volumes.c 222.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6
#include <linux/sched.h>
7
#include <linux/sched/mm.h>
8
#include <linux/bio.h>
9
#include <linux/slab.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17
#include <linux/namei.h>
18
#include "misc.h"
19 20 21 22 23 24
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
25
#include "raid56.h"
26
#include "async-thread.h"
27
#include "check-integrity.h"
28
#include "rcu-string.h"
29
#include "dev-replace.h"
30
#include "sysfs.h"
31
#include "tree-checker.h"
32
#include "space-info.h"
33
#include "block-group.h"
34
#include "discard.h"
35
#include "zoned.h"
36

37 38 39 40
#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
					 BTRFS_BLOCK_GROUP_RAID10 | \
					 BTRFS_BLOCK_GROUP_RAID56_MASK)

Z
Zhao Lei 已提交
41 42 43 44 45
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
46
		.devs_min	= 2,
47
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
48 49
		.devs_increment	= 2,
		.ncopies	= 2,
50
		.nparity        = 0,
51
		.raid_name	= "raid10",
52
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
54 55 56 57 58 59
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
60
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
61 62
		.devs_increment	= 2,
		.ncopies	= 2,
63
		.nparity        = 0,
64
		.raid_name	= "raid1",
65
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
67
	},
68 69 70
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
71
		.devs_max	= 3,
72 73 74 75
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
76
		.nparity        = 0,
77 78 79 80
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
	},
81 82 83
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
84
		.devs_max	= 4,
85 86 87 88
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
89
		.nparity        = 0,
90 91 92 93
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
	},
Z
Zhao Lei 已提交
94 95 96 97 98
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
99
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
100 101
		.devs_increment	= 1,
		.ncopies	= 2,
102
		.nparity        = 0,
103
		.raid_name	= "dup",
104
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105
		.mindev_error	= 0,
Z
Zhao Lei 已提交
106 107 108 109 110
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
111
		.devs_min	= 1,
112
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
113 114
		.devs_increment	= 1,
		.ncopies	= 1,
115
		.nparity        = 0,
116
		.raid_name	= "raid0",
117
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118
		.mindev_error	= 0,
Z
Zhao Lei 已提交
119 120 121 122 123 124
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
125
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
126 127
		.devs_increment	= 1,
		.ncopies	= 1,
128
		.nparity        = 0,
129
		.raid_name	= "single",
130
		.bg_flag	= 0,
131
		.mindev_error	= 0,
Z
Zhao Lei 已提交
132 133 134 135 136 137
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
138
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
139
		.devs_increment	= 1,
140
		.ncopies	= 1,
141
		.nparity        = 1,
142
		.raid_name	= "raid5",
143
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
145 146 147 148 149 150
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
151
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
152
		.devs_increment	= 1,
153
		.ncopies	= 1,
154
		.nparity        = 2,
155
		.raid_name	= "raid6",
156
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
158 159 160
	},
};

161 162 163 164 165 166
/*
 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 * can be used as index to access btrfs_raid_array[].
 */
enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
{
167
	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
168

169 170 171 172
	if (!profile)
		return BTRFS_RAID_SINGLE;

	return BTRFS_BG_FLAG_TO_INDEX(profile);
173 174
}

175
const char *btrfs_bg_type_to_raid_name(u64 flags)
176
{
177 178 179
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
180 181
		return NULL;

182
	return btrfs_raid_array[index].raid_name;
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

239
static int init_first_rw_device(struct btrfs_trans_handle *trans);
240
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
241
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
242
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
243 244 245
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
246
			     struct btrfs_io_context **bioc_ret,
247
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
248

D
David Sterba 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
265
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
266 267 268
 *
 * global::fs_devs - add, remove, updates to the global list
 *
269 270 271
 * does not protect: manipulation of the fs_devices::devices list in general
 * but in mount context it could be used to exclude list modifications by eg.
 * scan ioctl
D
David Sterba 已提交
272 273 274 275 276 277 278 279 280 281 282 283
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
284 285 286
 * Is not required at mount and close times, because our device list is
 * protected by the uuid_mutex at that point.
 *
D
David Sterba 已提交
287 288 289 290 291 292 293 294
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
295 296 297
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
298 299 300 301 302 303 304 305 306 307 308
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
309 310 311
 *   device_list_mutex
 *     chunk_mutex
 *   balance_mutex
312 313
 *
 *
314 315
 * Exclusive operations
 * ====================
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
341 342
 * The status of exclusive operation is set and cleared atomically.
 * During the course of Paused state, fs_info::exclusive_operation remains set.
343 344
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
345
 * The exclusive status is cleared when the device operation is canceled or
346
 * completed.
D
David Sterba 已提交
347 348
 */

349
DEFINE_MUTEX(uuid_mutex);
350
static LIST_HEAD(fs_uuids);
D
David Sterba 已提交
351
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
352 353 354
{
	return &fs_uuids;
}
355

D
David Sterba 已提交
356 357
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
358 359
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
360 361 362 363 364
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
365 366
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
367 368 369
{
	struct btrfs_fs_devices *fs_devs;

370
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
371 372 373 374 375 376 377
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
378
	INIT_LIST_HEAD(&fs_devs->fs_list);
379
	INIT_LIST_HEAD(&fs_devs->seed_list);
380 381 382
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

383 384 385 386 387
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

388 389 390
	return fs_devs;
}

391
void btrfs_free_device(struct btrfs_device *device)
392
{
393
	WARN_ON(!list_empty(&device->post_commit_list));
394
	rcu_string_free(device->name);
395
	extent_io_tree_release(&device->alloc_state);
396
	bio_put(device->flush_bio);
397
	btrfs_destroy_dev_zone_info(device);
398 399 400
	kfree(device);
}

Y
Yan Zheng 已提交
401 402 403 404 405 406 407 408
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
409
		btrfs_free_device(device);
Y
Yan Zheng 已提交
410 411 412 413
	}
	kfree(fs_devices);
}

414
void __exit btrfs_cleanup_fs_uuids(void)
415 416 417
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
418 419
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
420 421
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
422
		free_fs_devices(fs_devices);
423 424 425
	}
}

426 427
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
428 429 430
{
	struct btrfs_fs_devices *fs_devices;

431 432
	ASSERT(fsid);

433
	/* Handle non-split brain cases */
434
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
435 436 437 438 439 440 441 442 443
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
444 445 446 447
	}
	return NULL;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
				struct btrfs_super_block *disk_super)
{

	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by first scanning
	 * a device which didn't have its fsid/metadata_uuid changed
	 * at all and the CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}
	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by a device that
	 * has an outdated pair of fsid/metadata_uuid and
	 * CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(fs_devices->metadata_uuid,
			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}

	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}


489 490 491
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
492
		      struct btrfs_super_block **disk_super)
493 494 495 496 497 498 499 500 501 502 503
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
C
Christoph Hellwig 已提交
504
		sync_blockdev(*bdev);
505
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
506 507 508 509 510
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
511 512 513
	*disk_super = btrfs_read_dev_super(*bdev);
	if (IS_ERR(*disk_super)) {
		ret = PTR_ERR(*disk_super);
514 515 516 517 518 519 520 521 522 523 524
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	return ret;
}

A
Anand Jain 已提交
525 526
/**
 *  Search and remove all stale devices (which are not mounted).
527
 *  When both inputs are NULL, it will search and release all stale devices.
A
Anand Jain 已提交
528 529 530 531
 *
 *  @devt:	Optional. When provided will it release all unmounted devices
 *		matching this devt only.
 *  @skip_device:  Optional. Will skip this device when searching for the stale
532
 *		devices.
A
Anand Jain 已提交
533 534 535 536
 *
 *  Return:	0 for success or if @devt is 0.
 *		-EBUSY if @devt is a mounted device.
 *		-ENOENT if @devt does not match any device in the list.
537
 */
A
Anand Jain 已提交
538
static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
A
Anand Jain 已提交
539
{
540 541
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
542 543
	int ret = 0;

544 545
	lockdep_assert_held(&uuid_mutex);

A
Anand Jain 已提交
546
	if (devt)
547
		ret = -ENOENT;
A
Anand Jain 已提交
548

549
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
550

551
		mutex_lock(&fs_devices->device_list_mutex);
552 553 554
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
555
				continue;
556
			if (devt && devt != device->devt)
557
				continue;
558 559
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
A
Anand Jain 已提交
560
				if (devt && ret != 0)
561 562 563
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
564 565

			/* delete the stale device */
566 567 568 569
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

570
			ret = 0;
571 572
		}
		mutex_unlock(&fs_devices->device_list_mutex);
573

574 575 576 577
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
578 579
		}
	}
580 581

	return ret;
A
Anand Jain 已提交
582 583
}

584 585 586 587 588
/*
 * This is only used on mount, and we are protected from competing things
 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 * fs_devices->device_list_mutex here.
 */
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct block_device *bdev;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
604
				    &bdev, &disk_super);
605 606 607 608 609
	if (ret)
		return ret;

	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
610
		goto error_free_page;
611 612

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
613
		goto error_free_page;
614 615 616 617

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
618 619 620 621
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
622
			goto error_free_page;
623 624
		}

625
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
626
		fs_devices->seeding = true;
627
	} else {
628 629 630 631
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
632 633
	}

634
	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
635
		fs_devices->rotating = true;
636 637

	device->bdev = bdev;
638
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
639 640 641
	device->mode = flags;

	fs_devices->open_devices++;
642 643
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
644
		fs_devices->rw_devices++;
645
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
646
	}
647
	btrfs_release_disk_super(disk_super);
648 649 650

	return 0;

651 652
error_free_page:
	btrfs_release_disk_super(disk_super);
653 654 655 656 657
	blkdev_put(bdev, flags);

	return -EINVAL;
}

658 659
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
660 661 662
 * being created with a disk that has already completed its fsid change. Such
 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 * Handle both cases here.
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

678
	return find_fsid(disk_super->fsid, NULL);
679 680
}

681 682 683 684 685 686 687 688

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
D
David Sterba 已提交
689
	 * multiple successful changes of FSID but currently device didn't
690 691 692 693 694
	 * observe it. Meaning our fsid will be different than theirs. We need
	 * to handle two subcases :
	 *  1 - The fs still continues to have different METADATA/FSID uuids.
	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
	 *  are equal).
695 696
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
697
		/* Changed UUIDs */
698 699 700 701 702
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
703 704 705 706 707 708 709 710
			   BTRFS_FSID_SIZE) != 0)
			return fs_devices;

		/* Unchanged UUIDs */
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0)
711 712 713 714 715
			return fs_devices;
	}

	return NULL;
}
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

static struct btrfs_fs_devices *find_fsid_reverted_metadata(
				struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle the case where the scanned device is part of an fs whose last
	 * metadata UUID change reverted it to the original FSID. At the same
	 * time * fs_devices was first created by another constitutent device
	 * which didn't fully observe the operation. This results in an
	 * btrfs_fs_devices created with metadata/fsid different AND
	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
	 * fs_devices equal to the FSID of the disk.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    fs_devices->fsid_change)
			return fs_devices;
	}

	return NULL;
}
742 743 744 745
/*
 * Add new device to list of registered devices
 *
 * Returns:
746 747
 * device pointer which was just added or updated when successful
 * error pointer when failed
748
 */
749
static noinline struct btrfs_device *device_list_add(const char *path,
750 751
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
752 753
{
	struct btrfs_device *device;
754
	struct btrfs_fs_devices *fs_devices = NULL;
755
	struct rcu_string *name;
756
	u64 found_transid = btrfs_super_generation(disk_super);
757
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
758 759
	dev_t path_devt;
	int error;
760 761
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
762 763
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
764

765 766 767 768
	error = lookup_bdev(path, &path_devt);
	if (error)
		return ERR_PTR(error);

769
	if (fsid_change_in_progress) {
770
		if (!has_metadata_uuid)
771
			fs_devices = find_fsid_inprogress(disk_super);
772
		else
773
			fs_devices = find_fsid_changed(disk_super);
774
	} else if (has_metadata_uuid) {
775
		fs_devices = find_fsid_with_metadata_uuid(disk_super);
776
	} else {
777 778 779
		fs_devices = find_fsid_reverted_metadata(disk_super);
		if (!fs_devices)
			fs_devices = find_fsid(disk_super->fsid, NULL);
780 781
	}

782 783

	if (!fs_devices) {
784 785 786 787 788 789
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

790
		if (IS_ERR(fs_devices))
791
			return ERR_CAST(fs_devices);
792

793 794
		fs_devices->fsid_change = fsid_change_in_progress;

795
		mutex_lock(&fs_devices->device_list_mutex);
796
		list_add(&fs_devices->fs_list, &fs_uuids);
797

798 799
		device = NULL;
	} else {
800 801 802 803 804
		struct btrfs_dev_lookup_args args = {
			.devid = devid,
			.uuid = disk_super->dev_item.uuid,
		};

805
		mutex_lock(&fs_devices->device_list_mutex);
806
		device = btrfs_find_device(fs_devices, &args);
807 808 809 810 811 812

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
813
		if (fs_devices->fsid_change &&
814 815 816
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
817 818 819 820 821 822 823 824

			if (has_metadata_uuid)
				memcpy(fs_devices->metadata_uuid,
				       disk_super->metadata_uuid,
				       BTRFS_FSID_SIZE);
			else
				memcpy(fs_devices->metadata_uuid,
				       disk_super->fsid, BTRFS_FSID_SIZE);
825 826 827

			fs_devices->fsid_change = false;
		}
828
	}
829

830
	if (!device) {
831 832
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
833
			return ERR_PTR(-EBUSY);
834
		}
Y
Yan Zheng 已提交
835

