_num));

			dwc2_hc_set_even_odd_frame(hsotg, chan,
						   &hcchar);
		}

		/* Load OUT packet into the appropriate Tx FIFO */
		dwc2_hc_write_packet(hsotg, chan);
		chan->requests++;
		return 1;
	}

	return 0;
}

/**
 * dwc2_hc_do_ping() - Starts a PING transfer
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * This function should only be called in Slave mode. The Do Ping bit is set in
 * the HCTSIZ register, then the channel is enabled.
 */
void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u32 hcchar;
	u32 hctsiz;

2079 2080 2081 2082
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

	hctsiz = TSIZ_DOPNG;
	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));

	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;
	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
}

/**
 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 * the HFIR register according to PHY type and speed
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: The caller can modify the value of the HFIR register only after the
 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 * has been set
 */
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
{
	u32 usbcfg;
	u32 hprt0;
	int clock = 60;	/* default value */

	usbcfg = readl(hsotg->regs + GUSBCFG);
	hprt0 = readl(hsotg->regs + HPRT0);

	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
	    !(usbcfg & GUSBCFG_PHYIF16))
		clock = 60;
2116
	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
		clock = 48;
	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
		clock = 30;
	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
		clock = 60;
	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
		clock = 48;
	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2129
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2130
		clock = 48;
2131
	if ((usbcfg & GUSBCFG_PHYSEL) &&
2132
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2133 2134
		clock = 48;

2135
	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		/* High speed case */
		return 125 * clock;
	else
		/* FS/LS case */
		return 1000 * clock;
}

/**
 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 * buffer
 *
 * @core_if: Programming view of DWC_otg controller
 * @dest:    Destination buffer for the packet
 * @bytes:   Number of bytes to copy to the destination
 */
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
{
	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
	u32 *data_buf = (u32 *)dest;
	int word_count = (bytes + 3) / 4;
	int i;

	/*
	 * Todo: Account for the case where dest is not dword aligned. This
	 * requires reading data from the FIFO into a u32 temp buffer, then
	 * moving it into the data buffer.
	 */

	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);

	for (i = 0; i < word_count; i++, data_buf++)
		*data_buf = readl(fifo);
}

/**
 * dwc2_dump_host_registers() - Prints the host registers
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	u32 __iomem *addr;
	int i;

	dev_dbg(hsotg->dev, "Host Global Registers\n");
	addr = hsotg->regs + HCFG;
	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + HFIR;
	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + HFNUM;
	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + HPTXSTS;
	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + HAINT;
	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + HAINTMSK;
	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	if (hsotg->core_params->dma_desc_enable > 0) {
		addr = hsotg->regs + HFLBADDR;
		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
	}

	addr = hsotg->regs + HPRT0;
	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));

	for (i = 0; i < hsotg->core_params->host_channels; i++) {
		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
		addr = hsotg->regs + HCCHAR(i);
		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
		addr = hsotg->regs + HCSPLT(i);
		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
		addr = hsotg->regs + HCINT(i);
		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
		addr = hsotg->regs + HCINTMSK(i);
		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
		addr = hsotg->regs + HCTSIZ(i);
		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
		addr = hsotg->regs + HCDMA(i);
		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
			(unsigned long)addr, readl(addr));
		if (hsotg->core_params->dma_desc_enable > 0) {
			addr = hsotg->regs + HCDMAB(i);
			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
				(unsigned long)addr, readl(addr));
		}
	}
#endif
}

/**
 * dwc2_dump_global_registers() - Prints the core global registers
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	u32 __iomem *addr;

	dev_dbg(hsotg->dev, "Core Global Registers\n");
	addr = hsotg->regs + GOTGCTL;
	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GOTGINT;
	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GAHBCFG;
	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GUSBCFG;
	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GRSTCTL;
	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GINTSTS;
	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GINTMSK;
	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GRXSTSR;
	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GRXFSIZ;
	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GNPTXFSIZ;
	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GNPTXSTS;
	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GI2CCTL;
	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GPVNDCTL;
	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GGPIO;
	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GUID;
	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GSNPSID;
	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GHWCFG1;
	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GHWCFG2;
	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GHWCFG3;
	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GHWCFG4;
	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GLPMCFG;
	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GPWRDN;
	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + GDFIFOCFG;
	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
	addr = hsotg->regs + HPTXFSIZ;
	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));

	addr = hsotg->regs + PCGCTL;
	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
		(unsigned long)addr, readl(addr));
#endif
}

