core.c 94.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * core.c - DesignWare HS OTG Controller common routines
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * The Core code provides basic services for accessing and managing the
 * DWC_otg hardware. These services are used by both the Host Controller
 * Driver and the Peripheral Controller Driver.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>

#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>

#include "core.h"
#include "hcd.h"

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/**
 * dwc2_backup_host_registers() - Backup controller host registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hregs_backup *hr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup Host regs */
75
	hr = &hsotg->hr_backup;
76 77
	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
78
	for (i = 0; i < hsotg->core_params->host_channels; ++i)
79
		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
80

81
	hr->hprt0 = dwc2_read_hprt0(hsotg);
82
	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
83
	hr->valid = true;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

	return 0;
}

/**
 * dwc2_restore_host_registers() - Restore controller host registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hregs_backup *hr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore host regs */
103 104
	hr = &hsotg->hr_backup;
	if (!hr->valid) {
105 106 107 108
		dev_err(hsotg->dev, "%s: no host registers to restore\n",
				__func__);
		return -EINVAL;
	}
109
	hr->valid = false;
110

111 112
	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
113 114

	for (i = 0; i < hsotg->core_params->host_channels; ++i)
115
		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
116

117 118
	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
119
	hsotg->frame_number = 0;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

	return 0;
}
#else
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
148
	dr = &hsotg->dr_backup;
149

150 151 152 153 154
	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
155 156 157

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
158
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
159 160 161 162 163 164 165

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

166 167
		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
168 169

		/* Backup OUT EPs */
170
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
171 172 173 174 175 176 177

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

178 179
		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
180
	}
181
	dr->valid = true;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
201 202
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
203 204 205 206
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
				__func__);
		return -EINVAL;
	}
207
	dr->valid = false;
208

209 210 211 212 213
	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
214 215 216

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
217 218 219
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
220 221

		/* Restore OUT EPs */
222 223 224
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
225 226 227
	}

	/* Set the Power-On Programming done bit */
228
	dctl = dwc2_readl(hsotg->regs + DCTL);
229
	dctl |= DCTL_PWRONPRGDONE;
230
	dwc2_writel(dctl, hsotg->regs + DCTL);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	return 0;
}
#else
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

/**
 * dwc2_backup_global_registers() - Backup global controller registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_gregs_backup *gr;
	int i;

	/* Backup global regs */
255
	gr = &hsotg->gr_backup;
256

257 258 259 260 261 262 263 264
	gr->gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
	gr->gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
	gr->gahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
	gr->gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	gr->grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
	gr->gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
	gr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
	gr->gdfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
265
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
266
		gr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
267

268
	gr->valid = true;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	return 0;
}

/**
 * dwc2_restore_global_registers() - Restore controller global registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_gregs_backup *gr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore global regs */
287 288
	gr = &hsotg->gr_backup;
	if (!gr->valid) {
289 290 291 292
		dev_err(hsotg->dev, "%s: no global registers to restore\n",
				__func__);
		return -EINVAL;
	}
293
	gr->valid = false;
294

295 296 297 298 299 300 301 302 303
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
	dwc2_writel(gr->gotgctl, hsotg->regs + GOTGCTL);
	dwc2_writel(gr->gintmsk, hsotg->regs + GINTMSK);
	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
	dwc2_writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
	dwc2_writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
	dwc2_writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
	dwc2_writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
	dwc2_writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
304
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
305
		dwc2_writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	return 0;
}

/**
 * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
 *
 * @hsotg: Programming view of the DWC_otg controller
 * @restore: Controller registers need to be restored
 */
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
{
	u32 pcgcctl;
	int ret = 0;

321 322 323
	if (!hsotg->core_params->hibernation)
		return -ENOTSUPP;

324
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
325
	pcgcctl &= ~PCGCTL_STOPPCLK;
326
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
327

328
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
329
	pcgcctl &= ~PCGCTL_PWRCLMP;
330
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
331

332
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
333
	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
334
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

	udelay(100);
	if (restore) {
		ret = dwc2_restore_global_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to restore registers\n",
					__func__);
			return ret;
		}
		if (dwc2_is_host_mode(hsotg)) {
			ret = dwc2_restore_host_registers(hsotg);
			if (ret) {
				dev_err(hsotg->dev, "%s: failed to restore host registers\n",
						__func__);
				return ret;
			}
		} else {
			ret = dwc2_restore_device_registers(hsotg);
			if (ret) {
				dev_err(hsotg->dev, "%s: failed to restore device registers\n",
						__func__);
				return ret;
			}
		}
	}

	return ret;
}

/**
 * dwc2_enter_hibernation() - Put controller in Partial Power Down.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
{
	u32 pcgcctl;
	int ret = 0;

374 375 376
	if (!hsotg->core_params->hibernation)
		return -ENOTSUPP;

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/* Backup all registers */
	ret = dwc2_backup_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
				__func__);
		return ret;
	}

	if (dwc2_is_host_mode(hsotg)) {
		ret = dwc2_backup_host_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to backup host registers\n",
					__func__);
			return ret;
		}
	} else {
		ret = dwc2_backup_device_registers(hsotg);
		if (ret) {
			dev_err(hsotg->dev, "%s: failed to backup device registers\n",
					__func__);
			return ret;
		}
	}

401 402 403 404 405 406
	/*
	 * Clear any pending interrupts since dwc2 will not be able to
	 * clear them after entering hibernation.
	 */
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);

407
	/* Put the controller in low power state */
408
	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
409 410

	pcgcctl |= PCGCTL_PWRCLMP;
411
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
412 413 414
	ndelay(20);

	pcgcctl |= PCGCTL_RSTPDWNMODULE;
415
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
416 417 418
	ndelay(20);

	pcgcctl |= PCGCTL_STOPPCLK;
419
	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
420 421 422 423

	return ret;
}

424 425 426 427 428 429 430 431 432 433 434
/**
 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
 * used in both device and host modes
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk;

	/* Clear any pending OTG Interrupts */
435
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
436 437

	/* Clear any pending interrupts */
438
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
439 440 441 442 443 444

	/* Enable the interrupts in the GINTMSK */
	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;

	if (hsotg->core_params->dma_enable <= 0)
		intmsk |= GINTSTS_RXFLVL;
445 446
	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;
447

448
	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
449 450
		  GINTSTS_SESSREQINT;

451
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
452 453 454 455 456 457 458 459 460 461
}

/*
 * Initializes the FSLSPClkSel field of the HCFG register depending on the
 * PHY type
 */
static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
{
	u32 hcfg, val;

462 463
	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
464 465 466 467 468 469 470 471 472 473
	     hsotg->core_params->ulpi_fs_ls > 0) ||
	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
		/* Full speed PHY */
		val = HCFG_FSLSPCLKSEL_48_MHZ;
	} else {
		/* High speed PHY running at full speed or high speed */
		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
	}

	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
474
	hcfg = dwc2_readl(hsotg->regs + HCFG);
475
	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
476
	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
477
	dwc2_writel(hcfg, hsotg->regs + HCFG);
478 479 480 481 482 483
}

/*
 * Do core a soft reset of the core.  Be careful with this because it
 * resets all the internal state machines of the core.
 */
484
static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
485 486 487
{
	u32 greset;
	int count = 0;
488
	u32 gusbcfg;
489 490 491 492 493 494

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

	/* Wait for AHB master IDLE state */
	do {
		usleep_range(20000, 40000);
495
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
496 497 498 499
		if (++count > 50) {
			dev_warn(hsotg->dev,
				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
				 __func__, greset);
500
			return -EBUSY;
501 502 503 504 505 506
		}
	} while (!(greset & GRSTCTL_AHBIDLE));

	/* Core Soft Reset */
	count = 0;
	greset |= GRSTCTL_CSFTRST;
507
	dwc2_writel(greset, hsotg->regs + GRSTCTL);
508 509
	do {
		usleep_range(20000, 40000);
510
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
511 512 513 514
		if (++count > 50) {
			dev_warn(hsotg->dev,
				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
				 __func__, greset);
515
			return -EBUSY;
516 517 518
		}
	} while (greset & GRSTCTL_CSFTRST);

519
	if (hsotg->dr_mode == USB_DR_MODE_HOST) {
520
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
521 522
		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
		gusbcfg |= GUSBCFG_FORCEHOSTMODE;
523
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
524
	} else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
525
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
526 527
		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
		gusbcfg |= GUSBCFG_FORCEDEVMODE;
528
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
529
	} else if (hsotg->dr_mode == USB_DR_MODE_OTG) {
530
		gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
531 532
		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
533
		dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
534 535
	}

536 537 538 539 540
	/*
	 * NOTE: This long sleep is _very_ important, otherwise the core will
	 * not stay in host mode after a connector ID change!
	 */
	usleep_range(150000, 200000);
541 542

	return 0;
543 544
}

545
static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
546 547
{
	u32 usbcfg, i2cctl;
548
	int retval = 0;
549 550 551 552 553 554 555

	/*
	 * core_init() is now called on every switch so only call the
	 * following for the first time through
	 */
	if (select_phy) {
		dev_dbg(hsotg->dev, "FS PHY selected\n");
556
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
557
		usbcfg |= GUSBCFG_PHYSEL;
558
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
559 560

		/* Reset after a PHY select */
561 562 563 564 565 566
		retval = dwc2_core_reset(hsotg);
		if (retval) {
			dev_err(hsotg->dev, "%s() Reset failed, aborting",
					__func__);
			return retval;
		}
567 568 569 570 571 572 573 574 575 576 577 578 579 580
	}