836 837 838
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
839
			mutex_unlock(&fs_devices->device_list_mutex);
840
			/* we can safely leave the fs_devices entry around */
841
			return device;
842
		}
843 844 845

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
846
			btrfs_free_device(device);
847
			mutex_unlock(&fs_devices->device_list_mutex);
848
			return ERR_PTR(-ENOMEM);
849
		}
850
		rcu_assign_pointer(device->name, name);
851
		device->devt = path_devt;
852

853
		list_add_rcu(&device->dev_list, &fs_devices->devices);
854
		fs_devices->num_devices++;
855

Y
Yan Zheng 已提交
856
		device->fs_devices = fs_devices;
857
		*new_device_added = true;
858 859

		if (disk_super->label[0])
860 861 862 863
			pr_info(
	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->label, devid, found_transid, path,
				current->comm, task_pid_nr(current));
864
		else
865 866 867 868
			pr_info(
	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->fsid, devid, found_transid, path,
				current->comm, task_pid_nr(current));
869

870
	} else if (!device->name || strcmp(device->name->str, path)) {
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
892 893 894 895
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
896
		 */
897
		if (!fs_devices->opened && found_transid < device->generation) {
898 899 900 901 902 903 904
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
905
			mutex_unlock(&fs_devices->device_list_mutex);
906
			return ERR_PTR(-EEXIST);
907
		}
908

909 910 911
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
912 913 914 915 916
		 *
		 * NOTE: the device->fs_info may not be reliable here so pass
		 * in a NULL to message helpers instead. This avoids a possible
		 * use-after-free when the fs_info and fs_info->sb are already
		 * torn down.
917 918
		 */
		if (device->bdev) {
919
			if (device->devt != path_devt) {
920
				mutex_unlock(&fs_devices->device_list_mutex);
921
				btrfs_warn_in_rcu(NULL,
922 923 924 925
	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
						  path, devid, found_transid,
						  current->comm,
						  task_pid_nr(current));
926 927
				return ERR_PTR(-EEXIST);
			}
928
			btrfs_info_in_rcu(NULL,
929 930 931 932
	"devid %llu device path %s changed to %s scanned by %s (%d)",
					  devid, rcu_str_deref(device->name),
					  path, current->comm,
					  task_pid_nr(current));
933 934
		}

935
		name = rcu_string_strdup(path, GFP_NOFS);
936 937
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
938
			return ERR_PTR(-ENOMEM);
939
		}
940 941
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
942
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
943
			fs_devices->missing_devices--;
944
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
945
		}
946
		device->devt = path_devt;
947 948
	}

949 950 951 952 953 954
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
955
	if (!fs_devices->opened) {
956
		device->generation = found_transid;
957 958 959
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
960

961 962
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

963
	mutex_unlock(&fs_devices->device_list_mutex);
964
	return device;
965 966
}

Y
Yan Zheng 已提交
967 968 969 970 971
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;
972
	int ret = 0;
Y
Yan Zheng 已提交
973

974 975
	lockdep_assert_held(&uuid_mutex);

976
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
977 978
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
979

J
Josef Bacik 已提交
980
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
981 982

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
983 984
		struct rcu_string *name;

985 986
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
987 988
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
Y
Yan Zheng 已提交
989
			goto error;
990
		}
Y
Yan Zheng 已提交
991

992 993 994 995
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
996
		if (orig_dev->name) {
997 998
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
999
			if (!name) {
1000
				btrfs_free_device(device);
1001
				ret = -ENOMEM;
1002 1003 1004
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1005
		}
Y
Yan Zheng 已提交
1006 1007 1008 1009 1010 1011 1012 1013

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
	return fs_devices;
error:
	free_fs_devices(fs_devices);
1014
	return ERR_PTR(ret);
Y
Yan Zheng 已提交
1015 1016
}

1017
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1018
				      struct btrfs_device **latest_dev)
1019
{
Q
Qinghuang Feng 已提交
1020
	struct btrfs_device *device, *next;
1021

1022
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1023
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1024
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1025
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1026
				      &device->dev_state) &&
1027 1028
			    !test_bit(BTRFS_DEV_STATE_MISSING,
				      &device->dev_state) &&
1029 1030 1031
			    (!*latest_dev ||
			     device->generation > (*latest_dev)->generation)) {
				*latest_dev = device;
1032
			}
Y
Yan Zheng 已提交
1033
			continue;
1034
		}
Y
Yan Zheng 已提交
1035

1036 1037 1038 1039 1040 1041 1042
		/*
		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
		 * in btrfs_init_dev_replace() so just continue.
		 */
		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
			continue;

Y
Yan Zheng 已提交
1043
		if (device->bdev) {
1044
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1045 1046 1047
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1048
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1049
			list_del_init(&device->dev_alloc_list);
1050
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1051
			fs_devices->rw_devices--;
Y
Yan Zheng 已提交
1052
		}
Y
Yan Zheng 已提交
1053 1054
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1055
		btrfs_free_device(device);
1056
	}
Y
Yan Zheng 已提交
1057

1058 1059 1060 1061 1062 1063
}

/*
 * After we have read the system tree and know devids belonging to this
 * filesystem, remove the device which does not belong there.
 */
1064
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1065 1066
{
	struct btrfs_device *latest_dev = NULL;
1067
	struct btrfs_fs_devices *seed_dev;
1068 1069

	mutex_lock(&uuid_mutex);
1070
	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1071 1072

	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1073
		__btrfs_free_extra_devids(seed_dev, &latest_dev);
Y
Yan Zheng 已提交
1074

1075
	fs_devices->latest_dev = latest_dev;
1076

1077 1078
	mutex_unlock(&uuid_mutex);
}
1079

1080 1081
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1082 1083 1084
	if (!device->bdev)
		return;

1085
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1086 1087 1088 1089
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1090
	blkdev_put(device->bdev, device->mode);
1091 1092
}

1093
static void btrfs_close_one_device(struct btrfs_device *device)
1094 1095 1096
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;

1097
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1098 1099 1100 1101 1102
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1103 1104 1105
	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);

1106 1107
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1108
		fs_devices->missing_devices--;
1109
	}
1110

1111
	btrfs_close_bdev(device);
1112
	if (device->bdev) {
1113
		fs_devices->open_devices--;
1114
		device->bdev = NULL;
1115
	}
1116
	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1117
	btrfs_destroy_dev_zone_info(device);
1118

1119 1120 1121
	device->fs_info = NULL;
	atomic_set(&device->dev_stats_ccnt, 0);
	extent_io_tree_release(&device->alloc_state);
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	/*
	 * Reset the flush error record. We might have a transient flush error
	 * in this mount, and if so we aborted the current transaction and set
	 * the fs to an error state, guaranteeing no super blocks can be further
	 * committed. However that error might be transient and if we unmount the
	 * filesystem and mount it again, we should allow the mount to succeed
	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
	 * filesystem again we still get flush errors, then we will again abort
	 * any transaction and set the error state, guaranteeing no commits of
	 * unsafe super blocks.
	 */
	device->last_flush_error = 0;

1136 1137 1138 1139 1140
	/* Verify the device is back in a pristine state  */
	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	ASSERT(list_empty(&device->dev_alloc_list));
	ASSERT(list_empty(&device->post_commit_list));
1141 1142
}

1143
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1144
{
1145
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1146

1147 1148
	lockdep_assert_held(&uuid_mutex);

Y
Yan Zheng 已提交
1149
	if (--fs_devices->opened > 0)
1150
		return;
1151

1152
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1153
		btrfs_close_one_device(device);
1154

Y
Yan Zheng 已提交
1155 1156
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1157
	fs_devices->opened = 0;
1158
	fs_devices->seeding = false;
1159
	fs_devices->fs_info = NULL;
1160 1161
}

1162
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
Y
Yan Zheng 已提交
1163
{
1164 1165
	LIST_HEAD(list);
	struct btrfs_fs_devices *tmp;
Y
Yan Zheng 已提交
1166 1167

	mutex_lock(&uuid_mutex);
1168
	close_fs_devices(fs_devices);
1169 1170
	if (!fs_devices->opened)
		list_splice_init(&fs_devices->seed_list, &list);
Y
Yan Zheng 已提交
1171

1172
	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1173
		close_fs_devices(fs_devices);
1174
		list_del(&fs_devices->seed_list);
Y
Yan Zheng 已提交
1175 1176
		free_fs_devices(fs_devices);
	}
1177
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1178 1179
}

1180
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1181
				fmode_t flags, void *holder)
1182 1183
{
	struct btrfs_device *device;
1184
	struct btrfs_device *latest_dev = NULL;
1185
	struct btrfs_device *tmp_device;
1186

1187 1188
	flags |= FMODE_EXCL;

1189 1190 1191
	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
				 dev_list) {
		int ret;
1192

1193 1194 1195
		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
		if (ret == 0 &&
		    (!latest_dev || device->generation > latest_dev->generation)) {
1196
			latest_dev = device;
1197 1198 1199 1200 1201
		} else if (ret == -ENODATA) {
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);
		}
1202
	}
1203 1204 1205
	if (fs_devices->open_devices == 0)
		return -EINVAL;

Y
Yan Zheng 已提交
1206
	fs_devices->opened = 1;
1207
	fs_devices->latest_dev = latest_dev;
Y
Yan Zheng 已提交
1208
	fs_devices->total_rw_bytes = 0;
1209
	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
A
Anand Jain 已提交
1210
	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1211 1212

	return 0;
Y
Yan Zheng 已提交
1213 1214
}

1215 1216
static int devid_cmp(void *priv, const struct list_head *a,
		     const struct list_head *b)
A
Anand Jain 已提交
1217
{
1218
	const struct btrfs_device *dev1, *dev2;
A
Anand Jain 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1230
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1231
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1232 1233 1234
{
	int ret;

1235
	lockdep_assert_held(&uuid_mutex);
1236 1237
	/*
	 * The device_list_mutex cannot be taken here in case opening the
1238
	 * underlying device takes further locks like open_mutex.
1239 1240 1241 1242
	 *
	 * We also don't need the lock here as this is called during mount and
	 * exclusion is provided by uuid_mutex
	 */
1243

Y
Yan Zheng 已提交
1244
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1245 1246
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1247
	} else {
A
Anand Jain 已提交
1248
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1249
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1250
	}
1251

1252 1253 1254
	return ret;
}

1255
void btrfs_release_disk_super(struct btrfs_super_block *super)
1256
{
1257 1258
	struct page *page = virt_to_page(super);

1259 1260 1261
	put_page(page);
}

1262
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1263
						       u64 bytenr, u64 bytenr_orig)
1264
{
1265 1266
	struct btrfs_super_block *disk_super;
	struct page *page;
1267 1268 1269 1270
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
1271
	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1272
		return ERR_PTR(-EINVAL);
1273 1274

	/* make sure our super fits in the page */
1275 1276
	if (sizeof(*disk_super) > PAGE_SIZE)
		return ERR_PTR(-EINVAL);
1277 1278 1279

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
1280 1281
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
		return ERR_PTR(-EINVAL);
1282 1283

	/* pull in the page with our super */
1284
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1285

1286 1287
	if (IS_ERR(page))
		return ERR_CAST(page);
1288

1289
	p = page_address(page);
1290 1291

	/* align our pointer to the offset of the super block */
1292
	disk_super = p + offset_in_page(bytenr);
1293

1294
	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1295
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1296
		btrfs_release_disk_super(p);
1297
		return ERR_PTR(-EINVAL);
1298 1299
	}

1300 1301
	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1302

1303
	return disk_super;
1304 1305
}

A
Anand Jain 已提交
1306
int btrfs_forget_devices(dev_t devt)
1307 1308 1309 1310
{
	int ret;

	mutex_lock(&uuid_mutex);
A
Anand Jain 已提交
1311
	ret = btrfs_free_stale_devices(devt, NULL);
1312 1313 1314 1315 1316
	mutex_unlock(&uuid_mutex);

	return ret;
}

1317 1318 1319 1320 1321
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1322 1323
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1324 1325
{
	struct btrfs_super_block *disk_super;
1326
	bool new_device_added = false;
1327
	struct btrfs_device *device = NULL;
1328
	struct block_device *bdev;
1329 1330
	u64 bytenr, bytenr_orig;
	int ret;
1331

1332 1333
	lockdep_assert_held(&uuid_mutex);

1334 1335 1336 1337 1338 1339
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
1340
	flags |= FMODE_EXCL;
1341 1342

	bdev = blkdev_get_by_path(path, flags, holder);
1343
	if (IS_ERR(bdev))
1344
		return ERR_CAST(bdev);
1345

1346 1347
	bytenr_orig = btrfs_sb_offset(0);
	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1348 1349 1350 1351
	if (ret) {
		device = ERR_PTR(ret);
		goto error_bdev_put;
	}
1352 1353

	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1354 1355
	if (IS_ERR(disk_super)) {
		device = ERR_CAST(disk_super);
1356
		goto error_bdev_put;
1357
	}
1358

1359
	device = device_list_add(path, disk_super, &new_device_added);
1360 1361
	if (!IS_ERR(device) && new_device_added)
		btrfs_free_stale_devices(device->devt, device);
1362