/**
 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
 *
 * @hsotg: Programming view of DWC_otg controller
 * @num:   Tx FIFO to flush
 */
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
{
	u32 greset;
	int count = 0;

	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);

	greset = GRSTCTL_TXFFLSH;
	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
	writel(greset, hsotg->regs + GRSTCTL);

	do {
		greset = readl(hsotg->regs + GRSTCTL);
		if (++count > 10000) {
			dev_warn(hsotg->dev,
				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
				 __func__, greset,
				 readl(hsotg->regs + GNPTXSTS));
			break;
		}
		udelay(1);
	} while (greset & GRSTCTL_TXFFLSH);

	/* Wait for at least 3 PHY Clocks */
	udelay(1);
}

/**
 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
{
	u32 greset;
	int count = 0;

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

	greset = GRSTCTL_RXFFLSH;
	writel(greset, hsotg->regs + GRSTCTL);

	do {
		greset = readl(hsotg->regs + GRSTCTL);
		if (++count > 10000) {
			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
				 __func__, greset);
			break;
		}
		udelay(1);
	} while (greset & GRSTCTL_RXFFLSH);

	/* Wait for at least 3 PHY Clocks */
	udelay(1);
}

2397
#define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
2398 2399

/* Parameter access functions */
2400
void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2401 2402 2403 2404 2405
{
	int valid = 1;

	switch (val) {
	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2406
		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2407 2408 2409
			valid = 0;
		break;
	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2410
		switch (hsotg->hw_params.op_mode) {
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
			break;
		default:
			valid = 0;
			break;
		}
		break;
	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
		/* always valid */
		break;
	default:
		valid = 0;
		break;
	}

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for otg_cap parameter. Check HW configuration.\n",
				val);
2434
		switch (hsotg->hw_params.op_mode) {
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
			break;
		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
			break;
		default:
			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
			break;
		}
		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
	}

	hsotg->core_params->otg_cap = val;
}

2453
void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2454 2455 2456
{
	int valid = 1;

2457
	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2458 2459 2460 2461 2462 2463 2464 2465 2466
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_enable parameter. Check HW configuration.\n",
				val);
2467
		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2468 2469 2470 2471 2472 2473
		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
	}

	hsotg->core_params->dma_enable = val;
}

2474
void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2475 2476 2477 2478
{
	int valid = 1;

	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2479
			!hsotg->hw_params.dma_desc_enable))
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
				val);
		val = (hsotg->core_params->dma_enable > 0 &&
2490
			hsotg->hw_params.dma_desc_enable);
2491 2492 2493 2494 2495 2496
		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
	}

	hsotg->core_params->dma_desc_enable = val;
}

2497 2498
void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
						 int val)
2499
{
2500
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for host_support_fs_low_power\n");
			dev_err(hsotg->dev,
				"host_support_fs_low_power must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev,
			"Setting host_support_fs_low_power to %d\n", val);
	}

	hsotg->core_params->host_support_fs_ls_low_power = val;
}

2515
void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2516 2517 2518
{
	int valid = 1;

2519
	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2520 2521 2522 2523 2524 2525 2526 2527 2528
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
				val);
2529
		val = hsotg->hw_params.enable_dynamic_fifo;
2530 2531 2532 2533 2534 2535
		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
	}

	hsotg->core_params->enable_dynamic_fifo = val;
}

2536
void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2537 2538 2539
{
	int valid = 1;

2540
	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2541 2542 2543 2544 2545 2546 2547
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
				val);
2548
		val = hsotg->hw_params.host_rx_fifo_size;
2549 2550 2551 2552 2553 2554
		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
	}

	hsotg->core_params->host_rx_fifo_size = val;
}

2555
void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2556 2557 2558
{
	int valid = 1;

2559
	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2560 2561 2562 2563 2564 2565 2566
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
				val);
2567
		val = hsotg->hw_params.host_nperio_tx_fifo_size;
2568 2569 2570 2571 2572 2573 2574
		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
			val);
	}

	hsotg->core_params->host_nperio_tx_fifo_size = val;
}

2575
void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2576 2577 2578
{
	int valid = 1;