	/*
	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
	 * do this on HNP Dev/Host mode switches (done in dev_init and
	 * host_init).
	 */
	if (dwc2_is_host_mode(hsotg))
		dwc2_init_fs_ls_pclk_sel(hsotg);

	if (hsotg->core_params->i2c_enable > 0) {
		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");

		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
581
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
582
		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
583
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
584 585

		/* Program GI2CCTL.I2CEn */
586
		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
587 588 589
		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
		i2cctl &= ~GI2CCTL_I2CEN;
590
		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
591
		i2cctl |= GI2CCTL_I2CEN;
592
		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
593
	}
594 595

	return retval;
596 597
}

598
static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
599 600
{
	u32 usbcfg;
601
	int retval = 0;
602 603

	if (!select_phy)
604
		return 0;
605

606
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	/*
	 * HS PHY parameters. These parameters are preserved during soft reset
	 * so only program the first time. Do a soft reset immediately after
	 * setting phyif.
	 */
	switch (hsotg->core_params->phy_type) {
	case DWC2_PHY_TYPE_PARAM_ULPI:
		/* ULPI interface */
		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
		if (hsotg->core_params->phy_ulpi_ddr > 0)
			usbcfg |= GUSBCFG_DDRSEL;
		break;
	case DWC2_PHY_TYPE_PARAM_UTMI:
		/* UTMI+ interface */
		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
		if (hsotg->core_params->phy_utmi_width == 16)
			usbcfg |= GUSBCFG_PHYIF16;
		break;
	default:
		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
		break;
	}

634
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
635 636

	/* Reset after setting the PHY parameters */
637 638 639 640 641 642 643 644
	retval = dwc2_core_reset(hsotg);
	if (retval) {
		dev_err(hsotg->dev, "%s() Reset failed, aborting",
				__func__);
		return retval;
	}

	return retval;
645 646
}

647
static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
648
{
649
	u32 usbcfg;
650
	int retval = 0;
651 652 653 654

	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
		/* If FS mode with FS PHY */
655 656 657
		retval = dwc2_fs_phy_init(hsotg, select_phy);
		if (retval)
			return retval;
658 659
	} else {
		/* High speed PHY */
660 661 662
		retval = dwc2_hs_phy_init(hsotg, select_phy);
		if (retval)
			return retval;
663 664
	}

665 666
	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
667 668
	    hsotg->core_params->ulpi_fs_ls > 0) {
		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
669
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
670 671
		usbcfg |= GUSBCFG_ULPI_FS_LS;
		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
672
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
673
	} else {
674
		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
675 676
		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
677
		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
678
	}
679 680

	return retval;
681 682 683 684
}

static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
{
685
	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
686

687
	switch (hsotg->hw_params.arch) {
688 689 690 691 692 693
	case GHWCFG2_EXT_DMA_ARCH:
		dev_err(hsotg->dev, "External DMA Mode not supported\n");
		return -EINVAL;

	case GHWCFG2_INT_DMA_ARCH:
		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
694 695 696 697 698
		if (hsotg->core_params->ahbcfg != -1) {
			ahbcfg &= GAHBCFG_CTRL_MASK;
			ahbcfg |= hsotg->core_params->ahbcfg &
				  ~GAHBCFG_CTRL_MASK;
		}
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		break;

	case GHWCFG2_SLAVE_ONLY_ARCH:
	default:
		dev_dbg(hsotg->dev, "Slave Only Mode\n");
		break;
	}

	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
		hsotg->core_params->dma_enable,
		hsotg->core_params->dma_desc_enable);

	if (hsotg->core_params->dma_enable > 0) {
		if (hsotg->core_params->dma_desc_enable > 0)
			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
		else
			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
	} else {
		dev_dbg(hsotg->dev, "Using Slave mode\n");
		hsotg->core_params->dma_desc_enable = 0;
	}

	if (hsotg->core_params->dma_enable > 0)
		ahbcfg |= GAHBCFG_DMA_EN;

724
	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
725 726 727 728 729 730 731 732

	return 0;
}

static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
{
	u32 usbcfg;

733
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
734 735
	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);

736
	switch (hsotg->hw_params.op_mode) {
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
		if (hsotg->core_params->otg_cap ==
				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_HNPCAP;
		if (hsotg->core_params->otg_cap !=
				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_SRPCAP;
		break;

	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
		if (hsotg->core_params->otg_cap !=
				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
			usbcfg |= GUSBCFG_SRPCAP;
		break;

	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
	default:
		break;
	}

761
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
762 763 764 765 766 767 768 769
}

/**
 * dwc2_core_init() - Initializes the DWC_otg controller registers and
 * prepares the core for device mode or host mode operation
 *
 * @hsotg:      Programming view of the DWC_otg controller
 * @select_phy: If true then also set the Phy type
770
 * @irq:        If >= 0, the irq to register
771
 */
772
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
773 774 775 776 777 778
{
	u32 usbcfg, otgctl;
	int retval;

	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);

779
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
780 781 782 783 784 785 786 787 788 789 790 791

	/* Set ULPI External VBUS bit if needed */
	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
	if (hsotg->core_params->phy_ulpi_ext_vbus ==
				DWC2_PHY_ULPI_EXTERNAL_VBUS)
		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;

	/* Set external TS Dline pulsing bit if needed */
	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
	if (hsotg->core_params->ts_dline > 0)
		usbcfg |= GUSBCFG_TERMSELDLPULSE;

792
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
793 794

	/* Reset the Controller */
795 796 797 798 799 800
	retval = dwc2_core_reset(hsotg);
	if (retval) {
		dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
				__func__);
		return retval;
	}
801 802 803 804

	/*
	 * This needs to happen in FS mode before any other programming occurs
	 */
805 806 807
	retval = dwc2_phy_init(hsotg, select_phy);
	if (retval)
		return retval;
808 809 810 811 812 813 814 815 816 817

	/* Program the GAHBCFG Register */
	retval = dwc2_gahbcfg_init(hsotg);
	if (retval)
		return retval;

	/* Program the GUSBCFG register */
	dwc2_gusbcfg_init(hsotg);

	/* Program the GOTGCTL register */
818
	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
819 820 821
	otgctl &= ~GOTGCTL_OTGVER;
	if (hsotg->core_params->otg_ver > 0)
		otgctl |= GOTGCTL_OTGVER;
822
	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
823 824 825 826 827 828 829 830 831
	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);

	/* Clear the SRP success bit for FS-I2c */
	hsotg->srp_success = 0;

	/* Enable common interrupts */
	dwc2_enable_common_interrupts(hsotg);

	/*
832
	 * Do device or host initialization based on mode during PCD and
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	 * HCD initialization
	 */
	if (dwc2_is_host_mode(hsotg)) {
		dev_dbg(hsotg->dev, "Host Mode\n");
		hsotg->op_state = OTG_STATE_A_HOST;
	} else {
		dev_dbg(hsotg->dev, "Device Mode\n");
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
	}

	return 0;
}

/**
 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
{
	u32 intmsk;

	dev_dbg(hsotg->dev, "%s()\n", __func__);

	/* Disable all interrupts */
858 859
	dwc2_writel(0, hsotg->regs + GINTMSK);
	dwc2_writel(0, hsotg->regs + HAINTMSK);
860 861 862 863 864

	/* Enable the common interrupts */
	dwc2_enable_common_interrupts(hsotg);

	/* Enable host mode interrupts without disturbing common interrupts */
865
	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
866
	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
867
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
868 869 870 871 872 873 874 875 876
}

/**
 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
{
877
	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
878 879 880

	/* Disable host mode interrupts without disturbing common interrupts */
	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
881
		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
882
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
883 884
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
/*
 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 * For system that have a total fifo depth that is smaller than the default
 * RX + TX fifo size.
 *
 * @hsotg: Programming view of DWC_otg controller
 */
static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
{
	struct dwc2_core_params *params = hsotg->core_params;
	struct dwc2_hw_params *hw = &hsotg->hw_params;
	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;

	total_fifo_size = hw->total_fifo_size;
	rxfsiz = params->host_rx_fifo_size;
	nptxfsiz = params->host_nperio_tx_fifo_size;
	ptxfsiz = params->host_perio_tx_fifo_size;

	/*
	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
	 * allocation with support for high bandwidth endpoints. Synopsys
	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
	 * non-periodic as 512.
	 */
	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
		/*
		 * For Buffer DMA mode/Scatter Gather DMA mode
		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
		 * with n = number of host channel.
		 * 2 * ((1024/4) + 2) = 516
		 */
		rxfsiz = 516 + hw->host_channels;

		/*
		 * min non-periodic tx fifo depth
		 * 2 * (largest non-periodic USB packet used / 4)
		 * 2 * (512/4) = 256
		 */
		nptxfsiz = 256;

		/*
		 * min periodic tx fifo depth
		 * (largest packet size*MC)/4
		 * (1024 * 3)/4 = 768
		 */
		ptxfsiz = 768;

		params->host_rx_fifo_size = rxfsiz;
		params->host_nperio_tx_fifo_size = nptxfsiz;
		params->host_perio_tx_fifo_size = ptxfsiz;
	}

	/*
	 * If the summation of RX, NPTX and PTX fifo sizes is still
	 * bigger than the total_fifo_size, then we have a problem.
	 *
	 * We won't be able to allocate as many endpoints. Right now,
	 * we're just printing an error message, but ideally this FIFO
	 * allocation algorithm would be improved in the future.
	 *
	 * FIXME improve this FIFO allocation algorithm.
	 */
	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
		dev_err(hsotg->dev, "invalid fifo sizes\n");
}