1363
	btrfs_release_disk_super(disk_super);
1364 1365

error_bdev_put:
1366
	blkdev_put(bdev, flags);
1367

1368
	return device;
1369
}
1370

1371 1372 1373 1374 1375 1376
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1377
{
1378
	u64 physical_start, physical_end;
1379

1380
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1381

1382 1383 1384
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1385

1386 1387 1388 1389 1390
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1391 1392
		}
	}
1393
	return false;
1394 1395
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/*
		 * We don't want to overwrite the superblock on the drive nor
		 * any area used by the boot loader (grub for example), so we
		 * make sure to start at an offset of at least 1MB.
		 */
		return max_t(u64, start, SZ_1M);
1406 1407 1408 1409 1410 1411 1412
	case BTRFS_CHUNK_ALLOC_ZONED:
		/*
		 * We don't care about the starting region like regular
		 * allocator, because we anyway use/reserve the first two zones
		 * for superblock logging.
		 */
		return ALIGN(start, device->zone_info->zone_size);
1413 1414 1415 1416 1417
	default:
		BUG();
	}
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
					u64 *hole_start, u64 *hole_size,
					u64 num_bytes)
{
	u64 zone_size = device->zone_info->zone_size;
	u64 pos;
	int ret;
	bool changed = false;

	ASSERT(IS_ALIGNED(*hole_start, zone_size));

	while (*hole_size > 0) {
		pos = btrfs_find_allocatable_zones(device, *hole_start,
						   *hole_start + *hole_size,
						   num_bytes);
		if (pos != *hole_start) {
			*hole_size = *hole_start + *hole_size - pos;
			*hole_start = pos;
			changed = true;
			if (*hole_size < num_bytes)
				break;
		}

		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);

		/* Range is ensured to be empty */
		if (!ret)
			return changed;

		/* Given hole range was invalid (outside of device) */
		if (ret == -ERANGE) {
			*hole_start += *hole_size;
1450
			*hole_size = 0;
1451
			return true;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		}

		*hole_start += zone_size;
		*hole_size -= zone_size;
		changed = true;
	}

	return changed;
}

1462 1463 1464 1465 1466 1467 1468
/**
 * dev_extent_hole_check - check if specified hole is suitable for allocation
 * @device:	the device which we have the hole
 * @hole_start: starting position of the hole
 * @hole_size:	the size of the hole
 * @num_bytes:	the size of the free space that we need
 *
1469
 * This function may modify @hole_start and @hole_size to reflect the suitable
1470 1471 1472 1473 1474 1475 1476 1477
 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 */
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
				  u64 *hole_size, u64 num_bytes)
{
	bool changed = false;
	u64 hole_end = *hole_start + *hole_size;

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	for (;;) {
		/*
		 * Check before we set max_hole_start, otherwise we could end up
		 * sending back this offset anyway.
		 */
		if (contains_pending_extent(device, hole_start, *hole_size)) {
			if (hole_end >= *hole_start)
				*hole_size = hole_end - *hole_start;
			else
				*hole_size = 0;
			changed = true;
		}

		switch (device->fs_devices->chunk_alloc_policy) {
		case BTRFS_CHUNK_ALLOC_REGULAR:
			/* No extra check */
			break;
		case BTRFS_CHUNK_ALLOC_ZONED:
			if (dev_extent_hole_check_zoned(device, hole_start,
							hole_size, num_bytes)) {
				changed = true;
				/*
				 * The changed hole can contain pending extent.
				 * Loop again to check that.
				 */
				continue;
			}
			break;
		default:
			BUG();
		}
1509 1510 1511 1512 1513 1514

		break;
	}

	return changed;
}
1515

1516
/*
1517 1518 1519 1520 1521 1522 1523
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1524
 *
1525 1526 1527
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1528 1529 1530 1531 1532 1533 1534 1535
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1536 1537 1538 1539 1540
 *
 * NOTE: This function will search *commit* root of device tree, and does extra
 * check to ensure dev extents are not double allocated.
 * This makes the function safe to allocate dev extents but may not report
 * correct usable device space, as device extent freed in current transaction
D
David Sterba 已提交
1541
 * is not reported as available.
1542
 */
1543 1544 1545
static int find_free_dev_extent_start(struct btrfs_device *device,
				u64 num_bytes, u64 search_start, u64 *start,
				u64 *len)
1546
{
1547 1548
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1549
	struct btrfs_key key;
1550
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1551
	struct btrfs_path *path;
1552 1553 1554 1555
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1556 1557
	u64 search_end = device->total_bytes;
	int ret;
1558
	int slot;
1559
	struct extent_buffer *l;
1560

1561
	search_start = dev_extent_search_start(device, search_start);
1562

1563 1564 1565
	WARN_ON(device->zone_info &&
		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));

1566 1567 1568
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1569

1570 1571 1572
	max_hole_start = search_start;
	max_hole_size = 0;

1573
again:
1574 1575
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1576
		ret = -ENOSPC;
1577
		goto out;
1578 1579
	}

1580
	path->reada = READA_FORWARD;
1581 1582
	path->search_commit_root = 1;
	path->skip_locking = 1;
1583

1584 1585 1586
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1587

1588
	ret = btrfs_search_backwards(root, &key, path);
1589
	if (ret < 0)
1590 1591
		goto out;

1592 1593 1594 1595 1596 1597 1598 1599
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1600 1601 1602
				goto out;

			break;
1603 1604 1605 1606 1607 1608 1609
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1610
			break;
1611

1612
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1613
			goto next;
1614

1615 1616
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1617 1618
			dev_extent_hole_check(device, &search_start, &hole_size,
					      num_bytes);
1619

1620 1621 1622 1623
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1637 1638 1639 1640
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1641 1642 1643 1644
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1645 1646 1647 1648 1649
next:
		path->slots[0]++;
		cond_resched();
	}

1650 1651 1652 1653 1654
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1655
	if (search_end > search_start) {
1656
		hole_size = search_end - search_start;
1657 1658
		if (dev_extent_hole_check(device, &search_start, &hole_size,
					  num_bytes)) {
1659 1660 1661
			btrfs_release_path(path);
			goto again;
		}
1662

1663 1664 1665 1666
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1667 1668
	}

1669
	/* See above. */
1670
	if (max_hole_size < num_bytes)
1671 1672 1673 1674 1675
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1676
	btrfs_free_path(path);
1677
	*start = max_hole_start;
1678
	if (len)
1679
		*len = max_hole_size;
1680 1681 1682
	return ret;
}

1683
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1684 1685 1686
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1687
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1688 1689
}

1690
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1691
			  struct btrfs_device *device,
M
Miao Xie 已提交
1692
			  u64 start, u64 *dev_extent_len)
1693
{
1694 1695
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1696 1697 1698
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1699 1700 1701
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1702 1703 1704 1705 1706 1707 1708 1709

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1710
again:
1711
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1712 1713 1714
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1715 1716
		if (ret)
			goto out;
1717 1718 1719 1720 1721 1722
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1723 1724 1725
		key = found_key;
		btrfs_release_path(path);
		goto again;
1726 1727 1728 1729
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1730 1731
	} else {
		goto out;
1732
	}
1733

M
Miao Xie 已提交
1734 1735
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1736
	ret = btrfs_del_item(trans, root, path);
1737
	if (ret == 0)
1738
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1739
out:
1740 1741 1742 1743
	btrfs_free_path(path);
	return ret;
}

1744
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1745
{
1746 1747 1748 1749
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1750

1751
	em_tree = &fs_info->mapping_tree;
1752
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1753
	n = rb_last(&em_tree->map.rb_root);
1754 1755 1756
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1757
	}
1758 1759
	read_unlock(&em_tree->lock);

1760 1761 1762
	return ret;
}

1763 1764
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1765 1766 1767 1768
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1769 1770 1771 1772 1773
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1774 1775 1776 1777 1778

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1779
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1780 1781 1782
	if (ret < 0)
		goto error;

1783 1784 1785 1786 1787 1788
	if (ret == 0) {
		/* Corruption */
		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
		ret = -EUCLEAN;
		goto error;
	}
1789

1790 1791
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1792 1793
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1794
		*devid_ret = 1;
1795 1796 1797
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1798
		*devid_ret = found_key.offset + 1;
1799 1800 1801
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1802
	btrfs_free_path(path);
1803 1804 1805 1806 1807 1808 1809
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1810
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1811
			    struct btrfs_device *device)
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1826
	key.offset = device->devid;
1827

1828
	btrfs_reserve_chunk_metadata(trans, true);
1829 1830
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1831
	btrfs_trans_release_chunk_metadata(trans);
1832 1833 1834 1835 1836 1837 1838
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1839
	btrfs_set_device_generation(leaf, dev_item, 0);
1840 1841 1842 1843
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1844 1845 1846 1847
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1848 1849 1850
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1851
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1852

1853
	ptr = btrfs_device_uuid(dev_item);
1854
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1855
	ptr = btrfs_device_fsid(dev_item);
1856 1857
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1858 1859
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1860
	ret = 0;
1861 1862 1863 1864
out:
	btrfs_free_path(path);
	return ret;
}
1865

1866 1867 1868
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
1869 1870
 *
 * We don't care about errors here, this is just to be kind to userspace.
1871
 */
1872
static void update_dev_time(const char *device_path)
1873
{
1874
	struct path path;
1875
	struct timespec64 now;
1876
	int ret;
1877

1878 1879
	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
	if (ret)
1880
		return;
1881

1882 1883 1884
	now = current_time(d_inode(path.dentry));
	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
	path_put(&path);
1885 1886
}

1887 1888
static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
			     struct btrfs_device *device)
1889
{
1890
	struct btrfs_root *root = device->fs_info->chunk_root;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

1903
	btrfs_reserve_chunk_metadata(trans, false);
1904
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1905
	btrfs_trans_release_chunk_metadata(trans);
1906 1907 1908
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
1909 1910 1911 1912 1913 1914 1915 1916 1917
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
	return ret;
}

1918 1919 1920 1921 1922 1923 1924
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1925 1926
{
	u64 all_avail;
1927
	unsigned seq;
1928
	int i;
1929

1930
	do {
1931
		seq = read_seqbegin(&fs_info->profiles_lock);
1932

1933 1934 1935 1936
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
1937

1938
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1939
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1940
			continue;
1941

1942 1943
		if (num_devices < btrfs_raid_array[i].devs_min)
			return btrfs_raid_array[i].mindev_error;
D
David Woodhouse 已提交
1944 1945
	}

1946
	return 0;
1947 1948
}

1949 1950
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951
{
Y
Yan Zheng 已提交
1952
	struct btrfs_device *next_device;
1953 1954 1955

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
1956 1957
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
1958 1959 1960 1961 1962 1963 1964
			return next_device;
	}

	return NULL;
}

/*
1965
 * Helper function to check if the given device is part of s_bdev / latest_dev
1966 1967 1968 1969
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
1970
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971
					    struct btrfs_device *next_device)
1972
{
1973
	struct btrfs_fs_info *fs_info = device->fs_info;
1974

1975
	if (!next_device)
1976
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977
							    device);
1978 1979 1980 1981 1982 1983
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

1984 1985
	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
		fs_info->fs_devices->latest_dev = next_device;
1986 1987
}

1988 1989 1990 1991 1992 1993 1994 1995
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

1996
	down_read(&fs_info->dev_replace.rwsem);
1997 1998 1999 2000
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
2001
	up_read(&fs_info->dev_replace.rwsem);
2002 2003 2004 2005

	return num_devices;
}

2006 2007 2008
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
			       struct block_device *bdev,
			       const char *device_path)
2009 2010 2011 2012 2013 2014 2015 2016
{
	struct btrfs_super_block *disk_super;
	int copy_num;

	if (!bdev)
		return;

	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017 2018
		struct page *page;
		int ret;
2019

2020 2021 2022
		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
		if (IS_ERR(disk_super))
			continue;
2023

2024 2025 2026 2027 2028
		if (bdev_is_zoned(bdev)) {
			btrfs_reset_sb_log_zones(bdev, copy_num);
			continue;
		}

2029
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

		page = virt_to_page(disk_super);
		set_page_dirty(page);
		lock_page(page);
		/* write_on_page() unlocks the page */
		ret = write_one_page(page);
		if (ret)
			btrfs_warn(fs_info,
				"error clearing superblock number %d (%d)",
				copy_num, ret);
		btrfs_release_disk_super(disk_super);

2042 2043 2044 2045 2046 2047
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
2048
	update_dev_time(device_path);
2049 2050
}

2051 2052 2053
int btrfs_rm_device(struct btrfs_fs_info *fs_info,
		    struct btrfs_dev_lookup_args *args,
		    struct block_device **bdev, fmode_t *mode)
2054
{
2055
	struct btrfs_trans_handle *trans;
2056
	struct btrfs_device *device;
2057
	struct btrfs_fs_devices *cur_devices;
2058
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2059
	u64 num_devices;
2060 2061
	int ret = 0;

2062 2063 2064 2065 2066
	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
		return -EINVAL;
	}

2067 2068 2069 2070 2071
	/*
	 * The device list in fs_devices is accessed without locks (neither
	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
	 * filesystem and another device rm cannot run.
	 */
2072
	num_devices = btrfs_num_devices(fs_info);
2073

2074
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2075
	if (ret)
2076
		return ret;
2077