2579
	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2580 2581 2582 2583 2584 2585 2586
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
				val);
2587
		val = hsotg->hw_params.host_perio_tx_fifo_size;
2588 2589 2590 2591 2592 2593 2594
		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
			val);
	}

	hsotg->core_params->host_perio_tx_fifo_size = val;
}

2595
void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2596 2597 2598
{
	int valid = 1;

2599
	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2600 2601 2602 2603 2604 2605 2606
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for max_transfer_size. Check HW configuration.\n",
				val);
2607
		val = hsotg->hw_params.max_transfer_size;
2608 2609 2610 2611 2612 2613
		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
	}

	hsotg->core_params->max_transfer_size = val;
}

2614
void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2615 2616 2617
{
	int valid = 1;

2618
	if (val < 15 || val > hsotg->hw_params.max_packet_count)
2619 2620 2621 2622 2623 2624 2625
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for max_packet_count. Check HW configuration.\n",
				val);
2626
		val = hsotg->hw_params.max_packet_count;
2627 2628 2629 2630 2631 2632
		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
	}

	hsotg->core_params->max_packet_count = val;
}

2633
void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2634 2635 2636
{
	int valid = 1;

2637
	if (val < 1 || val > hsotg->hw_params.host_channels)
2638 2639 2640 2641 2642 2643 2644
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_channels. Check HW configuration.\n",
				val);
2645
		val = hsotg->hw_params.host_channels;
2646 2647 2648 2649 2650 2651
		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
	}

	hsotg->core_params->host_channels = val;
}

2652
void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2653 2654
{
	int valid = 0;
2655
	u32 hs_phy_type, fs_phy_type;
2656

2657 2658
	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
			       DWC2_PHY_TYPE_PARAM_ULPI)) {
2659 2660 2661 2662 2663 2664 2665 2666
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for phy_type\n");
			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
		}

		valid = 0;
	}

2667 2668
	hs_phy_type = hsotg->hw_params.hs_phy_type;
	fs_phy_type = hsotg->hw_params.fs_phy_type;
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
		valid = 1;
	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
		valid = 1;
	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
		valid = 1;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for phy_type. Check HW configuration.\n",
				val);
2686
		val = DWC2_PHY_TYPE_PARAM_FS;
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
				val = DWC2_PHY_TYPE_PARAM_UTMI;
			else
				val = DWC2_PHY_TYPE_PARAM_ULPI;
		}
		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
	}

	hsotg->core_params->phy_type = val;
}

static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
{
	return hsotg->core_params->phy_type;
}

2705
void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2706 2707 2708
{
	int valid = 1;

2709
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2710 2711 2712 2713 2714 2715 2716
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
		}
		valid = 0;
	}

2717 2718
	if (val == DWC2_SPEED_PARAM_HIGH &&
	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2719 2720 2721 2722 2723 2724 2725 2726
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for speed parameter. Check HW configuration.\n",
				val);
		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2727
				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2728 2729 2730 2731 2732 2733
		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
	}

	hsotg->core_params->speed = val;
}

2734
void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2735 2736 2737
{
	int valid = 1;

2738 2739
	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for host_ls_low_power_phy_clk parameter\n");
			dev_err(hsotg->dev,
				"host_ls_low_power_phy_clk must be 0 or 1\n");
		}
		valid = 0;
	}

	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
				val);
		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
			val);
	}

	hsotg->core_params->host_ls_low_power_phy_clk = val;
}

2768
void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2769
{
2770
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
	}

	hsotg->core_params->phy_ulpi_ddr = val;
}

2782
void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2783
{
2784
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for phy_ulpi_ext_vbus\n");
			dev_err(hsotg->dev,
				"phy_ulpi_ext_vbus must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
	}

	hsotg->core_params->phy_ulpi_ext_vbus = val;
}

2798
void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2799
{
2800
	int valid = 0;
2801

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	switch (hsotg->hw_params.utmi_phy_data_width) {
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
		valid = (val == 8);
		break;
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
		valid = (val == 16);
		break;
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
		valid = (val == 8 || val == 16);
		break;
	}

	if (!valid) {
2815
		if (val >= 0) {
2816 2817 2818
			dev_err(hsotg->dev,
				"%d invalid for phy_utmi_width. Check HW configuration.\n",
				val);
2819
		}
2820 2821
		val = (hsotg->hw_params.utmi_phy_data_width ==
		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2822 2823 2824 2825 2826 2827
		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
	}

	hsotg->core_params->phy_utmi_width = val;
}

2828
void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2829
{
2830
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
	}

	hsotg->core_params->ulpi_fs_ls = val;
}

2842
void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2843
{
2844
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
	}

	hsotg->core_params->ts_dline = val;
}

2856
void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2857 2858 2859
{
	int valid = 1;