951 952 953
static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
{
	struct dwc2_core_params *params = hsotg->core_params;
954
	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
955

956
	if (!params->enable_dynamic_fifo)
957 958
		return;

959 960
	dwc2_calculate_dynamic_fifo(hsotg);

961
	/* Rx FIFO */
962
	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
963 964 965 966
	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
	grxfsiz |= params->host_rx_fifo_size <<
		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
967 968 969
	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
		dwc2_readl(hsotg->regs + GRXFSIZ));
970 971 972

	/* Non-periodic Tx FIFO */
	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
973
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
974 975 976 977
	nptxfsiz = params->host_nperio_tx_fifo_size <<
		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
	nptxfsiz |= params->host_rx_fifo_size <<
		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
978
	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
979
	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
980
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
981 982 983

	/* Periodic Tx FIFO */
	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
984
		dwc2_readl(hsotg->regs + HPTXFSIZ));
985 986 987 988 989
	hptxfsiz = params->host_perio_tx_fifo_size <<
		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
	hptxfsiz |= (params->host_rx_fifo_size +
		     params->host_nperio_tx_fifo_size) <<
		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
990
	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
991
	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
992
		dwc2_readl(hsotg->regs + HPTXFSIZ));
993 994

	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
995
	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
996 997 998 999
		/*
		 * Global DFIFOCFG calculation for Host mode -
		 * include RxFIFO, NPTXFIFO and HPTXFIFO
		 */
1000
		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
1001
		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
1002 1003 1004
		dfifocfg |= (params->host_rx_fifo_size +
			     params->host_nperio_tx_fifo_size +
			     params->host_perio_tx_fifo_size) <<
1005 1006
			    GDFIFOCFG_EPINFOBASE_SHIFT &
			    GDFIFOCFG_EPINFOBASE_MASK;
1007
		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	}
}

/**
 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
 * Host mode
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
 * request queues. Host channels are reset to ensure that they are ready for
 * performing transfers.
 */
void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
{
	u32 hcfg, hfir, otgctl;

	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);

	/* Restart the Phy Clock */
1028
	dwc2_writel(0, hsotg->regs + PCGCTL);
1029 1030 1031 1032

	/* Initialize Host Configuration Register */
	dwc2_init_fs_ls_pclk_sel(hsotg);
	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
1033
		hcfg = dwc2_readl(hsotg->regs + HCFG);
1034
		hcfg |= HCFG_FSLSSUPP;
1035
		dwc2_writel(hcfg, hsotg->regs + HCFG);
1036 1037 1038 1039
	}

	/*
	 * This bit allows dynamic reloading of the HFIR register during
1040
	 * runtime. This bit needs to be programmed during initial configuration
1041 1042 1043
	 * and its value must not be changed during runtime.
	 */
	if (hsotg->core_params->reload_ctl > 0) {
1044
		hfir = dwc2_readl(hsotg->regs + HFIR);
1045
		hfir |= HFIR_RLDCTRL;
1046
		dwc2_writel(hfir, hsotg->regs + HFIR);
1047 1048 1049
	}

	if (hsotg->core_params->dma_desc_enable > 0) {
1050 1051 1052
		u32 op_mode = hsotg->hw_params.op_mode;
		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
		    !hsotg->hw_params.dma_desc_enable ||
1053 1054 1055 1056 1057 1058 1059 1060 1061
		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
			dev_err(hsotg->dev,
				"Hardware does not support descriptor DMA mode -\n");
			dev_err(hsotg->dev,
				"falling back to buffer DMA mode.\n");
			hsotg->core_params->dma_desc_enable = 0;
		} else {
1062
			hcfg = dwc2_readl(hsotg->regs + HCFG);
1063
			hcfg |= HCFG_DESCDMA;
1064
			dwc2_writel(hcfg, hsotg->regs + HCFG);
1065 1066 1067 1068 1069 1070 1071 1072
		}
	}

	/* Configure data FIFO sizes */
	dwc2_config_fifos(hsotg);

	/* TODO - check this */
	/* Clear Host Set HNP Enable in the OTG Control Register */
1073
	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1074
	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1075
	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1076 1077 1078 1079 1080 1081

	/* Make sure the FIFOs are flushed */
	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
	dwc2_flush_rx_fifo(hsotg);

	/* Clear Host Set HNP Enable in the OTG Control Register */
1082
	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1083
	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1084
	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1085 1086 1087 1088 1089 1090 1091 1092

	if (hsotg->core_params->dma_desc_enable <= 0) {
		int num_channels, i;
		u32 hcchar;

		/* Flush out any leftover queued requests */
		num_channels = hsotg->core_params->host_channels;
		for (i = 0; i < num_channels; i++) {
1093
			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1094 1095 1096
			hcchar &= ~HCCHAR_CHENA;
			hcchar |= HCCHAR_CHDIS;
			hcchar &= ~HCCHAR_EPDIR;
1097
			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1098 1099 1100 1101 1102 1103
		}

		/* Halt all channels to put them into a known state */
		for (i = 0; i < num_channels; i++) {
			int count = 0;

1104
			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1105 1106
			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
			hcchar &= ~HCCHAR_EPDIR;
1107
			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1108 1109 1110
			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
				__func__, i);
			do {
1111
				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
				if (++count > 1000) {
					dev_err(hsotg->dev,
						"Unable to clear enable on channel %d\n",
						i);
					break;
				}
				udelay(1);
			} while (hcchar & HCCHAR_CHENA);
		}
	}

	/* Turn on the vbus power */
	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
	if (hsotg->op_state == OTG_STATE_A_HOST) {
		u32 hprt0 = dwc2_read_hprt0(hsotg);

		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
			!!(hprt0 & HPRT0_PWR));
		if (!(hprt0 & HPRT0_PWR)) {
			hprt0 |= HPRT0_PWR;
1132
			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		}
	}

	dwc2_enable_host_interrupts(hsotg);
}

static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
				      struct dwc2_host_chan *chan)
{
	u32 hcintmsk = HCINTMSK_CHHLTD;

	switch (chan->ep_type) {
	case USB_ENDPOINT_XFER_CONTROL:
	case USB_ENDPOINT_XFER_BULK:
		dev_vdbg(hsotg->dev, "control/bulk\n");
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_STALL;
		hcintmsk |= HCINTMSK_XACTERR;
		hcintmsk |= HCINTMSK_DATATGLERR;
		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_BBLERR;
		} else {
			hcintmsk |= HCINTMSK_NAK;
			hcintmsk |= HCINTMSK_NYET;
			if (chan->do_ping)
				hcintmsk |= HCINTMSK_ACK;
		}

		if (chan->do_split) {
			hcintmsk |= HCINTMSK_NAK;
			if (chan->complete_split)
				hcintmsk |= HCINTMSK_NYET;
			else
				hcintmsk |= HCINTMSK_ACK;
		}

		if (chan->error_state)
			hcintmsk |= HCINTMSK_ACK;
		break;

	case USB_ENDPOINT_XFER_INT:
1174 1175
		if (dbg_perio())
			dev_vdbg(hsotg->dev, "intr\n");
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_NAK;
		hcintmsk |= HCINTMSK_STALL;
		hcintmsk |= HCINTMSK_XACTERR;
		hcintmsk |= HCINTMSK_DATATGLERR;
		hcintmsk |= HCINTMSK_FRMOVRUN;

		if (chan->ep_is_in)
			hcintmsk |= HCINTMSK_BBLERR;
		if (chan->error_state)
			hcintmsk |= HCINTMSK_ACK;
		if (chan->do_split) {
			if (chan->complete_split)
				hcintmsk |= HCINTMSK_NYET;
			else
				hcintmsk |= HCINTMSK_ACK;
		}
		break;

	case USB_ENDPOINT_XFER_ISOC:
1196 1197
		if (dbg_perio())
			dev_vdbg(hsotg->dev, "isoc\n");
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		hcintmsk |= HCINTMSK_XFERCOMPL;
		hcintmsk |= HCINTMSK_FRMOVRUN;
		hcintmsk |= HCINTMSK_ACK;

		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_XACTERR;
			hcintmsk |= HCINTMSK_BBLERR;
		}
		break;
	default:
		dev_err(hsotg->dev, "## Unknown EP type ##\n");
		break;
	}

1212
	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1213 1214
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
}

static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
				    struct dwc2_host_chan *chan)
{
	u32 hcintmsk = HCINTMSK_CHHLTD;

	/*
	 * For Descriptor DMA mode core halts the channel on AHB error.
	 * Interrupt is not required.
	 */
	if (hsotg->core_params->dma_desc_enable <= 0) {
1227 1228
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1229 1230
		hcintmsk |= HCINTMSK_AHBERR;
	} else {
1231 1232
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1233 1234 1235 1236 1237 1238
		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			hcintmsk |= HCINTMSK_XFERCOMPL;
	}

	if (chan->error_state && !chan->do_split &&
	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1239 1240
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "setting ACK\n");
1241 1242 1243 1244 1245 1246 1247 1248
		hcintmsk |= HCINTMSK_ACK;
		if (chan->ep_is_in) {
			hcintmsk |= HCINTMSK_DATATGLERR;
			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
				hcintmsk |= HCINTMSK_NAK;
		}
	}