2078 2079 2080
	device = btrfs_find_device(fs_info->fs_devices, args);
	if (!device) {
		if (args->missing)
2081 2082
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
2083
			ret = -ENOENT;
2084
		return ret;
2085
	}
2086

2087 2088 2089 2090
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
2091
		return -ETXTBSY;
2092 2093
	}

2094 2095
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
		return BTRFS_ERROR_DEV_TGT_REPLACE;
2096

2097
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2098 2099
	    fs_info->fs_devices->rw_devices == 1)
		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
Y
Yan Zheng 已提交
2100

2101
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2102
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2103
		list_del_init(&device->dev_alloc_list);
2104
		device->fs_devices->rw_devices--;
2105
		mutex_unlock(&fs_info->chunk_mutex);
2106
	}
2107 2108 2109

	ret = btrfs_shrink_device(device, 0);
	if (ret)
2110
		goto error_undo;
2111

2112 2113 2114
	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2115
		goto error_undo;
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	}

	ret = btrfs_rm_dev_item(trans, device);
	if (ret) {
		/* Any error in dev item removal is critical */
		btrfs_crit(fs_info,
			   "failed to remove device item for devid %llu: %d",
			   device->devid, ret);
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
		return ret;
	}
2128

2129
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2130
	btrfs_scrub_cancel_dev(device);
2131 2132 2133 2134

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2135 2136 2137 2138 2139
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2140
	 */
2141

2142 2143 2144
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
2145
	 * its own fs_devices listed under the fs_devices->seed_list.
2146
	 */
2147
	cur_devices = device->fs_devices;
2148
	mutex_lock(&fs_devices->device_list_mutex);
2149
	list_del_rcu(&device->dev_list);
2150

2151 2152
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2153 2154 2155
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2156

2157
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2158
		cur_devices->missing_devices--;
2159

2160
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2161

2162
	if (device->bdev) {
2163
		cur_devices->open_devices--;
2164
		/* remove sysfs entry */
2165
		btrfs_sysfs_remove_device(device);
2166
	}
2167

2168 2169
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2170
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2171

2172
	/*
2173 2174 2175 2176 2177 2178 2179 2180
	 * At this point, the device is zero sized and detached from the
	 * devices list.  All that's left is to zero out the old supers and
	 * free the device.
	 *
	 * We cannot call btrfs_close_bdev() here because we're holding the sb
	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
	 * block device and it's dependencies.  Instead just flush the device
	 * and let the caller do the final blkdev_put.
2181
	 */
2182
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2183 2184
		btrfs_scratch_superblocks(fs_info, device->bdev,
					  device->name->str);
2185 2186 2187 2188 2189
		if (device->bdev) {
			sync_blockdev(device->bdev);
			invalidate_bdev(device->bdev);
		}
	}
2190

2191 2192
	*bdev = device->bdev;
	*mode = device->mode;
2193 2194
	synchronize_rcu();
	btrfs_free_device(device);
2195

2196 2197 2198 2199 2200 2201 2202
	/*
	 * This can happen if cur_devices is the private seed devices list.  We
	 * cannot call close_fs_devices() here because it expects the uuid_mutex
	 * to be held, but in fact we don't need that for the private
	 * seed_devices, we can simply decrement cur_devices->opened and then
	 * remove it from our list and free the fs_devices.
	 */
2203
	if (cur_devices->num_devices == 0) {
2204
		list_del_init(&cur_devices->seed_list);
2205 2206
		ASSERT(cur_devices->opened == 1);
		cur_devices->opened--;
2207
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2208 2209
	}

2210 2211
	ret = btrfs_commit_transaction(trans);

2212
	return ret;
2213

2214
error_undo:
2215
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2216
		mutex_lock(&fs_info->chunk_mutex);
2217
		list_add(&device->dev_alloc_list,
2218
			 &fs_devices->alloc_list);
2219
		device->fs_devices->rw_devices++;
2220
		mutex_unlock(&fs_info->chunk_mutex);
2221
	}
2222
	return ret;
2223 2224
}

2225
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2226
{
2227 2228
	struct btrfs_fs_devices *fs_devices;

2229
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2230

2231 2232 2233 2234 2235 2236 2237
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2238

2239
	list_del_rcu(&srcdev->dev_list);
2240
	list_del(&srcdev->dev_alloc_list);
2241
	fs_devices->num_devices--;
2242
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2243
		fs_devices->missing_devices--;
2244

2245
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2246
		fs_devices->rw_devices--;
2247

2248
	if (srcdev->bdev)
2249
		fs_devices->open_devices--;
2250 2251
}

2252
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2253 2254
{
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2255

2256 2257
	mutex_lock(&uuid_mutex);

2258
	btrfs_close_bdev(srcdev);
2259 2260
	synchronize_rcu();
	btrfs_free_device(srcdev);
2261 2262 2263

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
2264 2265 2266 2267 2268 2269 2270 2271
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2272
		list_del_init(&fs_devices->seed_list);
2273
		close_fs_devices(fs_devices);
2274
		free_fs_devices(fs_devices);
2275
	}
2276
	mutex_unlock(&uuid_mutex);
2277 2278
}

2279
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2280
{
2281
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2282 2283

	mutex_lock(&fs_devices->device_list_mutex);
2284

2285
	btrfs_sysfs_remove_device(tgtdev);
2286

2287
	if (tgtdev->bdev)
2288
		fs_devices->open_devices--;
2289

2290
	fs_devices->num_devices--;
2291

2292
	btrfs_assign_next_active_device(tgtdev, NULL);
2293 2294 2295

	list_del_rcu(&tgtdev->dev_list);

2296
	mutex_unlock(&fs_devices->device_list_mutex);
2297

2298 2299
	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
				  tgtdev->name->str);
2300 2301

	btrfs_close_bdev(tgtdev);
2302 2303
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2304 2305
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/**
 * Populate args from device at path
 *
 * @fs_info:	the filesystem
 * @args:	the args to populate
 * @path:	the path to the device
 *
 * This will read the super block of the device at @path and populate @args with
 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
 * lookup a device to operate on, but need to do it before we take any locks.
 * This properly handles the special case of "missing" that a user may pass in,
 * and does some basic sanity checks.  The caller must make sure that @path is
 * properly NUL terminated before calling in, and must call
 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
 * uuid buffers.
 *
 * Return: 0 for success, -errno for failure
 */
int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
				 struct btrfs_dev_lookup_args *args,
				 const char *path)
2327 2328 2329
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
2330
	int ret;
2331

2332 2333 2334 2335 2336 2337
	if (!path || !path[0])
		return -EINVAL;
	if (!strcmp(path, "missing")) {
		args->missing = true;
		return 0;
	}
2338

2339 2340 2341 2342 2343 2344
	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
	if (!args->uuid || !args->fsid) {
		btrfs_put_dev_args_from_path(args);
		return -ENOMEM;
	}
2345

2346 2347 2348 2349 2350 2351
	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
				    &bdev, &disk_super);
	if (ret)
		return ret;
	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2352
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2353
		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2354
	else
2355
		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2356
	btrfs_release_disk_super(disk_super);
2357
	blkdev_put(bdev, FMODE_READ);
2358
	return 0;
2359 2360
}

2361
/*
2362 2363 2364
 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
 * that don't need to be freed.
2365
 */
2366 2367 2368 2369 2370 2371 2372 2373
void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
{
	kfree(args->uuid);
	kfree(args->fsid);
	args->uuid = NULL;
	args->fsid = NULL;
}

2374
struct btrfs_device *btrfs_find_device_by_devspec(
2375 2376
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2377
{
2378
	BTRFS_DEV_LOOKUP_ARGS(args);
2379
	struct btrfs_device *device;
2380
	int ret;
2381

2382
	if (devid) {
2383 2384
		args.devid = devid;
		device = btrfs_find_device(fs_info->fs_devices, &args);
2385 2386
		if (!device)
			return ERR_PTR(-ENOENT);
2387 2388 2389
		return device;
	}

2390 2391 2392 2393 2394 2395
	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
	if (ret)
		return ERR_PTR(ret);
	device = btrfs_find_device(fs_info->fs_devices, &args);
	btrfs_put_dev_args_from_path(&args);
	if (!device)
2396
		return ERR_PTR(-ENOENT);
2397
	return device;
2398 2399
}

2400
static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2401
{
2402
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2403
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2404
	struct btrfs_fs_devices *seed_devices;
Y
Yan Zheng 已提交
2405

2406
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2407
	if (!fs_devices->seeding)
2408
		return ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
2409

2410 2411 2412 2413
	/*
	 * Private copy of the seed devices, anchored at
	 * fs_info->fs_devices->seed_list
	 */
2414
	seed_devices = alloc_fs_devices(NULL, NULL);
2415
	if (IS_ERR(seed_devices))
2416
		return seed_devices;
Y
Yan Zheng 已提交
2417

2418 2419 2420 2421 2422 2423
	/*
	 * It's necessary to retain a copy of the original seed fs_devices in
	 * fs_uuids so that filesystems which have been seeded can successfully
	 * reference the seed device from open_seed_devices. This also supports
	 * multiple fs seed.
	 */
Y
Yan Zheng 已提交
2424 2425 2426
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
2427
		return old_devices;
Y
Yan Zheng 已提交
2428
	}
Y
Yan Zheng 已提交
2429

2430
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2431

Y
Yan Zheng 已提交
2432 2433 2434 2435
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2436
	mutex_init(&seed_devices->device_list_mutex);
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	return seed_devices;
}

/*
 * Splice seed devices into the sprout fs_devices.
 * Generate a new fsid for the sprouted read-write filesystem.
 */
static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
			       struct btrfs_fs_devices *seed_devices)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	struct btrfs_device *device;
	u64 super_flags;

	/*
	 * We are updating the fsid, the thread leading to device_list_add()
	 * could race, so uuid_mutex is needed.
	 */
	lockdep_assert_held(&uuid_mutex);

	/*
	 * The threads listed below may traverse dev_list but can do that without
	 * device_list_mutex:
	 * - All device ops and balance - as we are in btrfs_exclop_start.
	 * - Various dev_list readers - are using RCU.
	 * - btrfs_ioctl_fitrim() - is using RCU.
	 *
	 * For-read threads as below are using device_list_mutex:
	 * - Readonly scrub btrfs_scrub_dev()
	 * - Readonly scrub btrfs_scrub_progress()
	 * - btrfs_get_dev_stats()
	 */
	lockdep_assert_held(&fs_devices->device_list_mutex);

2473 2474
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2475 2476
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2477

2478
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
2479 2480
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2481
	fs_devices->missing_devices = 0;
2482
	fs_devices->rotating = false;
2483
	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
Y
Yan Zheng 已提交
2484 2485

	generate_random_uuid(fs_devices->fsid);
2486
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2487
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2488

Y
Yan Zheng 已提交
2489 2490 2491 2492 2493 2494
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);
}

/*
2495
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2496
 */
2497
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2498
{
2499
	BTRFS_DEV_LOOKUP_ARGS(args);
2500
	struct btrfs_fs_info *fs_info = trans->fs_info;
2501
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2502 2503 2504 2505 2506
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2507
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	u8 dev_uuid[BTRFS_UUID_SIZE];
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
2520
		btrfs_reserve_chunk_metadata(trans, false);
Y
Yan Zheng 已提交
2521
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2522
		btrfs_trans_release_chunk_metadata(trans);
Y
Yan Zheng 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2536
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
2547
		args.devid = btrfs_device_id(leaf, dev_item);
2548
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2549
				   BTRFS_UUID_SIZE);
2550
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2551
				   BTRFS_FSID_SIZE);
2552 2553 2554
		args.uuid = dev_uuid;
		args.fsid = fs_uuid;
		device = btrfs_find_device(fs_info->fs_devices, &args);
2555
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2572
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2573
{
2574
	struct btrfs_root *root = fs_info->dev_root;
2575 2576 2577
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2578
	struct super_block *sb = fs_info->sb;
2579
	struct rcu_string *name;
2580
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2581
	struct btrfs_fs_devices *seed_devices;
2582 2583
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
2584
	int ret = 0;
2585
	bool seeding_dev = false;
2586
	bool locked = false;
2587

2588
	if (sb_rdonly(sb) && !fs_devices->seeding)
2589
		return -EROFS;
2590

2591
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2592
				  fs_info->bdev_holder);
2593 2594
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2595

N
Naohiro Aota 已提交
2596 2597 2598 2599 2600
	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
		ret = -EINVAL;
		goto error;
	}

2601
	if (fs_devices->seeding) {
2602
		seeding_dev = true;
Y
Yan Zheng 已提交
2603 2604
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
2605
		locked = true;
Y
Yan Zheng 已提交
2606 2607
	}

2608
	sync_blockdev(bdev);
2609

2610 2611
	rcu_read_lock();
	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2612 2613
		if (device->bdev == bdev) {
			ret = -EEXIST;
2614
			rcu_read_unlock();
Y
Yan Zheng 已提交
2615
			goto error;
2616 2617
		}
	}
2618
	rcu_read_unlock();
2619

2620
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2621
	if (IS_ERR(device)) {
2622
		/* we can safely leave the fs_devices entry around */
2623
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2624
		goto error;
2625 2626
	}

2627
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2628
	if (!name) {
Y
Yan Zheng 已提交
2629
		ret = -ENOMEM;
2630
		goto error_free_device;
2631
	}
2632
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2633