2860
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2861 2862 2863 2864 2865 2866 2867 2868
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
		}

		valid = 0;
	}

2869
	if (val == 1 && !(hsotg->hw_params.i2c_enable))
2870 2871 2872 2873 2874 2875 2876
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for i2c_enable. Check HW configuration.\n",
				val);
2877
		val = hsotg->hw_params.i2c_enable;
2878 2879 2880 2881 2882 2883
		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
	}

	hsotg->core_params->i2c_enable = val;
}

2884
void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
2885 2886 2887
{
	int valid = 1;

2888
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2889 2890 2891 2892 2893 2894 2895 2896 2897
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for en_multiple_tx_fifo,\n");
			dev_err(hsotg->dev,
				"en_multiple_tx_fifo must be 0 or 1\n");
		}
		valid = 0;
	}

2898
	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
2899 2900 2901 2902 2903 2904 2905
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
				val);
2906
		val = hsotg->hw_params.en_multiple_tx_fifo;
2907 2908 2909 2910 2911 2912
		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
	}

	hsotg->core_params->en_multiple_tx_fifo = val;
}

2913
void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
2914 2915 2916
{
	int valid = 1;

2917
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2918 2919 2920 2921 2922 2923 2924 2925
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter reload_ctl\n", val);
			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
		}
		valid = 0;
	}

2926
	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
2927 2928 2929 2930 2931 2932 2933
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
				val);
2934
		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
2935 2936 2937 2938 2939 2940
		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
	}

	hsotg->core_params->reload_ctl = val;
}

2941
void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
2942
{
2943 2944 2945
	if (val != -1)
		hsotg->core_params->ahbcfg = val;
	else
2946
		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
2947
						GAHBCFG_HBSTLEN_SHIFT;
2948 2949
}

2950
void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
2951
{
2952
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter otg_ver\n", val);
			dev_err(hsotg->dev,
				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
	}

	hsotg->core_params->otg_ver = val;
}

2966
static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter uframe_sched\n",
				val);
			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
		}
		val = 1;
		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
	}

	hsotg->core_params->uframe_sched = val;
}

/*
 * This function is called during module intialization to pass module parameters
 * for the DWC_otg core.
 */
void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
			 const struct dwc2_core_params *params)
{
	dev_dbg(hsotg->dev, "%s()\n", __func__);

	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
			params->host_support_fs_ls_low_power);
	dwc2_set_param_enable_dynamic_fifo(hsotg,
			params->enable_dynamic_fifo);
	dwc2_set_param_host_rx_fifo_size(hsotg,
			params->host_rx_fifo_size);
	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
			params->host_nperio_tx_fifo_size);
	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
			params->host_perio_tx_fifo_size);
	dwc2_set_param_max_transfer_size(hsotg,
			params->max_transfer_size);
	dwc2_set_param_max_packet_count(hsotg,
			params->max_packet_count);
	dwc2_set_param_host_channels(hsotg, params->host_channels);
	dwc2_set_param_phy_type(hsotg, params->phy_type);
	dwc2_set_param_speed(hsotg, params->speed);
	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
			params->host_ls_low_power_phy_clk);
	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
			params->phy_ulpi_ext_vbus);
	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
	dwc2_set_param_en_multiple_tx_fifo(hsotg,
			params->en_multiple_tx_fifo);
	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/**
 * During device initialization, read various hardware configuration
 * registers and interpret the contents.
 */
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hw_params *hw = &hsotg->hw_params;
	unsigned width;
	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
	u32 hptxfsiz, grxfsiz, gnptxfsiz;
	u32 gusbcfg;

	/*
	 * Attempt to ensure this device is really a DWC_otg Controller.
	 * Read and verify the GSNPSID register contents. The value should be
	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
	 * as in "OTG version 2.xx" or "OTG version 3.xx".
	 */
	hw->snpsid = readl(hsotg->regs + GSNPSID);
	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
			hw->snpsid);
		return -ENODEV;
	}