1249
	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1250 1251
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1252 1253 1254 1255 1256 1257 1258 1259
}

static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
				struct dwc2_host_chan *chan)
{
	u32 intmsk;

	if (hsotg->core_params->dma_enable > 0) {
1260 1261
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA enabled\n");
1262 1263
		dwc2_hc_enable_dma_ints(hsotg, chan);
	} else {
1264 1265
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA disabled\n");
1266 1267 1268 1269
		dwc2_hc_enable_slave_ints(hsotg, chan);
	}

	/* Enable the top level host channel interrupt */
1270
	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
1271
	intmsk |= 1 << chan->hc_num;
1272
	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
1273 1274
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1275 1276

	/* Make sure host channel interrupts are enabled */
1277
	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
1278
	intmsk |= GINTSTS_HCHINT;
1279
	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
1280 1281
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
}

/**
 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 * a specific endpoint
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * The HCCHARn register is set up with the characteristics specified in chan.
 * Host channel interrupts that may need to be serviced while this transfer is
 * in progress are enabled.
 */
void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u8 hc_num = chan->hc_num;
	u32 hcintmsk;
	u32 hcchar;
	u32 hcsplt = 0;

1302 1303
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1304 1305 1306 1307

	/* Clear old interrupt conditions for this host channel */
	hcintmsk = 0xffffffff;
	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1308
	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/* Enable channel interrupts required for this transfer */
	dwc2_hc_enable_ints(hsotg, chan);

	/*
	 * Program the HCCHARn register with the endpoint characteristics for
	 * the current transfer
	 */
	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
	if (chan->ep_is_in)
		hcchar |= HCCHAR_EPDIR;
	if (chan->speed == USB_SPEED_LOW)
		hcchar |= HCCHAR_LSPDDEV;
	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1325
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1326 1327 1328 1329
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
			 hc_num, hcchar);

1330 1331
		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
			 __func__, hc_num);
1332
		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
1333
			 chan->dev_addr);
1334
		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
1335
			 chan->ep_num);
1336
		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
1337
			 chan->ep_is_in);
1338
		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
1339
			 chan->speed == USB_SPEED_LOW);
1340
		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
1341
			 chan->ep_type);
1342
		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
1343
			 chan->max_packet);
1344
	}
1345 1346 1347

	/* Program the HCSPLT register for SPLITs */
	if (chan->do_split) {
1348 1349 1350 1351 1352
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev,
				 "Programming HC %d with split --> %s\n",
				 hc_num,
				 chan->complete_split ? "CSPLIT" : "SSPLIT");
1353 1354 1355 1356 1357 1358 1359 1360
		if (chan->complete_split)
			hcsplt |= HCSPLT_COMPSPLT;
		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
			  HCSPLT_XACTPOS_MASK;
		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
			  HCSPLT_HUBADDR_MASK;
		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
			  HCSPLT_PRTADDR_MASK;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		if (dbg_hc(chan)) {
			dev_vdbg(hsotg->dev, "	  comp split %d\n",
				 chan->complete_split);
			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
				 chan->xact_pos);
			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
				 chan->hub_addr);
			dev_vdbg(hsotg->dev, "	  hub port %d\n",
				 chan->hub_port);
			dev_vdbg(hsotg->dev, "	  is_in %d\n",
				 chan->ep_is_in);
			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
1373
				 chan->max_packet);
1374 1375 1376
			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
				 chan->xfer_len);
		}
1377 1378
	}

1379
	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
}

/**
 * dwc2_hc_halt() - Attempts to halt a host channel
 *
 * @hsotg:       Controller register interface
 * @chan:        Host channel to halt
 * @halt_status: Reason for halting the channel
 *
 * This function should only be called in Slave mode or to abort a transfer in
 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 * controller halts the channel when the transfer is complete or a condition
 * occurs that requires application intervention.
 *
 * In slave mode, checks for a free request queue entry, then sets the Channel
 * Enable and Channel Disable bits of the Host Channel Characteristics
 * register of the specified channel to intiate the halt. If there is no free
 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 * register to flush requests for this channel. In the latter case, sets a
 * flag to indicate that the host channel needs to be halted when a request
 * queue slot is open.
 *
 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 * HCCHARn register. The controller ensures there is space in the request
 * queue before submitting the halt request.
 *
 * Some time may elapse before the core flushes any posted requests for this
 * host channel and halts. The Channel Halted interrupt handler completes the
 * deactivation of the host channel.
 */
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
		  enum dwc2_halt_status halt_status)
{
	u32 nptxsts, hptxsts, hcchar;

1415 1416
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);

	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
	    halt_status == DWC2_HC_XFER_AHB_ERR) {
		/*
		 * Disable all channel interrupts except Ch Halted. The QTD
		 * and QH state associated with this transfer has been cleared
		 * (in the case of URB_DEQUEUE), so the channel needs to be
		 * shut down carefully to prevent crashes.
		 */
		u32 hcintmsk = HCINTMSK_CHHLTD;

		dev_vdbg(hsotg->dev, "dequeue/error\n");
1431
		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1432 1433 1434 1435 1436 1437

		/*
		 * Make sure no other interrupts besides halt are currently
		 * pending. Handling another interrupt could cause a crash due
		 * to the QTD and QH state.
		 */
1438
		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1439 1440 1441 1442 1443 1444 1445 1446

		/*
		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
		 * even if the channel was already halted for some other
		 * reason
		 */
		chan->halt_status = halt_status;

1447
		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		if (!(hcchar & HCCHAR_CHENA)) {
			/*
			 * The channel is either already halted or it hasn't
			 * started yet. In DMA mode, the transfer may halt if
			 * it finishes normally or a condition occurs that
			 * requires driver intervention. Don't want to halt
			 * the channel again. In either Slave or DMA mode,
			 * it's possible that the transfer has been assigned
			 * to a channel, but not started yet when an URB is
			 * dequeued. Don't want to halt a channel that hasn't
			 * started yet.
			 */
			return;
		}
	}
	if (chan->halt_pending) {
		/*
		 * A halt has already been issued for this channel. This might
		 * happen when a transfer is aborted by a higher level in
		 * the stack.
		 */
		dev_vdbg(hsotg->dev,
			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
			 __func__, chan->hc_num);
		return;
	}

1475
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1476 1477 1478 1479

	/* No need to set the bit in DDMA for disabling the channel */
	/* TODO check it everywhere channel is disabled */
	if (hsotg->core_params->dma_desc_enable <= 0) {
1480 1481
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1482 1483
		hcchar |= HCCHAR_CHENA;
	} else {
1484 1485
		if (dbg_hc(chan))
			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1486 1487 1488 1489
	}
	hcchar |= HCCHAR_CHDIS;

	if (hsotg->core_params->dma_enable <= 0) {
1490 1491
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1492 1493 1494 1495 1496 1497
		hcchar |= HCCHAR_CHENA;

		/* Check for space in the request queue to issue the halt */
		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
			dev_vdbg(hsotg->dev, "control/bulk\n");
1498
			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1499 1500 1501 1502 1503
			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
				dev_vdbg(hsotg->dev, "Disabling channel\n");
				hcchar &= ~HCCHAR_CHENA;
			}
		} else {
1504 1505
			if (dbg_perio())
				dev_vdbg(hsotg->dev, "isoc/intr\n");
1506
			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1507 1508
			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
			    hsotg->queuing_high_bandwidth) {
1509 1510
				if (dbg_perio())
					dev_vdbg(hsotg->dev, "Disabling channel\n");
1511 1512 1513 1514
				hcchar &= ~HCCHAR_CHENA;
			}
		}
	} else {
1515 1516
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "DMA enabled\n");
1517 1518
	}

1519
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1520 1521 1522
	chan->halt_status = halt_status;

	if (hcchar & HCCHAR_CHENA) {
1523 1524
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Channel enabled\n");
1525 1526 1527
		chan->halt_pending = 1;
		chan->halt_on_queue = 0;
	} else {
1528 1529
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Channel disabled\n");
1530 1531 1532
		chan->halt_on_queue = 1;
	}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
			 hcchar);
		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
			 chan->halt_pending);
		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
			 chan->halt_on_queue);
		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
			 chan->halt_status);
	}
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

/**
 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Identifies the host channel to clean up
 *
 * This function is normally called after a transfer is done and the host
 * channel is being released
 */
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u32 hcintmsk;

	chan->xfer_started = 0;

	/*
	 * Clear channel interrupt enables and any unhandled channel interrupt
	 * conditions
	 */
1566
	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1567 1568
	hcintmsk = 0xffffffff;
	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1569
	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

/**
 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 * which frame a periodic transfer should occur
 *
 * @hsotg:  Programming view of DWC_otg controller
 * @chan:   Identifies the host channel to set up and its properties
 * @hcchar: Current value of the HCCHAR register for the specified host channel
 *
 * This function has no effect on non-periodic transfers
 */
static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
				       struct dwc2_host_chan *chan, u32 *hcchar)
{
	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
		/* 1 if _next_ frame is odd, 0 if it's even */
1588
		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
			*hcchar |= HCCHAR_ODDFRM;
	}
}

static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
{
	/* Set up the initial PID for the transfer */
	if (chan->speed == USB_SPEED_HIGH) {
		if (chan->ep_is_in) {
			if (chan->multi_count == 1)
				chan->data_pid_start = DWC2_HC_PID_DATA0;
			else if (chan->multi_count == 2)
				chan->data_pid_start = DWC2_HC_PID_DATA1;
			else
				chan->data_pid_start = DWC2_HC_PID_DATA2;
		} else {
			if (chan->multi_count == 1)
				chan->data_pid_start = DWC2_HC_PID_DATA0;
			else
				chan->data_pid_start = DWC2_HC_PID_MDATA;
		}
	} else {
		chan->data_pid_start = DWC2_HC_PID_DATA0;
	}
}