2634 2635
	device->fs_info = fs_info;
	device->bdev = bdev;
2636 2637 2638
	ret = lookup_bdev(device_path, &device->devt);
	if (ret)
		goto error_free_device;
2639

2640
	ret = btrfs_get_dev_zone_info(device, false);
2641 2642 2643
	if (ret)
		goto error_free_device;

2644
	trans = btrfs_start_transaction(root, 0);
2645 2646
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2647
		goto error_free_zone;
2648 2649
	}

2650
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2651
	device->generation = trans->transid;
2652 2653 2654
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2655 2656
	device->total_bytes =
		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2657
	device->disk_total_bytes = device->total_bytes;
2658
	device->commit_total_bytes = device->total_bytes;
2659
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2660
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2661
	device->mode = FMODE_EXCL;
2662
	device->dev_stats_valid = 1;
2663
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2664

Y
Yan Zheng 已提交
2665
	if (seeding_dev) {
2666
		btrfs_clear_sb_rdonly(sb);
2667 2668 2669 2670 2671

		/* GFP_KERNEL allocation must not be under device_list_mutex */
		seed_devices = btrfs_init_sprout(fs_info);
		if (IS_ERR(seed_devices)) {
			ret = PTR_ERR(seed_devices);
2672 2673 2674
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
2675 2676 2677 2678 2679
	}

	mutex_lock(&fs_devices->device_list_mutex);
	if (seeding_dev) {
		btrfs_setup_sprout(fs_info, seed_devices);
2680 2681
		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
						device);
Y
Yan Zheng 已提交
2682
	}
2683

2684
	device->fs_devices = fs_devices;
2685

2686
	mutex_lock(&fs_info->chunk_mutex);
2687 2688 2689 2690 2691 2692 2693
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2694

2695
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2696

2697
	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2698
		fs_devices->rotating = true;
C
Chris Mason 已提交
2699

2700
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2701
	btrfs_set_super_total_bytes(fs_info->super_copy,
2702 2703
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2704

2705 2706 2707
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2708

M
Miao Xie 已提交
2709 2710 2711 2712
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2713
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2714

2715
	mutex_unlock(&fs_info->chunk_mutex);
2716 2717

	/* Add sysfs device entry */
2718
	btrfs_sysfs_add_device(device);
2719

2720
	mutex_unlock(&fs_devices->device_list_mutex);
2721

Y
Yan Zheng 已提交
2722
	if (seeding_dev) {
2723
		mutex_lock(&fs_info->chunk_mutex);
2724
		ret = init_first_rw_device(trans);
2725
		mutex_unlock(&fs_info->chunk_mutex);
2726
		if (ret) {
2727
			btrfs_abort_transaction(trans, ret);
2728
			goto error_sysfs;
2729
		}
M
Miao Xie 已提交
2730 2731
	}

2732
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2733
	if (ret) {
2734
		btrfs_abort_transaction(trans, ret);
2735
		goto error_sysfs;
M
Miao Xie 已提交
2736 2737 2738
	}

	if (seeding_dev) {
2739
		ret = btrfs_finish_sprout(trans);
2740
		if (ret) {
2741
			btrfs_abort_transaction(trans, ret);
2742
			goto error_sysfs;
2743
		}
2744

2745 2746
		/*
		 * fs_devices now represents the newly sprouted filesystem and
2747
		 * its fsid has been changed by btrfs_sprout_splice().
2748 2749
		 */
		btrfs_sysfs_update_sprout_fsid(fs_devices);
Y
Yan Zheng 已提交
2750 2751
	}

2752
	ret = btrfs_commit_transaction(trans);
2753

Y
Yan Zheng 已提交
2754 2755 2756
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2757
		locked = false;
2758

2759 2760 2761
		if (ret) /* transaction commit */
			return ret;

2762
		ret = btrfs_relocate_sys_chunks(fs_info);
2763
		if (ret < 0)
2764
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2765
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2766 2767 2768 2769
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2770 2771 2772
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2773
		}
2774
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2775
	}
2776

2777 2778 2779 2780 2781 2782 2783
	/*
	 * Now that we have written a new super block to this device, check all
	 * other fs_devices list if device_path alienates any other scanned
	 * device.
	 * We can ignore the return value as it typically returns -EINVAL and
	 * only succeeds if the device was an alien.
	 */
2784
	btrfs_forget_devices(device->devt);
2785 2786

	/* Update ctime/mtime for blkid or udev */
2787
	update_dev_time(device_path);
2788

Y
Yan Zheng 已提交
2789
	return ret;
2790

2791
error_sysfs:
2792
	btrfs_sysfs_remove_device(device);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2809
error_trans:
2810
	if (seeding_dev)
2811
		btrfs_set_sb_rdonly(sb);
2812 2813
	if (trans)
		btrfs_end_transaction(trans);
2814 2815
error_free_zone:
	btrfs_destroy_dev_zone_info(device);
2816
error_free_device:
2817
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2818
error:
2819
	blkdev_put(bdev, FMODE_EXCL);
2820
	if (locked) {
Y
Yan Zheng 已提交
2821 2822 2823
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2824
	return ret;
2825 2826
}

C
Chris Mason 已提交
2827 2828
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2829 2830 2831
{
	int ret;
	struct btrfs_path *path;
2832
	struct btrfs_root *root = device->fs_info->chunk_root;
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2862 2863 2864 2865
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2866 2867 2868 2869 2870 2871 2872
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2873
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2874 2875
		      struct btrfs_device *device, u64 new_size)
{
2876 2877
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2878 2879
	u64 old_total;
	u64 diff;
2880
	int ret;
2881

2882
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2883
		return -EACCES;
M
Miao Xie 已提交
2884

2885 2886
	new_size = round_down(new_size, fs_info->sectorsize);

2887
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2888
	old_total = btrfs_super_total_bytes(super_copy);
2889
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2890

2891
	if (new_size <= device->total_bytes ||
2892
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2893
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2894
		return -EINVAL;
M
Miao Xie 已提交
2895
	}
Y
Yan Zheng 已提交
2896

2897 2898
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2899 2900
	device->fs_devices->total_rw_bytes += diff;

2901 2902
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2903
	btrfs_clear_space_info_full(device->fs_info);
2904 2905 2906
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2907
	mutex_unlock(&fs_info->chunk_mutex);
2908

2909 2910 2911 2912 2913
	btrfs_reserve_chunk_metadata(trans, false);
	ret = btrfs_update_device(trans, device);
	btrfs_trans_release_chunk_metadata(trans);

	return ret;
2914 2915
}

2916
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2917
{
2918
	struct btrfs_fs_info *fs_info = trans->fs_info;
2919
	struct btrfs_root *root = fs_info->chunk_root;
2920 2921 2922 2923 2924 2925 2926 2927
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2928
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2929 2930 2931 2932
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2933 2934 2935
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2936 2937
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2938 2939 2940
		ret = -ENOENT;
		goto out;
	}
2941 2942

	ret = btrfs_del_item(trans, root, path);
2943
	if (ret < 0)
2944 2945
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2946
out:
2947
	btrfs_free_path(path);
2948
	return ret;
2949 2950
}

2951
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2952
{
2953
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2964
	lockdep_assert_held(&fs_info->chunk_mutex);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2984
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}

2997 2998 2999 3000 3001 3002 3003 3004 3005
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
3006 3007 3008 3009
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

3010
	em_tree = &fs_info->mapping_tree;
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static int remove_chunk_item(struct btrfs_trans_handle *trans,
			     struct map_lookup *map, u64 chunk_offset)
{
	int i;

	/*
	 * Removing chunk items and updating the device items in the chunks btree
	 * requires holding the chunk_mutex.
	 * See the comment at btrfs_chunk_alloc() for the details.
	 */
	lockdep_assert_held(&trans->fs_info->chunk_mutex);

	for (i = 0; i < map->num_stripes; i++) {
		int ret;

		ret = btrfs_update_device(trans, map->stripes[i].dev);
		if (ret)
			return ret;
	}

	return btrfs_free_chunk(trans, chunk_offset);
}

3056
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3057
{
3058
	struct btrfs_fs_info *fs_info = trans->fs_info;
3059 3060
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
3061
	u64 dev_extent_len = 0;
3062
	int i, ret = 0;
3063
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3064

3065
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3066
	if (IS_ERR(em)) {
3067 3068
		/*
		 * This is a logic error, but we don't want to just rely on the
3069
		 * user having built with ASSERT enabled, so if ASSERT doesn't
3070 3071 3072
		 * do anything we still error out.
		 */
		ASSERT(0);
3073
		return PTR_ERR(em);
3074
	}
3075
	map = em->map_lookup;
3076

3077
	/*
3078 3079 3080 3081 3082 3083 3084 3085
	 * First delete the device extent items from the devices btree.
	 * We take the device_list_mutex to avoid racing with the finishing phase
	 * of a device replace operation. See the comment below before acquiring
	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
	 * because that can result in a deadlock when deleting the device extent
	 * items from the devices btree - COWing an extent buffer from the btree
	 * may result in allocating a new metadata chunk, which would attempt to
	 * lock again fs_info->chunk_mutex.
3086 3087
	 */
	mutex_lock(&fs_devices->device_list_mutex);
3088
	for (i = 0; i < map->num_stripes; i++) {
3089
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
3090 3091 3092
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
3093
		if (ret) {
3094
			mutex_unlock(&fs_devices->device_list_mutex);
3095
			btrfs_abort_transaction(trans, ret);
3096 3097
			goto out;
		}
3098

M
Miao Xie 已提交
3099
		if (device->bytes_used > 0) {
3100
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
3101 3102
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
3103
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3104
			btrfs_clear_space_info_full(fs_info);
3105
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
3106
		}
3107 3108
	}
	mutex_unlock(&fs_devices->device_list_mutex);
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	/*
	 * We acquire fs_info->chunk_mutex for 2 reasons:
	 *
	 * 1) Just like with the first phase of the chunk allocation, we must
	 *    reserve system space, do all chunk btree updates and deletions, and
	 *    update the system chunk array in the superblock while holding this
	 *    mutex. This is for similar reasons as explained on the comment at
	 *    the top of btrfs_chunk_alloc();
	 *
	 * 2) Prevent races with the final phase of a device replace operation
	 *    that replaces the device object associated with the map's stripes,
	 *    because the device object's id can change at any time during that
	 *    final phase of the device replace operation
	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
	 *    replaced device and then see it with an ID of
	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
	 *    the device item, which does not exists on the chunk btree.
	 *    The finishing phase of device replace acquires both the
	 *    device_list_mutex and the chunk_mutex, in that order, so we are
	 *    safe by just acquiring the chunk_mutex.
	 */
	trans->removing_chunk = true;
	mutex_lock(&fs_info->chunk_mutex);

	check_system_chunk(trans, map->type);

	ret = remove_chunk_item(trans, map, chunk_offset);
	/*
	 * Normally we should not get -ENOSPC since we reserved space before
	 * through the call to check_system_chunk().
	 *
	 * Despite our system space_info having enough free space, we may not
	 * be able to allocate extents from its block groups, because all have
	 * an incompatible profile, which will force us to allocate a new system
	 * block group with the right profile, or right after we called
	 * check_system_space() above, a scrub turned the only system block group
	 * with enough free space into RO mode.
	 * This is explained with more detail at do_chunk_alloc().
	 *
	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
	 */
	if (ret == -ENOSPC) {
		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
		struct btrfs_block_group *sys_bg;

3155
		sys_bg = btrfs_create_chunk(trans, sys_flags);
3156 3157 3158 3159 3160 3161 3162
		if (IS_ERR(sys_bg)) {
			ret = PTR_ERR(sys_bg);
			btrfs_abort_transaction(trans, ret);
			goto out;
		}

		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3163 3164 3165
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto out;
3166
		}
3167

3168 3169 3170 3171 3172 3173
		ret = remove_chunk_item(trans, map, chunk_offset);
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto out;
		}
	} else if (ret) {
3174
		btrfs_abort_transaction(trans, ret);
3175 3176
		goto out;
	}
3177

3178
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3179

3180
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3181
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3182
		if (ret) {
3183
			btrfs_abort_transaction(trans, ret);
3184 3185
			goto out;
		}
3186 3187
	}

3188 3189 3190 3191 3192 3193 3194 3195 3196
	mutex_unlock(&fs_info->chunk_mutex);
	trans->removing_chunk = false;

	/*
	 * We are done with chunk btree updates and deletions, so release the
	 * system space we previously reserved (with check_system_chunk()).
	 */
	btrfs_trans_release_chunk_metadata(trans);

3197
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3198
	if (ret) {
3199
		btrfs_abort_transaction(trans, ret);
3200 3201
		goto out;
	}
Y
Yan Zheng 已提交
3202

3203
out:
3204 3205 3206 3207
	if (trans->removing_chunk) {
		mutex_unlock(&fs_info->chunk_mutex);
		trans->removing_chunk = false;
	}
Y
Yan Zheng 已提交
3208 3209
	/* once for us */
	free_extent_map(em);
3210 3211
	return ret;
}
Y
Yan Zheng 已提交
3212

3213
int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3214
{
3215
	struct btrfs_root *root = fs_info->chunk_root;
3216
	struct btrfs_trans_handle *trans;
3217
	struct btrfs_block_group *block_group;
3218
	u64 length;
3219
	int ret;
Y
Yan Zheng 已提交
3220

3221 3222 3223 3224 3225 3226
	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
		btrfs_err(fs_info,
			  "relocate: not supported on extent tree v2 yet");
		return -EINVAL;
	}