	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);

	hwcfg1 = readl(hsotg->regs + GHWCFG1);
	hwcfg2 = readl(hsotg->regs + GHWCFG2);
	hwcfg3 = readl(hsotg->regs + GHWCFG3);
	hwcfg4 = readl(hsotg->regs + GHWCFG4);
	grxfsiz = readl(hsotg->regs + GRXFSIZ);

	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);

3070
	/* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */
3071 3072 3073 3074 3075
	gusbcfg = readl(hsotg->regs + GUSBCFG);
	gusbcfg |= GUSBCFG_FORCEHOSTMODE;
	writel(gusbcfg, hsotg->regs + GUSBCFG);
	usleep_range(100000, 150000);

3076
	gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
3077
	hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
3078
	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
	gusbcfg = readl(hsotg->regs + GUSBCFG);
	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
	writel(gusbcfg, hsotg->regs + GUSBCFG);
	usleep_range(100000, 150000);

	/* hwcfg2 */
	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
		      GHWCFG2_OP_MODE_SHIFT;
	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
		   GHWCFG2_ARCHITECTURE_SHIFT;
	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
				GHWCFG2_NUM_HOST_CHAN_SHIFT);
	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
			  GHWCFG2_HS_PHY_TYPE_SHIFT;
	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
			  GHWCFG2_FS_PHY_TYPE_SHIFT;
	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
			 GHWCFG2_NUM_DEV_EP_SHIFT;
	hw->nperio_tx_q_depth =
		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
	hw->host_perio_tx_q_depth =
		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
	hw->dev_token_q_depth =
		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;

	/* hwcfg3 */
	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
	hw->max_transfer_size = (1 << (width + 11)) - 1;
3113 3114 3115 3116 3117 3118 3119
	/*
	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
	 * coherent buffers with this size, and if it's too large we can
	 * exhaust the coherent DMA pool.
	 */
	if (hw->max_transfer_size > 65535)
		hw->max_transfer_size = 65535;
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
	hw->max_packet_count = (1 << (width + 4)) - 1;
	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
			      GHWCFG3_DFIFO_DEPTH_SHIFT;

	/* hwcfg4 */
	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
3133 3134
	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

	/* fifo sizes */
	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
				GRXFSIZ_DEPTH_SHIFT;
	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
				       FIFOSIZE_DEPTH_SHIFT;
	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
				      FIFOSIZE_DEPTH_SHIFT;

	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
	dev_dbg(hsotg->dev, "  op_mode=%d\n",
		hw->op_mode);
	dev_dbg(hsotg->dev, "  arch=%d\n",
		hw->arch);
	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
		hw->dma_desc_enable);
	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
		hw->power_optimized);
	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
		hw->i2c_enable);
	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
		hw->hs_phy_type);
	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
		hw->fs_phy_type);
3159 3160
	dev_dbg(hsotg->dev, "  utmi_phy_data_wdith=%d\n",
		hw->utmi_phy_data_width);
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
		hw->num_dev_ep);
	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
		hw->num_dev_perio_in_ep);
	dev_dbg(hsotg->dev, "  host_channels=%d\n",
		hw->host_channels);
	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
		hw->max_transfer_size);
	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
		hw->max_packet_count);
	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
		hw->nperio_tx_q_depth);
	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
		hw->host_perio_tx_q_depth);
	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
		hw->dev_token_q_depth);
	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
		hw->enable_dynamic_fifo);
	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
		hw->en_multiple_tx_fifo);
	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
		hw->total_fifo_size);
	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
		hw->host_rx_fifo_size);
	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
		hw->host_nperio_tx_fifo_size);
	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
		hw->host_perio_tx_fifo_size);
	dev_dbg(hsotg->dev, "\n");

	return 0;
}

3194 3195
u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
{
3196
	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
3197 3198
}

3199
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
3200 3201
{
	if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
3202
		return false;
3203
	else
3204
		return true;
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
}

/**
 * dwc2_enable_global_interrupts() - Enables the controller's Global
 * Interrupt in the AHB Config register
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);

	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
	writel(ahbcfg, hsotg->regs + GAHBCFG);
}

/**
 * dwc2_disable_global_interrupts() - Disables the controller's Global
 * Interrupt in the AHB Config register
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);

	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
	writel(ahbcfg, hsotg->regs + GAHBCFG);
}

MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
MODULE_AUTHOR("Synopsys, Inc.");
MODULE_LICENSE("Dual BSD/GPL");