/**
 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
 * the Host Channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * This function should only be called in Slave mode. For a channel associated
 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
 * associated with a periodic EP, the periodic Tx FIFO is written.
 *
 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
 * the number of bytes written to the Tx FIFO.
 */
static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan)
{
	u32 i;
	u32 remaining_count;
	u32 byte_count;
	u32 dword_count;
	u32 __iomem *data_fifo;
	u32 *data_buf = (u32 *)chan->xfer_buf;

1639 1640
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));

	remaining_count = chan->xfer_len - chan->xfer_count;
	if (remaining_count > chan->max_packet)
		byte_count = chan->max_packet;
	else
		byte_count = remaining_count;

	dword_count = (byte_count + 3) / 4;

	if (((unsigned long)data_buf & 0x3) == 0) {
		/* xfer_buf is DWORD aligned */
		for (i = 0; i < dword_count; i++, data_buf++)
1655
			dwc2_writel(*data_buf, data_fifo);
1656 1657 1658 1659 1660
	} else {
		/* xfer_buf is not DWORD aligned */
		for (i = 0; i < dword_count; i++, data_buf++) {
			u32 data = data_buf[0] | data_buf[1] << 8 |
				   data_buf[2] << 16 | data_buf[3] << 24;
1661
			dwc2_writel(data, data_fifo);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		}
	}

	chan->xfer_count += byte_count;
	chan->xfer_buf += byte_count;
}

/**
 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
 * channel and starts the transfer
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel. The xfer_len value
 *         may be reduced to accommodate the max widths of the XferSize and
 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
 *         changed to reflect the final xfer_len value.
 *
 * This function may be called in either Slave mode or DMA mode. In Slave mode,
 * the caller must ensure that there is sufficient space in the request queue
 * and Tx Data FIFO.
 *
 * For an OUT transfer in Slave mode, it loads a data packet into the
 * appropriate FIFO. If necessary, additional data packets are loaded in the
 * Host ISR.
 *
 * For an IN transfer in Slave mode, a data packet is requested. The data
 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
 * additional data packets are requested in the Host ISR.
 *
 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
 * register along with a packet count of 1 and the channel is enabled. This
 * causes a single PING transaction to occur. Other fields in HCTSIZ are
 * simply set to 0 since no data transfer occurs in this case.
 *
 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
 * all the information required to perform the subsequent data transfer. In
 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
 * controller performs the entire PING protocol, then starts the data
 * transfer.
 */
void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
			    struct dwc2_host_chan *chan)
{
	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
	u32 hcchar;
	u32 hctsiz = 0;
	u16 num_packets;

1711 1712
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1713 1714 1715

	if (chan->do_ping) {
		if (hsotg->core_params->dma_enable <= 0) {
1716 1717
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1718 1719 1720 1721
			dwc2_hc_do_ping(hsotg, chan);
			chan->xfer_started = 1;
			return;
		} else {
1722 1723
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "ping, DMA\n");
1724 1725 1726 1727 1728
			hctsiz |= TSIZ_DOPNG;
		}
	}

	if (chan->do_split) {
1729 1730
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "split\n");
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		num_packets = 1;

		if (chan->complete_split && !chan->ep_is_in)
			/*
			 * For CSPLIT OUT Transfer, set the size to 0 so the
			 * core doesn't expect any data written to the FIFO
			 */
			chan->xfer_len = 0;
		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
			chan->xfer_len = chan->max_packet;
		else if (!chan->ep_is_in && chan->xfer_len > 188)
			chan->xfer_len = 188;

		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
			  TSIZ_XFERSIZE_MASK;
	} else {
1747 1748
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "no split\n");
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * Ensure that the transfer length and packet count will fit
		 * in the widths allocated for them in the HCTSIZn register
		 */
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
			/*
			 * Make sure the transfer size is no larger than one
			 * (micro)frame's worth of data. (A check was done
			 * when the periodic transfer was accepted to ensure
			 * that a (micro)frame's worth of data can be
			 * programmed into a channel.)
			 */
			u32 max_periodic_len =
				chan->multi_count * chan->max_packet;

			if (chan->xfer_len > max_periodic_len)
				chan->xfer_len = max_periodic_len;
		} else if (chan->xfer_len > max_hc_xfer_size) {
			/*
			 * Make sure that xfer_len is a multiple of max packet
			 * size
			 */
			chan->xfer_len =
				max_hc_xfer_size - chan->max_packet + 1;
		}

		if (chan->xfer_len > 0) {
			num_packets = (chan->xfer_len + chan->max_packet - 1) /
					chan->max_packet;
			if (num_packets > max_hc_pkt_count) {
				num_packets = max_hc_pkt_count;
				chan->xfer_len = num_packets * chan->max_packet;
			}
		} else {
			/* Need 1 packet for transfer length of 0 */
			num_packets = 1;
		}

		if (chan->ep_is_in)
			/*
			 * Always program an integral # of max packets for IN
			 * transfers
			 */
			chan->xfer_len = num_packets * chan->max_packet;

		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			/*
			 * Make sure that the multi_count field matches the
			 * actual transfer length
			 */
			chan->multi_count = num_packets;

		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
			dwc2_set_pid_isoc(chan);

		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
			  TSIZ_XFERSIZE_MASK;
	}

	chan->start_pkt_count = num_packets;
	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
		  TSIZ_SC_MC_PID_MASK;
1814
	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1815 1816 1817 1818 1819 1820 1821
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
			 hctsiz, chan->hc_num);

		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1822 1823
			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
			 TSIZ_XFERSIZE_SHIFT);
1824
		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1825 1826
			 (hctsiz & TSIZ_PKTCNT_MASK) >>
			 TSIZ_PKTCNT_SHIFT);
1827
		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1828 1829
			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
			 TSIZ_SC_MC_PID_SHIFT);
1830
	}
1831 1832 1833 1834 1835

	if (hsotg->core_params->dma_enable > 0) {
		dma_addr_t dma_addr;

		if (chan->align_buf) {
1836 1837
			if (dbg_hc(chan))
				dev_vdbg(hsotg->dev, "align_buf\n");
1838 1839 1840 1841
			dma_addr = chan->align_buf;
		} else {
			dma_addr = chan->xfer_dma;
		}
1842
		dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1843 1844 1845
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
				 (unsigned long)dma_addr, chan->hc_num);
1846 1847 1848 1849
	}

	/* Start the split */
	if (chan->do_split) {
1850
		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1851 1852

		hcsplt |= HCSPLT_SPLTENA;
1853
		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1854 1855
	}

1856
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	hcchar &= ~HCCHAR_MULTICNT_MASK;
	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
		  HCCHAR_MULTICNT_MASK;
	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);

	if (hcchar & HCCHAR_CHDIS)
		dev_warn(hsotg->dev,
			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
			 __func__, chan->hc_num, hcchar);

	/* Set host channel enable after all other setup is complete */
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;

1871 1872
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1873 1874
			 (hcchar & HCCHAR_MULTICNT_MASK) >>
			 HCCHAR_MULTICNT_SHIFT);
1875

1876
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1877 1878 1879
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
			 chan->hc_num);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

	chan->xfer_started = 1;
	chan->requests++;

	if (hsotg->core_params->dma_enable <= 0 &&
	    !chan->ep_is_in && chan->xfer_len > 0)
		/* Load OUT packet into the appropriate Tx FIFO */
		dwc2_hc_write_packet(hsotg, chan);
}

/**
 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
 * host channel and starts the transfer in Descriptor DMA mode
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
 * with micro-frame bitmap.
 *
 * Initializes HCDMA register with descriptor list address and CTD value then
 * starts the transfer via enabling the channel.
 */
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan)
{
	u32 hcchar;
	u32 hc_dma;
	u32 hctsiz = 0;

	if (chan->do_ping)
		hctsiz |= TSIZ_DOPNG;

	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
		dwc2_set_pid_isoc(chan);

	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
		  TSIZ_SC_MC_PID_MASK;

	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;

	/* Non-zero only for high-speed interrupt endpoints */
	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;

1927 1928 1929 1930 1931 1932 1933
	if (dbg_hc(chan)) {
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
			 chan->data_pid_start);
		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
	}
1934

1935
	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1936 1937 1938 1939 1940

	hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;

	/* Always start from first descriptor */
	hc_dma &= ~HCDMA_CTD_MASK;
1941
	dwc2_writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
1942 1943 1944
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
			 hc_dma, chan->hc_num);
1945

1946
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	hcchar &= ~HCCHAR_MULTICNT_MASK;
	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
		  HCCHAR_MULTICNT_MASK;

	if (hcchar & HCCHAR_CHDIS)
		dev_warn(hsotg->dev,
			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
			 __func__, chan->hc_num, hcchar);

	/* Set host channel enable after all other setup is complete */
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;

1960 1961
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1962 1963
			 (hcchar & HCCHAR_MULTICNT_MASK) >>
			 HCCHAR_MULTICNT_SHIFT);
1964

1965
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1966 1967 1968
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
			 chan->hc_num);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	chan->xfer_started = 1;
	chan->requests++;
}