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3239
	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3240

3241
	/* step one, relocate all the extents inside this chunk */
3242
	btrfs_scrub_pause(fs_info);
3243
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3244
	btrfs_scrub_continue(fs_info);
3245 3246 3247
	if (ret)
		return ret;

3248 3249 3250 3251
	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
	if (!block_group)
		return -ENOENT;
	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3252
	length = block_group->length;
3253 3254
	btrfs_put_block_group(block_group);

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	/*
	 * On a zoned file system, discard the whole block group, this will
	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
	 * resetting the zone fails, don't treat it as a fatal problem from the
	 * filesystem's point of view.
	 */
	if (btrfs_is_zoned(fs_info)) {
		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
		if (ret)
			btrfs_info(fs_info,
				"failed to reset zone %llu after relocation",
				chunk_offset);
	}

3269 3270 3271 3272 3273 3274 3275 3276
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3277
	/*
3278 3279
	 * step two, delete the device extents and the
	 * chunk tree entries
3280
	 */
3281
	ret = btrfs_remove_chunk(trans, chunk_offset);
3282
	btrfs_end_transaction(trans);
3283
	return ret;
Y
Yan Zheng 已提交
3284 3285
}

3286
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3287
{
3288
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3289 3290 3291 3292 3293 3294
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3295 3296
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3297 3298 3299 3300 3301 3302
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3303
again:
Y
Yan Zheng 已提交
3304 3305 3306 3307 3308
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3309
		mutex_lock(&fs_info->reclaim_bgs_lock);
Y
Yan Zheng 已提交
3310
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3311
		if (ret < 0) {
3312
			mutex_unlock(&fs_info->reclaim_bgs_lock);
Y
Yan Zheng 已提交
3313
			goto error;
3314
		}
3315
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3316 3317 3318

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3319
		if (ret)
3320
			mutex_unlock(&fs_info->reclaim_bgs_lock);
Y
Yan Zheng 已提交
3321 3322 3323 3324
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3325

Y
Yan Zheng 已提交
3326 3327
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3328

Y
Yan Zheng 已提交
3329 3330 3331
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3332
		btrfs_release_path(path);
3333

Y
Yan Zheng 已提交
3334
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3335
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3336 3337
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3338 3339
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3340
		}
3341
		mutex_unlock(&fs_info->reclaim_bgs_lock);
3342

Y
Yan Zheng 已提交
3343 3344 3345 3346 3347
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3348 3349 3350 3351
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3352
	} else if (WARN_ON(failed && retried)) {
3353 3354
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3355 3356 3357
error:
	btrfs_free_path(path);
	return ret;
3358 3359
}

3360 3361 3362 3363 3364 3365 3366 3367
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
3368
	struct btrfs_block_group *cache;
3369 3370 3371 3372 3373 3374 3375 3376
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	spin_lock(&fs_info->data_sinfo->lock);
	bytes_used = fs_info->data_sinfo->bytes_used;
	spin_unlock(&fs_info->data_sinfo->lock);

	if (!bytes_used) {
		struct btrfs_trans_handle *trans;
		int ret;

		trans =	btrfs_join_transaction(fs_info->tree_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
		btrfs_end_transaction(trans);
		if (ret < 0)
			return ret;
		return 1;
3397
	}
3398

3399 3400 3401
	return 0;
}

3402
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3403 3404
			       struct btrfs_balance_control *bctl)
{
3405
	struct btrfs_root *root = fs_info->tree_root;
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3425
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3436
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3450
	err = btrfs_commit_transaction(trans);
3451 3452 3453 3454 3455
	if (err && !ret)
		ret = err;
	return ret;
}

3456
static int del_balance_item(struct btrfs_fs_info *fs_info)
3457
{
3458
	struct btrfs_root *root = fs_info->tree_root;
3459 3460 3461 3462 3463 3464 3465 3466 3467
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3468
	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3469 3470 3471 3472 3473 3474
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3475
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3489
	err = btrfs_commit_transaction(trans);
3490 3491 3492 3493 3494
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3519
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3520 3521 3522 3523 3524
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3526 3527 3528 3529 3530
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3531
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3532 3533 3534 3535 3536 3537
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3538 3539 3540 3541
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3542 3543
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544
	int ret;
3545 3546 3547 3548 3549 3550 3551 3552

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3553 3554 3555
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3556 3557
}

I
Ilya Dryomov 已提交
3558 3559 3560 3561
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3562
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3563 3564
				 struct btrfs_balance_args *bargs)
{
3565 3566
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3567

3568
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3569 3570 3571 3572 3573
		return 0;

	return 1;
}

3574
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3575
			      struct btrfs_balance_args *bargs)
3576
{
3577
	struct btrfs_block_group *cache;
3578 3579 3580 3581 3582 3583
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3584
	chunk_used = cache->used;
3585 3586 3587 3588

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
3589 3590
		user_thresh_min = div_factor_fine(cache->length,
						  bargs->usage_min);
3591 3592 3593 3594

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
3595
		user_thresh_max = cache->length;
3596
	else
3597 3598
		user_thresh_max = div_factor_fine(cache->length,
						  bargs->usage_max);
3599 3600 3601 3602 3603 3604 3605 3606

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3607
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3608
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3609
{
3610
	struct btrfs_block_group *cache;
I
Ilya Dryomov 已提交
3611 3612 3613 3614
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3615
	chunk_used = cache->used;
I
Ilya Dryomov 已提交
3616

3617
	if (bargs->usage_min == 0)
3618
		user_thresh = 1;
3619
	else if (bargs->usage > 100)
3620
		user_thresh = cache->length;
3621
	else
3622
		user_thresh = div_factor_fine(cache->length, bargs->usage);
3623

I
Ilya Dryomov 已提交
3624 3625 3626 3627 3628 3629 3630
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3648 3649 3650 3651 3652 3653
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

3654
	return (num_stripes - nparity) / ncopies;
3655 3656
}

I
Ilya Dryomov 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3666
	u64 type;
I
Ilya Dryomov 已提交
3667 3668 3669 3670 3671 3672
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3673 3674
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3675 3676 3677 3678 3679 3680 3681 3682

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3683
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3720
static int chunk_soft_convert_filter(u64 chunk_type,
3721 3722 3723 3724 3725
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3726 3727
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3728

3729
	if (bargs->target == chunk_type)
3730 3731 3732 3733 3734
		return 1;

	return 0;
}

3735
static int should_balance_chunk(struct extent_buffer *leaf,
3736 3737
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3738
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3739
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3756 3757 3758 3759
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3760 3761 3762 3763
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3764
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3765
		return 0;
3766
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3767
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3768
		return 0;
I
Ilya Dryomov 已提交
3769 3770 3771 3772 3773 3774
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3775 3776 3777 3778
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3779
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3780
		return 0;
3781 3782 3783 3784 3785 3786
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3787 3788
	}

3789 3790 3791 3792 3793 3794
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3795 3796 3797 3798 3799 3800
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3801 3802 3803 3804 3805 3806 3807 3808
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3809 3810 3811
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3812
		 * determined here because we do not have the global information
3813 3814 3815 3816 3817 3818
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3819 3820
	}

3821 3822 3823
	return 1;
}

3824
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3825
{
3826
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3827
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3828
	u64 chunk_type;
3829
	struct btrfs_chunk *chunk;
3830
	struct btrfs_path *path = NULL;
3831 3832
	struct btrfs_key key;
	struct btrfs_key found_key;
3833 3834
	struct extent_buffer *leaf;
	int slot;
3835 3836
	int ret;
	int enospc_errors = 0;
3837
	bool counting = true;
3838
	/* The single value limit and min/max limits use the same bytes in the */
3839 3840 3841
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3842 3843 3844
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3845
	int chunk_reserved = 0;
3846 3847

	path = btrfs_alloc_path();
3848 3849 3850 3851
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3852 3853 3854 3855 3856 3857

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3858
	if (!counting) {
3859 3860 3861 3862
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3863 3864 3865 3866
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3867 3868 3869 3870
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3871
	while (1) {
3872
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3873
		    atomic_read(&fs_info->balance_cancel_req)) {
3874 3875 3876 3877
			ret = -ECANCELED;
			goto error;
		}

3878
		mutex_lock(&fs_info->reclaim_bgs_lock);
3879
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3880
		if (ret < 0) {
3881
			mutex_unlock(&fs_info->reclaim_bgs_lock);
3882
			goto error;
3883
		}
3884 3885 3886 3887 3888 3889

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3890
			BUG(); /* FIXME break ? */
3891 3892 3893

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3894
		if (ret) {
3895
			mutex_unlock(&fs_info->reclaim_bgs_lock);
3896
			ret = 0;
3897
			break;
3898
		}
3899

3900 3901 3902
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3903

3904
		if (found_key.objectid != key.objectid) {
3905
			mutex_unlock(&fs_info->reclaim_bgs_lock);
3906
			break;
3907
		}
3908

3909
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3910
		chunk_type = btrfs_chunk_type(leaf, chunk);
3911

3912 3913 3914 3915 3916 3917
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3918
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3919

3920
		btrfs_release_path(path);
3921
		if (!ret) {
3922
			mutex_unlock(&fs_info->reclaim_bgs_lock);
3923
			goto loop;
3924
		}
3925

3926
		if (counting) {
3927
			mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 3929 3930
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
3952
			mutex_unlock(&fs_info->reclaim_bgs_lock);
3953 3954 3955
			goto loop;
		}

3956 3957 3958 3959 3960 3961 3962 3963 3964
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3965
			if (ret < 0) {
3966
				mutex_unlock(&fs_info->reclaim_bgs_lock);
3967
				goto error;
3968 3969
			} else if (ret == 1) {
				chunk_reserved = 1;
3970 3971 3972
			}
		}

3973
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3974
		mutex_unlock(&fs_info->reclaim_bgs_lock);
3975
		if (ret == -ENOSPC) {
3976
			enospc_errors++;
3977 3978 3979 3980 3981 3982 3983
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3984 3985 3986 3987 3988
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3989
loop:
3990 3991
		if (found_key.offset == 0)
			break;
3992
		key.offset = found_key.offset - 1;
3993
	}
3994

3995 3996 3997 3998 3999
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
4000 4001
error:
	btrfs_free_path(path);
4002
	if (enospc_errors) {
4003
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
4004
			   enospc_errors);
4005 4006 4007 4008
		if (!ret)
			ret = -ENOSPC;
	}

4009 4010 4011
	return ret;
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

4032
	return has_single_bit_set(flags);
4033 4034
}

4035 4036
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
4037 4038 4039 4040
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
4041 4042
}

4043 4044 4045 4046 4047 4048 4049
/*
 * Validate target profile against allowed profiles and return true if it's OK.
 * Otherwise print the error message and return false.
 */
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
		const struct btrfs_balance_args *bargs,
		u64 allowed, const char *type)
4050
{
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return true;

	/* Profile is valid and does not have bits outside of the allowed set */
	if (alloc_profile_is_valid(bargs->target, 1) &&
	    (bargs->target & ~allowed) == 0)
		return true;

	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
			type, btrfs_bg_type_to_raid_name(bargs->target));
	return false;
4062 4063
}

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

4108 4109 4110
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

4218
/*
4219
 * Should be called with balance mutexe held
4220
 */
4221 4222
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
4223 4224
		  struct btrfs_ioctl_balance_args *bargs)
{
4225
	u64 meta_target, data_target;
4226
	u64 allowed;
4227
	int mixed = 0;
4228
	int ret;
4229
	u64 num_devices;
4230
	unsigned seq;
4231
	bool reducing_redundancy;
4232
	int i;
4233

4234
	if (btrfs_fs_closing(fs_info) ||
4235
	    atomic_read(&fs_info->balance_pause_req) ||
4236
	    btrfs_should_cancel_balance(fs_info)) {
4237 4238 4239 4240
		ret = -EINVAL;
		goto out;
	}

4241 4242 4243 4244
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4245 4246 4247 4248
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4249 4250
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4251 4252 4253
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4254
			btrfs_err(fs_info,
4255
	  "balance: mixed groups data and metadata options must be the same");
4256 4257 4258 4259 4260
			ret = -EINVAL;
			goto out;
		}
	}

4261 4262
	/*
	 * rw_devices will not change at the moment, device add/delete/replace
4263
	 * are exclusive
4264 4265
	 */
	num_devices = fs_info->fs_devices->rw_devices;
4266 4267 4268 4269 4270 4271 4272

	/*
	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
	 * special bit for it, to make it easier to distinguish.  Thus we need
	 * to set it manually, or balance would refuse the profile.
	 */
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4273 4274 4275
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4276

4277 4278 4279
	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4280 4281 4282 4283
		ret = -EINVAL;
		goto out;
	}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4294 4295 4296 4297 4298 4299 4300 4301
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4302
		     !(bctl->meta.target & allowed)))
4303
			reducing_redundancy = true;
4304
		else
4305
			reducing_redundancy = false;
4306 4307 4308 4309 4310 4311

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4312
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4313

4314
	if (reducing_redundancy) {
4315 4316
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
4317
			   "balance: force reducing metadata redundancy");
4318 4319
		} else {
			btrfs_err(fs_info,
4320
	"balance: reduces metadata redundancy, use --force if you want this");
4321 4322 4323 4324 4325
			ret = -EINVAL;
			goto out;
		}
	}

4326 4327
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4328
		btrfs_warn(fs_info,
4329
	"balance: metadata profile %s has lower redundancy than data profile %s",
4330 4331
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4332 4333
	}

4334
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4335
	if (ret && ret != -EEXIST)
4336 4337
		goto out;

I
Ilya Dryomov 已提交
4338 4339
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4340 4341 4342 4343
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4344 4345 4346 4347 4348 4349
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4350

4351 4352
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4353
	describe_balance_start_or_resume(fs_info);
4354 4355 4356 4357 4358
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4359
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4360
		btrfs_info(fs_info, "balance: paused");
4361 4362
		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
	}
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	/*
	 * Balance can be canceled by:
	 *
	 * - Regular cancel request
	 *   Then ret == -ECANCELED and balance_cancel_req > 0
	 *
	 * - Fatal signal to "btrfs" process
	 *   Either the signal caught by wait_reserve_ticket() and callers
	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
	 *   got -ECANCELED.
	 *   Either way, in this case balance_cancel_req = 0, and
	 *   ret == -EINTR or ret == -ECANCELED.
	 *
	 * So here we only check the return value to catch canceled balance.
	 */
	else if (ret == -ECANCELED || ret == -EINTR)
4379 4380 4381 4382
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4383
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4384 4385 4386

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4387
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4388 4389
	}

4390 4391
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4392
		reset_balance_state(fs_info);
4393
		btrfs_exclop_finish(fs_info);
4394 4395
	}

4396
	wake_up(&fs_info->balance_wait_q);
4397 4398 4399

	return ret;
out:
I
Ilya Dryomov 已提交
4400
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4401
		reset_balance_state(fs_info);
4402
	else
I
Ilya Dryomov 已提交
4403
		kfree(bctl);
4404
	btrfs_exclop_finish(fs_info);
4405

I
Ilya Dryomov 已提交
4406 4407 4408 4409 4410
	return ret;
}

static int balance_kthread(void *data)
{
4411
	struct btrfs_fs_info *fs_info = data;
4412
	int ret = 0;
I
Ilya Dryomov 已提交
4413

4414
	sb_start_write(fs_info->sb);
I
Ilya Dryomov 已提交
4415
	mutex_lock(&fs_info->balance_mutex);
4416
	if (fs_info->balance_ctl)
4417
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4418
	mutex_unlock(&fs_info->balance_mutex);
4419
	sb_end_write(fs_info->sb);
4420

I
Ilya Dryomov 已提交
4421 4422 4423
	return ret;
}

4424 4425 4426 4427
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4428
	mutex_lock(&fs_info->balance_mutex);
4429
	if (!fs_info->balance_ctl) {
4430
		mutex_unlock(&fs_info->balance_mutex);
4431 4432
		return 0;
	}
4433
	mutex_unlock(&fs_info->balance_mutex);
4434

4435
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4436
		btrfs_info(fs_info, "balance: resume skipped");
4437 4438 4439
		return 0;
	}

4440 4441 4442 4443
	spin_lock(&fs_info->super_lock);
	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
	spin_unlock(&fs_info->super_lock);
4444 4445 4446 4447 4448 4449 4450 4451 4452
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4453
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4454
	return PTR_ERR_OR_ZERO(tsk);
4455 4456
}

4457
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4472
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4473 4474
	key.offset = 0;

4475
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4476
	if (ret < 0)
4477
		goto out;
I
Ilya Dryomov 已提交
4478 4479
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4480 4481 4482 4483 4484 4485 4486
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4487 4488 4489 4490 4491
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4492 4493
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4494 4495 4496 4497 4498 4499 4500 4501

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
4512
	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4513
		btrfs_warn(fs_info,
4514
	"balance: cannot set exclusive op status, resume manually");
4515

4516 4517
	btrfs_release_path(path);

4518
	mutex_lock(&fs_info->balance_mutex);
4519 4520 4521 4522
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4523
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4524 4525
out:
	btrfs_free_path(path);
4526 4527 4528
	return ret;
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4539
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4540 4541 4542 4543
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4544
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4545 4546 4547

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4548
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4549 4550 4551 4552 4553 4554 4555 4556 4557
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4558 4559 4560 4561 4562 4563 4564 4565
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4576 4577 4578 4579 4580
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4581
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4582 4583
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4584
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4585 4586 4587
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4588 4589 4590 4591
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4592 4593
		mutex_lock(&fs_info->balance_mutex);

4594
		if (fs_info->balance_ctl) {
4595
			reset_balance_state(fs_info);
4596
			btrfs_exclop_finish(fs_info);
4597
			btrfs_info(fs_info, "balance: canceled");
4598
		}
4599 4600
	}

4601 4602
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4603 4604 4605 4606 4607
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

4608
int btrfs_uuid_scan_kthread(void *data)
S
Stefan Behrens 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4619
	struct btrfs_trans_handle *trans = NULL;
4620
	bool closing = false;
S
Stefan Behrens 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4633 4634 4635 4636
		if (btrfs_fs_closing(fs_info)) {
			closing = true;
			break;
		}
4637 4638
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
4653
		item_size = btrfs_item_size(eb, slot);
S
Stefan Behrens 已提交
4654 4655 4656 4657 4658 4659 4660 4661
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4662 4663 4664 4665 4666 4667 4668

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4678 4679 4680 4681 4682
			continue;
		} else {
			goto skip;
		}
update_tree:
4683
		btrfs_release_path(path);
4684
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4685
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4686 4687 4688
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4689
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4690 4691 4692 4693 4694 4695
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4696
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4697 4698 4699 4700
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4701
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4702 4703 4704 4705 4706
					ret);
				break;
			}
		}

4707
skip:
4708
		btrfs_release_path(path);
S
Stefan Behrens 已提交
4709
		if (trans) {
4710
			ret = btrfs_end_transaction(trans);
4711
			trans = NULL;
S
Stefan Behrens 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
			if (ret)
				break;
		}

		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4733
	if (trans && !IS_ERR(trans))
4734
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4735
	if (ret)
4736
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4737
	else if (!closing)
4738
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4739 4740 4741 4742
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4743 4744 4745 4746 4747
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4748 4749
	struct task_struct *task;
	int ret;
4750 4751 4752 4753 4754 4755 4756 4757 4758

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4759
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4760
	if (IS_ERR(uuid_root)) {
4761
		ret = PTR_ERR(uuid_root);
4762
		btrfs_abort_transaction(trans, ret);
4763
		btrfs_end_transaction(trans);
4764
		return ret;
4765 4766 4767 4768
	}

	fs_info->uuid_root = uuid_root;

4769
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4770 4771 4772 4773 4774 4775
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4776
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4777
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4778 4779 4780 4781 4782
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4783
}
S
Stefan Behrens 已提交
4784

4785 4786 4787 4788 4789 4790 4791
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4792 4793
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4794 4795 4796 4797 4798 4799 4800
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4801 4802
	int failed = 0;
	bool retried = false;
4803 4804
	struct extent_buffer *l;
	struct btrfs_key key;
4805
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4806
	u64 old_total = btrfs_super_total_bytes(super_copy);
4807
	u64 old_size = btrfs_device_get_total_bytes(device);
4808
	u64 diff;
4809
	u64 start;
4810 4811

	new_size = round_down(new_size, fs_info->sectorsize);
4812
	start = new_size;
4813
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4814

4815
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4816 4817
		return -EINVAL;

4818 4819 4820 4821
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4822
	path->reada = READA_BACK;
4823

4824 4825 4826 4827 4828 4829
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4830
	mutex_lock(&fs_info->chunk_mutex);
4831

4832
	btrfs_device_set_total_bytes(device, new_size);
4833
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4834
		device->fs_devices->total_rw_bytes -= diff;
4835
		atomic64_sub(diff, &fs_info->free_chunk_space);
4836
	}
4837 4838 4839 4840 4841 4842

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4843
	if (contains_pending_extent(device, &start, diff)) {
4844 4845 4846 4847 4848 4849 4850 4851
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4852

4853
again:
4854 4855 4856 4857
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4858
	do {
4859
		mutex_lock(&fs_info->reclaim_bgs_lock);
4860
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4861
		if (ret < 0) {
4862
			mutex_unlock(&fs_info->reclaim_bgs_lock);
4863
			goto done;
4864
		}
4865 4866 4867

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret) {
4868
			mutex_unlock(&fs_info->reclaim_bgs_lock);
4869 4870
			if (ret < 0)
				goto done;
4871
			ret = 0;
4872
			btrfs_release_path(path);
4873
			break;
4874 4875 4876 4877 4878 4879
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4880
		if (key.objectid != device->devid) {
4881
			mutex_unlock(&fs_info->reclaim_bgs_lock);
4882
			btrfs_release_path(path);
4883
			break;
4884
		}
4885 4886 4887 4888

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4889
		if (key.offset + length <= new_size) {
4890
			mutex_unlock(&fs_info->reclaim_bgs_lock);
4891
			btrfs_release_path(path);
4892
			break;
4893
		}
4894 4895

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4896
		btrfs_release_path(path);
4897

4898 4899 4900 4901 4902 4903 4904 4905
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
4906
			mutex_unlock(&fs_info->reclaim_bgs_lock);
4907 4908 4909
			goto done;
		}

4910
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4911
		mutex_unlock(&fs_info->reclaim_bgs_lock);
4912
		if (ret == -ENOSPC) {
4913
			failed++;
4914 4915 4916 4917 4918 4919 4920 4921
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4922
	} while (key.offset-- > 0);
4923 4924 4925 4926 4927 4928 4929 4930

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4931 4932
	}

4933
	/* Shrinking succeeded, else we would be at "done". */
4934
	trans = btrfs_start_transaction(root, 0);
4935 4936 4937 4938 4939
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4940
	mutex_lock(&fs_info->chunk_mutex);
4941 4942 4943 4944
	/* Clear all state bits beyond the shrunk device size */
	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
			  CHUNK_STATE_MASK);

4945
	btrfs_device_set_disk_total_bytes(device, new_size);
4946 4947 4948
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4949 4950

	WARN_ON(diff > old_total);
4951 4952
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4953
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4954

4955
	btrfs_reserve_chunk_metadata(trans, false);
M
Miao Xie 已提交
4956 4957
	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4958
	btrfs_trans_release_chunk_metadata(trans);
4959 4960 4961 4962 4963 4964
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4965 4966
done:
	btrfs_free_path(path);
4967
	if (ret) {
4968
		mutex_lock(&fs_info->chunk_mutex);
4969
		btrfs_device_set_total_bytes(device, old_size);
4970
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4971
			device->fs_devices->total_rw_bytes += diff;
4972
		atomic64_add(diff, &fs_info->free_chunk_space);
4973
		mutex_unlock(&fs_info->chunk_mutex);
4974
	}
4975 4976 4977
	return ret;
}

4978
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4979 4980 4981
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4982
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4983 4984 4985 4986
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4987 4988
	lockdep_assert_held(&fs_info->chunk_mutex);

4989
	array_size = btrfs_super_sys_array_size(super_copy);
4990
	if (array_size + item_size + sizeof(disk_key)
4991
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4992 4993 4994 4995 4996 4997 4998 4999 5000
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5001

5002 5003 5004
	return 0;
}

5005 5006 5007 5008
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
5009
{
5010 5011
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
5012

5013
	if (di_a->max_avail > di_b->max_avail)
5014
		return -1;
5015
	if (di_a->max_avail < di_b->max_avail)
5016
		return 1;
5017 5018 5019 5020 5021
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
5022
}
5023

D
David Woodhouse 已提交
5024 5025
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
5026
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
5027 5028
		return;

5029
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
5030 5031
}

5032 5033 5034 5035 5036 5037 5038 5039
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
		return;

	btrfs_set_fs_incompat(info, RAID1C34);
}

N
Naohiro Aota 已提交
5040
/*
5041
 * Structure used internally for btrfs_create_chunk() function.
N
Naohiro Aota 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
 * Wraps needed parameters.
 */
struct alloc_chunk_ctl {
	u64 start;
	u64 type;
	/* Total number of stripes to allocate */
	int num_stripes;
	/* sub_stripes info for map */
	int sub_stripes;
	/* Stripes per device */
	int dev_stripes;
	/* Maximum number of devices to use */
	int devs_max;
	/* Minimum number of devices to use */
	int devs_min;
	/* ndevs has to be a multiple of this */
	int devs_increment;
	/* Number of copies */
	int ncopies;
	/* Number of stripes worth of bytes to store parity information */
	int nparity;
	u64 max_stripe_size;
	u64 max_chunk_size;
5065
	u64 dev_extent_min;
N
Naohiro Aota 已提交
5066 5067 5068 5069 5070
	u64 stripe_size;
	u64 chunk_size;
	int ndevs;
};

5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
static void init_alloc_chunk_ctl_policy_regular(
				struct btrfs_fs_devices *fs_devices,
				struct alloc_chunk_ctl *ctl)
{
	u64 type = ctl->type;

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_stripe_size = SZ_1G;
		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		/* For larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			ctl->max_stripe_size = SZ_1G;
		else
			ctl->max_stripe_size = SZ_256M;
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_stripe_size = SZ_32M;
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
	} else {
		BUG();
	}

	/* We don't want a chunk larger than 10% of writable space */
	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
				  ctl->max_chunk_size);
5099
	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5100 5101
}