/**
 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
 * a previous call to dwc2_hc_start_transfer()
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * The caller must ensure there is sufficient space in the request queue and Tx
 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
 * the controller acts autonomously to complete transfers programmed to a host
 * channel.
 *
 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
 * if there is any data remaining to be queued. For an IN transfer, another
 * data packet is always requested. For the SETUP phase of a control transfer,
 * this function does nothing.
 *
 * Return: 1 if a new request is queued, 0 if no more requests are required
 * for this transfer
 */
int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
			      struct dwc2_host_chan *chan)
{
1997 1998 1999
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

	if (chan->do_split)
		/* SPLITs always queue just once per channel */
		return 0;

	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
		/* SETUPs are queued only once since they can't be NAK'd */
		return 0;

	if (chan->ep_is_in) {
		/*
		 * Always queue another request for other IN transfers. If
		 * back-to-back INs are issued and NAKs are received for both,
		 * the driver may still be processing the first NAK when the
		 * second NAK is received. When the interrupt handler clears
		 * the NAK interrupt for the first NAK, the second NAK will
		 * not be seen. So we can't depend on the NAK interrupt
		 * handler to requeue a NAK'd request. Instead, IN requests
		 * are issued each time this function is called. When the
		 * transfer completes, the extra requests for the channel will
		 * be flushed.
		 */
2022
		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2023 2024 2025 2026

		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
		hcchar |= HCCHAR_CHENA;
		hcchar &= ~HCCHAR_CHDIS;
2027 2028 2029
		if (dbg_hc(chan))
			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
				 hcchar);
2030
		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2031 2032 2033 2034 2035 2036 2037 2038 2039
		chan->requests++;
		return 1;
	}

	/* OUT transfers */

	if (chan->xfer_count < chan->xfer_len) {
		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2040 2041
			u32 hcchar = dwc2_readl(hsotg->regs +
						HCCHAR(chan->hc_num));
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

			dwc2_hc_set_even_odd_frame(hsotg, chan,
						   &hcchar);
		}

		/* Load OUT packet into the appropriate Tx FIFO */
		dwc2_hc_write_packet(hsotg, chan);
		chan->requests++;
		return 1;
	}

	return 0;
}

/**
 * dwc2_hc_do_ping() - Starts a PING transfer
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Information needed to initialize the host channel
 *
 * This function should only be called in Slave mode. The Do Ping bit is set in
 * the HCTSIZ register, then the channel is enabled.
 */
void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
	u32 hcchar;
	u32 hctsiz;

2070 2071 2072 2073
	if (dbg_hc(chan))
		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
			 chan->hc_num);

2074 2075 2076

	hctsiz = TSIZ_DOPNG;
	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2077
	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2078

2079
	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2080 2081
	hcchar |= HCCHAR_CHENA;
	hcchar &= ~HCCHAR_CHDIS;
2082
	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
}

/**
 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 * the HFIR register according to PHY type and speed
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: The caller can modify the value of the HFIR register only after the
 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 * has been set
 */
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
{
	u32 usbcfg;
	u32 hprt0;
	int clock = 60;	/* default value */

2101 2102
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2103 2104 2105 2106

	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
	    !(usbcfg & GUSBCFG_PHYIF16))
		clock = 60;
2107
	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
		clock = 48;
	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
		clock = 30;
	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
		clock = 60;
	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
		clock = 48;
	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2120
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2121
		clock = 48;
2122
	if ((usbcfg & GUSBCFG_PHYSEL) &&
2123
	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2124 2125
		clock = 48;

2126
	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		/* High speed case */
		return 125 * clock;
	else
		/* FS/LS case */
		return 1000 * clock;
}

/**
 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 * buffer
 *
 * @core_if: Programming view of DWC_otg controller
 * @dest:    Destination buffer for the packet
 * @bytes:   Number of bytes to copy to the destination
 */
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
{
	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
	u32 *data_buf = (u32 *)dest;
	int word_count = (bytes + 3) / 4;
	int i;

	/*
	 * Todo: Account for the case where dest is not dword aligned. This
	 * requires reading data from the FIFO into a u32 temp buffer, then
	 * moving it into the data buffer.
	 */

	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);

	for (i = 0; i < word_count; i++, data_buf++)
2158
		*data_buf = dwc2_readl(fifo);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
}

/**
 * dwc2_dump_host_registers() - Prints the host registers
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	u32 __iomem *addr;
	int i;

	dev_dbg(hsotg->dev, "Host Global Registers\n");
	addr = hsotg->regs + HCFG;
	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
2178
		(unsigned long)addr, dwc2_readl(addr));
2179 2180
	addr = hsotg->regs + HFIR;
	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
2181
		(unsigned long)addr, dwc2_readl(addr));
2182 2183
	addr = hsotg->regs + HFNUM;
	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
2184
		(unsigned long)addr, dwc2_readl(addr));
2185 2186
	addr = hsotg->regs + HPTXSTS;
	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
2187
		(unsigned long)addr, dwc2_readl(addr));
2188 2189
	addr = hsotg->regs + HAINT;
	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
2190
		(unsigned long)addr, dwc2_readl(addr));
2191 2192
	addr = hsotg->regs + HAINTMSK;
	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
2193
		(unsigned long)addr, dwc2_readl(addr));
2194 2195 2196
	if (hsotg->core_params->dma_desc_enable > 0) {
		addr = hsotg->regs + HFLBADDR;
		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
2197
			(unsigned long)addr, dwc2_readl(addr));
2198 2199 2200 2201
	}

	addr = hsotg->regs + HPRT0;
	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
2202
		(unsigned long)addr, dwc2_readl(addr));
2203 2204 2205 2206 2207

	for (i = 0; i < hsotg->core_params->host_channels; i++) {
		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
		addr = hsotg->regs + HCCHAR(i);
		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
2208
			(unsigned long)addr, dwc2_readl(addr));
2209 2210
		addr = hsotg->regs + HCSPLT(i);
		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
2211
			(unsigned long)addr, dwc2_readl(addr));
2212 2213
		addr = hsotg->regs + HCINT(i);
		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
2214
			(unsigned long)addr, dwc2_readl(addr));
2215 2216
		addr = hsotg->regs + HCINTMSK(i);
		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
2217
			(unsigned long)addr, dwc2_readl(addr));
2218 2219
		addr = hsotg->regs + HCTSIZ(i);
		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
2220
			(unsigned long)addr, dwc2_readl(addr));
2221 2222
		addr = hsotg->regs + HCDMA(i);
		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
2223
			(unsigned long)addr, dwc2_readl(addr));
2224 2225 2226
		if (hsotg->core_params->dma_desc_enable > 0) {
			addr = hsotg->regs + HCDMAB(i);
			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
2227
				(unsigned long)addr, dwc2_readl(addr));
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		}
	}
#endif
}

/**
 * dwc2_dump_global_registers() - Prints the core global registers
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	u32 __iomem *addr;

	dev_dbg(hsotg->dev, "Core Global Registers\n");
	addr = hsotg->regs + GOTGCTL;
	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
2249
		(unsigned long)addr, dwc2_readl(addr));
2250 2251
	addr = hsotg->regs + GOTGINT;
	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
2252
		(unsigned long)addr, dwc2_readl(addr));
2253 2254
	addr = hsotg->regs + GAHBCFG;
	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
2255
		(unsigned long)addr, dwc2_readl(addr));
2256 2257
	addr = hsotg->regs + GUSBCFG;
	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
2258
		(unsigned long)addr, dwc2_readl(addr));
2259 2260
	addr = hsotg->regs + GRSTCTL;
	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
2261
		(unsigned long)addr, dwc2_readl(addr));
2262 2263
	addr = hsotg->regs + GINTSTS;
	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
2264
		(unsigned long)addr, dwc2_readl(addr));
2265 2266
	addr = hsotg->regs + GINTMSK;
	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
2267
		(unsigned long)addr, dwc2_readl(addr));
2268 2269
	addr = hsotg->regs + GRXSTSR;
	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
2270
		(unsigned long)addr, dwc2_readl(addr));
2271 2272
	addr = hsotg->regs + GRXFSIZ;
	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
2273
		(unsigned long)addr, dwc2_readl(addr));
2274 2275
	addr = hsotg->regs + GNPTXFSIZ;
	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
2276
		(unsigned long)addr, dwc2_readl(addr));
2277 2278
	addr = hsotg->regs + GNPTXSTS;
	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
2279
		(unsigned long)addr, dwc2_readl(addr));
2280 2281
	addr = hsotg->regs + GI2CCTL;
	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
2282
		(unsigned long)addr, dwc2_readl(addr));
2283 2284
	addr = hsotg->regs + GPVNDCTL;
	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
2285
		(unsigned long)addr, dwc2_readl(addr));
2286 2287
	addr = hsotg->regs + GGPIO;
	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
2288
		(unsigned long)addr, dwc2_readl(addr));
2289 2290
	addr = hsotg->regs + GUID;
	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
2291
		(unsigned long)addr, dwc2_readl(addr));
2292 2293
	addr = hsotg->regs + GSNPSID;
	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
2294
		(unsigned long)addr, dwc2_readl(addr));
2295 2296
	addr = hsotg->regs + GHWCFG1;
	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
2297
		(unsigned long)addr, dwc2_readl(addr));
2298 2299
	addr = hsotg->regs + GHWCFG2;
	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
2300
		(unsigned long)addr, dwc2_readl(addr));
2301 2302
	addr = hsotg->regs + GHWCFG3;
	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
2303
		(unsigned long)addr, dwc2_readl(addr));
2304 2305
	addr = hsotg->regs + GHWCFG4;
	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
2306
		(unsigned long)addr, dwc2_readl(addr));
2307 2308
	addr = hsotg->regs + GLPMCFG;
	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
2309
		(unsigned long)addr, dwc2_readl(addr));
2310 2311
	addr = hsotg->regs + GPWRDN;
	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
2312
		(unsigned long)addr, dwc2_readl(addr));
2313 2314
	addr = hsotg->regs + GDFIFOCFG;
	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
2315
		(unsigned long)addr, dwc2_readl(addr));
2316 2317
	addr = hsotg->regs + HPTXFSIZ;
	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
2318
		(unsigned long)addr, dwc2_readl(addr));
2319 2320 2321

	addr = hsotg->regs + PCGCTL;
	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
2322
		(unsigned long)addr, dwc2_readl(addr));
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
#endif
}

/**
 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
 *
 * @hsotg: Programming view of DWC_otg controller
 * @num:   Tx FIFO to flush
 */
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
{
	u32 greset;
	int count = 0;

	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);

	greset = GRSTCTL_TXFFLSH;
	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
2341
	dwc2_writel(greset, hsotg->regs + GRSTCTL);
2342 2343

	do {
2344
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
2345 2346 2347 2348
		if (++count > 10000) {
			dev_warn(hsotg->dev,
				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
				 __func__, greset,
2349
				 dwc2_readl(hsotg->regs + GNPTXSTS));
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
			break;
		}
		udelay(1);
	} while (greset & GRSTCTL_TXFFLSH);

	/* Wait for at least 3 PHY Clocks */
	udelay(1);
}

/**
 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
{
	u32 greset;
	int count = 0;

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

	greset = GRSTCTL_RXFFLSH;
2372
	dwc2_writel(greset, hsotg->regs + GRSTCTL);
2373 2374

	do {
2375
		greset = dwc2_readl(hsotg->regs + GRSTCTL);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		if (++count > 10000) {
			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
				 __func__, greset);
			break;
		}
		udelay(1);
	} while (greset & GRSTCTL_RXFFLSH);

	/* Wait for at least 3 PHY Clocks */
	udelay(1);
}

2388
#define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
2389 2390

/* Parameter access functions */
2391
void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2392 2393 2394 2395 2396
{
	int valid = 1;

	switch (val) {
	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2397
		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2398 2399 2400
			valid = 0;
		break;
	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2401
		switch (hsotg->hw_params.op_mode) {
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
			break;
		default:
			valid = 0;
			break;
		}
		break;
	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
		/* always valid */
		break;
	default:
		valid = 0;
		break;
	}

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for otg_cap parameter. Check HW configuration.\n",
				val);
2425
		switch (hsotg->hw_params.op_mode) {
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
			break;
		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
			break;
		default:
			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
			break;
		}
		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
	}

	hsotg->core_params->otg_cap = val;
}

2444
void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2445 2446 2447
{
	int valid = 1;

2448
	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2449 2450 2451 2452 2453 2454 2455 2456 2457
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_enable parameter. Check HW configuration.\n",
				val);
2458
		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2459 2460 2461 2462 2463 2464
		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
	}

	hsotg->core_params->dma_enable = val;
}

2465
void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2466 2467 2468 2469
{
	int valid = 1;

	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2470
			!hsotg->hw_params.dma_desc_enable))
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
				val);
		val = (hsotg->core_params->dma_enable > 0 &&
2481
			hsotg->hw_params.dma_desc_enable);
2482 2483 2484 2485 2486 2487
		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
	}

	hsotg->core_params->dma_desc_enable = val;
}

2488 2489
void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
						 int val)
2490
{
2491
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for host_support_fs_low_power\n");
			dev_err(hsotg->dev,
				"host_support_fs_low_power must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev,
			"Setting host_support_fs_low_power to %d\n", val);
	}

	hsotg->core_params->host_support_fs_ls_low_power = val;
}

2506
void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2507 2508 2509
{
	int valid = 1;

2510
	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2511 2512 2513 2514 2515 2516 2517 2518 2519
		valid = 0;
	if (val < 0)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
				val);
2520
		val = hsotg->hw_params.enable_dynamic_fifo;
2521 2522 2523 2524 2525 2526
		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
	}

	hsotg->core_params->enable_dynamic_fifo = val;
}

2527
void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2528 2529 2530
{
	int valid = 1;

2531
	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2532 2533 2534 2535 2536 2537 2538
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
				val);
2539
		val = hsotg->hw_params.host_rx_fifo_size;
2540 2541 2542 2543 2544 2545
		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
	}

	hsotg->core_params->host_rx_fifo_size = val;
}

2546
void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2547 2548 2549
{
	int valid = 1;

2550
	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2551 2552 2553 2554 2555 2556 2557
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
				val);
2558
		val = hsotg->hw_params.host_nperio_tx_fifo_size;
2559 2560 2561 2562 2563 2564 2565
		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
			val);
	}

	hsotg->core_params->host_nperio_tx_fifo_size = val;
}

2566
void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2567 2568 2569
{
	int valid = 1;

2570
	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2571 2572 2573 2574 2575 2576 2577
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
				val);
2578
		val = hsotg->hw_params.host_perio_tx_fifo_size;
2579 2580 2581 2582 2583 2584 2585
		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
			val);
	}

	hsotg->core_params->host_perio_tx_fifo_size = val;
}

2586
void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2587 2588 2589
{
	int valid = 1;

2590
	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2591 2592 2593 2594 2595 2596 2597
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for max_transfer_size. Check HW configuration.\n",
				val);
2598
		val = hsotg->hw_params.max_transfer_size;
2599 2600 2601 2602 2603 2604
		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
	}

	hsotg->core_params->max_transfer_size = val;
}

2605
void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2606 2607 2608
{
	int valid = 1;

2609
	if (val < 15 || val > hsotg->hw_params.max_packet_count)
2610 2611 2612 2613 2614 2615 2616
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for max_packet_count. Check HW configuration.\n",
				val);
2617
		val = hsotg->hw_params.max_packet_count;
2618 2619 2620 2621 2622 2623
		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
	}

	hsotg->core_params->max_packet_count = val;
}

2624
void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2625 2626 2627
{
	int valid = 1;

2628
	if (val < 1 || val > hsotg->hw_params.host_channels)
2629 2630 2631 2632 2633 2634 2635
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_channels. Check HW configuration.\n",
				val);
2636
		val = hsotg->hw_params.host_channels;
2637 2638 2639 2640 2641 2642
		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
	}

	hsotg->core_params->host_channels = val;
}

2643
void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2644 2645
{
	int valid = 0;
2646
	u32 hs_phy_type, fs_phy_type;
2647

2648 2649
	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
			       DWC2_PHY_TYPE_PARAM_ULPI)) {
2650 2651 2652 2653 2654 2655 2656 2657
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for phy_type\n");
			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
		}

		valid = 0;
	}

2658 2659
	hs_phy_type = hsotg->hw_params.hs_phy_type;
	fs_phy_type = hsotg->hw_params.fs_phy_type;
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
		valid = 1;
	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
		valid = 1;
	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
		valid = 1;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for phy_type. Check HW configuration.\n",
				val);
2677
		val = DWC2_PHY_TYPE_PARAM_FS;
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
				val = DWC2_PHY_TYPE_PARAM_UTMI;
			else
				val = DWC2_PHY_TYPE_PARAM_ULPI;
		}
		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
	}

	hsotg->core_params->phy_type = val;
}

static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
{
	return hsotg->core_params->phy_type;
}

2696
void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2697 2698 2699
{
	int valid = 1;

2700
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2701 2702 2703 2704 2705 2706 2707
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
		}
		valid = 0;
	}

2708 2709
	if (val == DWC2_SPEED_PARAM_HIGH &&
	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2710 2711 2712 2713 2714 2715 2716 2717
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for speed parameter. Check HW configuration.\n",
				val);
		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2718
				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2719 2720 2721 2722 2723 2724
		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
	}

	hsotg->core_params->speed = val;
}

2725
void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2726 2727 2728
{
	int valid = 1;

2729 2730
	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for host_ls_low_power_phy_clk parameter\n");
			dev_err(hsotg->dev,
				"host_ls_low_power_phy_clk must be 0 or 1\n");
		}
		valid = 0;
	}

	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
				val);
		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
			val);
	}

	hsotg->core_params->host_ls_low_power_phy_clk = val;
}

2759
void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2760
{
2761
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
	}

	hsotg->core_params->phy_ulpi_ddr = val;
}

2773
void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2774
{
2775
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for phy_ulpi_ext_vbus\n");
			dev_err(hsotg->dev,
				"phy_ulpi_ext_vbus must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
	}

	hsotg->core_params->phy_ulpi_ext_vbus = val;
}

2789
void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2790
{
2791
	int valid = 0;
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	switch (hsotg->hw_params.utmi_phy_data_width) {
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
		valid = (val == 8);
		break;
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
		valid = (val == 16);
		break;
	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
		valid = (val == 8 || val == 16);
		break;
	}

	if (!valid) {
2806
		if (val >= 0) {
2807 2808 2809
			dev_err(hsotg->dev,
				"%d invalid for phy_utmi_width. Check HW configuration.\n",
				val);
2810
		}
2811 2812
		val = (hsotg->hw_params.utmi_phy_data_width ==
		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2813 2814 2815 2816 2817 2818
		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
	}

	hsotg->core_params->phy_utmi_width = val;
}

2819
void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2820
{
2821
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
	}

	hsotg->core_params->ulpi_fs_ls = val;
}

2833
void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2834
{
2835
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
	}

	hsotg->core_params->ts_dline = val;
}

2847
void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2848 2849 2850
{
	int valid = 1;

2851
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2852 2853 2854 2855 2856 2857 2858 2859
		if (val >= 0) {
			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
		}

		valid = 0;
	}

2860
	if (val == 1 && !(hsotg->hw_params.i2c_enable))
2861 2862 2863 2864 2865 2866 2867
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for i2c_enable. Check HW configuration.\n",
				val);
2868
		val = hsotg->hw_params.i2c_enable;
2869 2870 2871 2872 2873 2874
		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
	}

	hsotg->core_params->i2c_enable = val;
}

2875
void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
2876 2877 2878
{
	int valid = 1;

2879
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2880 2881 2882 2883 2884 2885 2886 2887 2888
		if (val >= 0) {
			dev_err(hsotg->dev,
				"Wrong value for en_multiple_tx_fifo,\n");
			dev_err(hsotg->dev,
				"en_multiple_tx_fifo must be 0 or 1\n");
		}
		valid = 0;
	}

2889
	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
2890 2891 2892 2893 2894 2895 2896
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
				val);
2897
		val = hsotg->hw_params.en_multiple_tx_fifo;
2898 2899 2900 2901 2902 2903
		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
	}

	hsotg->core_params->en_multiple_tx_fifo = val;
}

2904
void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
2905 2906 2907
{
	int valid = 1;

2908
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2909 2910 2911 2912 2913 2914 2915 2916
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter reload_ctl\n", val);
			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
		}
		valid = 0;
	}

2917
	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
2918 2919 2920 2921 2922 2923 2924
		valid = 0;

	if (!valid) {
		if (val >= 0)
			dev_err(hsotg->dev,
				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
				val);
2925
		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
2926 2927 2928 2929 2930 2931
		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
	}

	hsotg->core_params->reload_ctl = val;
}

2932
void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
2933
{
2934 2935 2936
	if (val != -1)
		hsotg->core_params->ahbcfg = val;
	else
2937
		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
2938
						GAHBCFG_HBSTLEN_SHIFT;
2939 2940
}

2941
void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
2942
{
2943
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter otg_ver\n", val);
			dev_err(hsotg->dev,
				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
	}

	hsotg->core_params->otg_ver = val;
}

2957
static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter uframe_sched\n",
				val);
			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
		}
		val = 1;
		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
	}

	hsotg->core_params->uframe_sched = val;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
		int val)
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter external_id_pin_ctl\n",
				val);
			dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
	}

	hsotg->core_params->external_id_pin_ctl = val;
}

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
		int val)
{
	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
		if (val >= 0) {
			dev_err(hsotg->dev,
				"'%d' invalid for parameter hibernation\n",
				val);
			dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
		}
		val = 0;
		dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
	}

	hsotg->core_params->hibernation = val;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/*
 * This function is called during module intialization to pass module parameters
 * for the DWC_otg core.
 */
void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
			 const struct dwc2_core_params *params)
{
	dev_dbg(hsotg->dev, "%s()\n", __func__);

	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
			params->host_support_fs_ls_low_power);
	dwc2_set_param_enable_dynamic_fifo(hsotg,
			params->enable_dynamic_fifo);
	dwc2_set_param_host_rx_fifo_size(hsotg,
			params->host_rx_fifo_size);
	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
			params->host_nperio_tx_fifo_size);
	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
			params->host_perio_tx_fifo_size);
	dwc2_set_param_max_transfer_size(hsotg,
			params->max_transfer_size);
	dwc2_set_param_max_packet_count(hsotg,
			params->max_packet_count);
	dwc2_set_param_host_channels(hsotg, params->host_channels);
	dwc2_set_param_phy_type(hsotg, params->phy_type);
	dwc2_set_param_speed(hsotg, params->speed);
	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
			params->host_ls_low_power_phy_clk);
	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
			params->phy_ulpi_ext_vbus);
	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
	dwc2_set_param_en_multiple_tx_fifo(hsotg,
			params->en_multiple_tx_fifo);
	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
3051
	dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
3052
	dwc2_set_param_hibernation(hsotg, params->hibernation);
3053 3054
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * During device initialization, read various hardware configuration
 * registers and interpret the contents.
 */
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hw_params *hw = &hsotg->hw_params;
	unsigned width;
	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
	u32 hptxfsiz, grxfsiz, gnptxfsiz;
	u32 gusbcfg;

	/*
	 * Attempt to ensure this device is really a DWC_otg Controller.
	 * Read and verify the GSNPSID register contents. The value should be
	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
	 * as in "OTG version 2.xx" or "OTG version 3.xx".
	 */
3073
	hw->snpsid = dwc2_readl(hsotg->regs + GSNPSID);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
			hw->snpsid);
		return -ENODEV;
	}

	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);

3085 3086 3087 3088 3089
	hwcfg1 = dwc2_readl(hsotg->regs + GHWCFG1);
	hwcfg2 = dwc2_readl(hsotg->regs + GHWCFG2);
	hwcfg3 = dwc2_readl(hsotg->regs + GHWCFG3);
	hwcfg4 = dwc2_readl(hsotg->regs + GHWCFG4);
	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
3090 3091 3092 3093 3094 3095 3096

	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);

3097
	/* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */
3098
	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3099
	gusbcfg |= GUSBCFG_FORCEHOSTMODE;
3100
	dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
3101 3102
	usleep_range(100000, 150000);

3103 3104
	gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
	hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
3105
	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3106
	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
3107
	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3108
	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
3109
	dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	usleep_range(100000, 150000);

	/* hwcfg2 */
	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
		      GHWCFG2_OP_MODE_SHIFT;
	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
		   GHWCFG2_ARCHITECTURE_SHIFT;
	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
				GHWCFG2_NUM_HOST_CHAN_SHIFT);
	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
			  GHWCFG2_HS_PHY_TYPE_SHIFT;
	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
			  GHWCFG2_FS_PHY_TYPE_SHIFT;
	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
			 GHWCFG2_NUM_DEV_EP_SHIFT;
	hw->nperio_tx_q_depth =
		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
	hw->host_perio_tx_q_depth =
		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
	hw->dev_token_q_depth =
		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;

	/* hwcfg3 */
	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
	hw->max_transfer_size = (1 << (width + 11)) - 1;
3140 3141 3142 3143 3144 3145 3146
	/*
	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
	 * coherent buffers with this size, and if it's too large we can
	 * exhaust the coherent DMA pool.
	 */
	if (hw->max_transfer_size > 65535)
		hw->max_transfer_size = 65535;
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
	hw->max_packet_count = (1 << (width + 4)) - 1;
	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
			      GHWCFG3_DFIFO_DEPTH_SHIFT;

	/* hwcfg4 */
	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
3160 3161
	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

	/* fifo sizes */
	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
				GRXFSIZ_DEPTH_SHIFT;
	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
				       FIFOSIZE_DEPTH_SHIFT;
	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
				      FIFOSIZE_DEPTH_SHIFT;

	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
	dev_dbg(hsotg->dev, "  op_mode=%d\n",
		hw->op_mode);
	dev_dbg(hsotg->dev, "  arch=%d\n",
		hw->arch);
	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
		hw->dma_desc_enable);
	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
		hw->power_optimized);
	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
		hw->i2c_enable);
	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
		hw->hs_phy_type);
	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
		hw->fs_phy_type);
M
Masanari Iida 已提交
3186
	dev_dbg(hsotg->dev, "  utmi_phy_data_width=%d\n",
3187
		hw->utmi_phy_data_width);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
		hw->num_dev_ep);
	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
		hw->num_dev_perio_in_ep);
	dev_dbg(hsotg->dev, "  host_channels=%d\n",
		hw->host_channels);
	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
		hw->max_transfer_size);
	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
		hw->max_packet_count);
	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
		hw->nperio_tx_q_depth);
	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
		hw->host_perio_tx_q_depth);
	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
		hw->dev_token_q_depth);
	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
		hw->enable_dynamic_fifo);
	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
		hw->en_multiple_tx_fifo);
	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
		hw->total_fifo_size);
	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
		hw->host_rx_fifo_size);
	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
		hw->host_nperio_tx_fifo_size);
	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
		hw->host_perio_tx_fifo_size);
	dev_dbg(hsotg->dev, "\n");

	return 0;
}
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

/*
 * Sets all parameters to the given value.
 *
 * Assumes that the dwc2_core_params struct contains only integers.
 */
void dwc2_set_all_params(struct dwc2_core_params *params, int value)
{
	int *p = (int *)params;
	size_t size = sizeof(*params) / sizeof(*p);
	int i;

	for (i = 0; i < size; i++)
		p[i] = value;
}

3236

3237 3238
u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
{
3239
	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
3240 3241
}

3242
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
3243
{
3244
	if (dwc2_readl(hsotg->regs + GSNPSID) == 0xffffffff)
3245
		return false;
3246
	else
3247
		return true;
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
}

/**
 * dwc2_enable_global_interrupts() - Enables the controller's Global
 * Interrupt in the AHB Config register
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
{
3258
	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3259 3260

	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
3261
	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
}

/**
 * dwc2_disable_global_interrupts() - Disables the controller's Global
 * Interrupt in the AHB Config register
 *
 * @hsotg: Programming view of DWC_otg controller
 */
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
{
3272
	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3273 3274

	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3275
	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3276 3277 3278 3279 3280
}

MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
MODULE_AUTHOR("Synopsys, Inc.");
MODULE_LICENSE("Dual BSD/GPL");