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
static void init_alloc_chunk_ctl_policy_zoned(
				      struct btrfs_fs_devices *fs_devices,
				      struct alloc_chunk_ctl *ctl)
{
	u64 zone_size = fs_devices->fs_info->zone_size;
	u64 limit;
	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
	u64 min_chunk_size = min_data_stripes * zone_size;
	u64 type = ctl->type;

	ctl->max_stripe_size = zone_size;
	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
						 zone_size);
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
5123 5124
	} else {
		BUG();
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	}

	/* We don't want a chunk larger than 10% of writable space */
	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
			       zone_size),
		    min_chunk_size);
	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
				 struct alloc_chunk_ctl *ctl)
{
	int index = btrfs_bg_flags_to_raid_index(ctl->type);

	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
	ctl->devs_max = btrfs_raid_array[index].devs_max;
	if (!ctl->devs_max)
		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
	ctl->devs_min = btrfs_raid_array[index].devs_min;
	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
	ctl->ncopies = btrfs_raid_array[index].ncopies;
	ctl->nparity = btrfs_raid_array[index].nparity;
	ctl->ndevs = 0;

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
		break;
5155 5156 5157
	case BTRFS_CHUNK_ALLOC_ZONED:
		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
		break;
5158 5159 5160 5161 5162
	default:
		BUG();
	}
}

5163 5164 5165
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
5166
{
5167
	struct btrfs_fs_info *info = fs_devices->fs_info;
5168
	struct btrfs_device *device;
5169
	u64 total_avail;
5170
	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5171
	int ret;
5172 5173 5174
	int ndevs = 0;
	u64 max_avail;
	u64 dev_offset;
5175

5176
	/*
5177 5178
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
5179
	 */
5180
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5181
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
5182
			WARN(1, KERN_ERR
5183
			       "BTRFS: read-only device in alloc_list\n");
5184 5185
			continue;
		}
5186

5187 5188
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
5189
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5190
			continue;
5191

5192 5193 5194 5195
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
5196 5197

		/* If there is no space on this device, skip it. */
5198
		if (total_avail < ctl->dev_extent_min)
5199
			continue;
5200

5201 5202
		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
					   &max_avail);
5203
		if (ret && ret != -ENOSPC)
5204
			return ret;
5205

5206
		if (ret == 0)
5207
			max_avail = dev_extent_want;
5208

5209
		if (max_avail < ctl->dev_extent_min) {
5210 5211
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
5212
			"%s: devid %llu has no free space, have=%llu want=%llu",
5213
					    __func__, device->devid, max_avail,
5214
					    ctl->dev_extent_min);
5215
			continue;
5216
		}
5217

5218 5219 5220 5221 5222
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
5223 5224 5225 5226 5227 5228
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
5229
	ctl->ndevs = ndevs;
5230

5231 5232 5233
	/*
	 * now sort the devices by hole size / available space
	 */
5234
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5235
	     btrfs_cmp_device_info, NULL);
5236

5237 5238 5239
	return 0;
}

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
				      struct btrfs_device_info *devices_info)
{
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
	 */
	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
				   ctl->dev_stripes);
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;

	/* This will have to be fixed for RAID1 and RAID10 over more drives */
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/*
	 * Use the number of data stripes to figure out how big this chunk is
	 * really going to be in terms of logical address space, and compare
	 * that answer with the max chunk size. If it's higher, we try to
	 * reduce stripe_size.
	 */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		/*
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
		 */
		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
							data_stripes), SZ_16M),
				       ctl->stripe_size);
	}

	/* Align to BTRFS_STRIPE_LEN */
	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
				    struct btrfs_device_info *devices_info)
{
	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * It should hold because:
	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
	 */
	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);

	ctl->stripe_size = zone_size;
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
					     ctl->stripe_size) + ctl->nparity,
				     ctl->dev_stripes);
		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
	}

	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
{
	struct btrfs_fs_info *info = fs_devices->fs_info;

	/*
	 * Round down to number of usable stripes, devs_increment can be any
	 * number so we can't use round_down() that requires power of 2, while
	 * rounddown is safe.
	 */
	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);

	if (ctl->ndevs < ctl->devs_min) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
				    __func__, ctl->ndevs, ctl->devs_min);
		}
		return -ENOSPC;
	}

	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		return decide_stripe_size_regular(ctl, devices_info);
5343 5344
	case BTRFS_CHUNK_ALLOC_ZONED:
		return decide_stripe_size_zoned(ctl, devices_info);
5345 5346 5347 5348 5349
	default:
		BUG();
	}
}

5350
static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
N
Naohiro Aota 已提交
5351 5352
			struct alloc_chunk_ctl *ctl,
			struct btrfs_device_info *devices_info)
5353 5354 5355 5356
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
5357
	struct btrfs_block_group *block_group;
5358
	struct extent_map *em;
N
Naohiro Aota 已提交
5359 5360
	u64 start = ctl->start;
	u64 type = ctl->type;
5361 5362 5363 5364
	int ret;
	int i;
	int j;

N
Naohiro Aota 已提交
5365 5366
	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
	if (!map)
5367
		return ERR_PTR(-ENOMEM);
N
Naohiro Aota 已提交
5368
	map->num_stripes = ctl->num_stripes;
5369

N
Naohiro Aota 已提交
5370 5371 5372
	for (i = 0; i < ctl->ndevs; ++i) {
		for (j = 0; j < ctl->dev_stripes; ++j) {
			int s = i * ctl->dev_stripes + j;
5373 5374
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
N
Naohiro Aota 已提交
5375
						   j * ctl->stripe_size;
5376 5377
		}
	}
5378 5379 5380
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5381
	map->type = type;
N
Naohiro Aota 已提交
5382
	map->sub_stripes = ctl->sub_stripes;
5383

N
Naohiro Aota 已提交
5384
	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5385

5386
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5387
	if (!em) {
5388
		kfree(map);
5389
		return ERR_PTR(-ENOMEM);
5390
	}
5391
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5392
	em->map_lookup = map;
Y
Yan Zheng 已提交
5393
	em->start = start;
N
Naohiro Aota 已提交
5394
	em->len = ctl->chunk_size;
Y
Yan Zheng 已提交
5395 5396
	em->block_start = 0;
	em->block_len = em->len;
N
Naohiro Aota 已提交
5397
	em->orig_block_len = ctl->stripe_size;
5398

5399
	em_tree = &info->mapping_tree;
5400
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5401
	ret = add_extent_mapping(em_tree, em, 0);
5402
	if (ret) {
5403
		write_unlock(&em_tree->lock);
5404
		free_extent_map(em);
5405
		return ERR_PTR(ret);
5406
	}
5407 5408
	write_unlock(&em_tree->lock);

5409 5410
	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
	if (IS_ERR(block_group))
5411
		goto error_del_extent;
Y
Yan Zheng 已提交
5412

5413 5414 5415
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

N
Naohiro Aota 已提交
5416
		btrfs_device_set_bytes_used(dev,
N
Naohiro Aota 已提交
5417
					    dev->bytes_used + ctl->stripe_size);
5418 5419 5420 5421
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5422

N
Naohiro Aota 已提交
5423
	atomic64_sub(ctl->stripe_size * map->num_stripes,
N
Naohiro Aota 已提交
5424
		     &info->free_chunk_space);
5425

5426
	free_extent_map(em);
5427
	check_raid56_incompat_flag(info, type);
5428
	check_raid1c34_incompat_flag(info, type);
D
David Woodhouse 已提交
5429

5430
	return block_group;
5431

5432
error_del_extent:
5433 5434 5435 5436 5437 5438 5439 5440
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
N
Naohiro Aota 已提交
5441

5442
	return block_group;
N
Naohiro Aota 已提交
5443 5444
}

5445
struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5446
					    u64 type)
N
Naohiro Aota 已提交
5447 5448 5449 5450 5451
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct btrfs_device_info *devices_info = NULL;
	struct alloc_chunk_ctl ctl;
5452
	struct btrfs_block_group *block_group;
N
Naohiro Aota 已提交
5453 5454
	int ret;

5455 5456
	lockdep_assert_held(&info->chunk_mutex);

N
Naohiro Aota 已提交
5457 5458
	if (!alloc_profile_is_valid(type, 0)) {
		ASSERT(0);
5459
		return ERR_PTR(-EINVAL);
N
Naohiro Aota 已提交
5460 5461 5462 5463 5464
	}

	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
5465
		return ERR_PTR(-ENOSPC);
N
Naohiro Aota 已提交
5466 5467 5468 5469 5470
	}

	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
		ASSERT(0);
5471
		return ERR_PTR(-EINVAL);
N
Naohiro Aota 已提交
5472 5473
	}

5474
	ctl.start = find_next_chunk(info);
N
Naohiro Aota 已提交
5475 5476 5477 5478 5479 5480
	ctl.type = type;
	init_alloc_chunk_ctl(fs_devices, &ctl);

	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
			       GFP_NOFS);
	if (!devices_info)
5481
		return ERR_PTR(-ENOMEM);
N
Naohiro Aota 已提交
5482 5483

	ret = gather_device_info(fs_devices, &ctl, devices_info);
5484 5485
	if (ret < 0) {
		block_group = ERR_PTR(ret);
N
Naohiro Aota 已提交
5486
		goto out;
5487
	}
N
Naohiro Aota 已提交
5488 5489

	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5490 5491
	if (ret < 0) {
		block_group = ERR_PTR(ret);
N
Naohiro Aota 已提交
5492
		goto out;
5493
	}
N
Naohiro Aota 已提交
5494

5495
	block_group = create_chunk(trans, &ctl, devices_info);
N
Naohiro Aota 已提交
5496 5497

out:
5498
	kfree(devices_info);
5499
	return block_group;
Y
Yan Zheng 已提交
5500 5501
}

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
/*
 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
 * chunks.
 *
 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
 * phases.
 */
int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
				     struct btrfs_block_group *bg)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
	struct btrfs_key key;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	int i;
	int ret;

	/*
	 * We take the chunk_mutex for 2 reasons:
	 *
	 * 1) Updates and insertions in the chunk btree must be done while holding
	 *    the chunk_mutex, as well as updating the system chunk array in the
	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
	 *    details;
	 *
	 * 2) To prevent races with the final phase of a device replace operation
	 *    that replaces the device object associated with the map's stripes,
	 *    because the device object's id can change at any time during that
	 *    final phase of the device replace operation
	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
	 *    which would cause a failure when updating the device item, which does
	 *    not exists, or persisting a stripe of the chunk item with such ID.
	 *    Here we can't use the device_list_mutex because our caller already
	 *    has locked the chunk_mutex, and the final phase of device replace
	 *    acquires both mutexes - first the device_list_mutex and then the
	 *    chunk_mutex. Using any of those two mutexes protects us from a
	 *    concurrent device replace.
	 */
	lockdep_assert_held(&fs_info->chunk_mutex);

	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		btrfs_abort_transaction(trans, ret);
		return ret;
	}

	map = em->map_lookup;
	item_size = btrfs_chunk_item_size(map->num_stripes);

	chunk = kzalloc(item_size, GFP_NOFS);
	if (!chunk) {
		ret = -ENOMEM;
		btrfs_abort_transaction(trans, ret);
5562
		goto out;
Y
Yan Zheng 已提交
5563 5564
	}

5565 5566 5567 5568 5569 5570 5571 5572
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *device = map->stripes[i].dev;

		ret = btrfs_update_device(trans, device);
		if (ret)
			goto out;
	}

Y
Yan Zheng 已提交
5573
	stripe = &chunk->stripe;
5574
	for (i = 0; i < map->num_stripes; i++) {
5575 5576
		struct btrfs_device *device = map->stripes[i].dev;
		const u64 dev_offset = map->stripes[i].physical;
5577

5578 5579 5580
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5581
		stripe++;
5582 5583
	}

5584
	btrfs_set_stack_chunk_length(chunk, bg->length);
5585
	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
Y
Yan Zheng 已提交
5586 5587 5588 5589 5590
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5591
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5592
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5593

Y
Yan Zheng 已提交
5594 5595
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
5596
	key.offset = bg->start;
5597

Y
Yan Zheng 已提交
5598
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5599 5600 5601 5602 5603 5604
	if (ret)
		goto out;

	bg->chunk_item_inserted = 1;

	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5605
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5606 5607
		if (ret)
			goto out;
5608
	}
5609

5610
out:
5611
	kfree(chunk);
5612
	free_extent_map(em);
5613
	return ret;
Y
Yan Zheng 已提交
5614
}
5615

5616
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5617
{
5618
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5619
	u64 alloc_profile;
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	struct btrfs_block_group *meta_bg;
	struct btrfs_block_group *sys_bg;

	/*
	 * When adding a new device for sprouting, the seed device is read-only
	 * so we must first allocate a metadata and a system chunk. But before
	 * adding the block group items to the extent, device and chunk btrees,
	 * we must first:
	 *
	 * 1) Create both chunks without doing any changes to the btrees, as
	 *    otherwise we would get -ENOSPC since the block groups from the
	 *    seed device are read-only;
	 *
	 * 2) Add the device item for the new sprout device - finishing the setup
	 *    of a new block group requires updating the device item in the chunk
	 *    btree, so it must exist when we attempt to do it. The previous step
	 *    ensures this does not fail with -ENOSPC.
	 *
	 * After that we can add the block group items to their btrees:
	 * update existing device item in the chunk btree, add a new block group
	 * item to the extent btree, add a new chunk item to the chunk btree and
	 * finally add the new device extent items to the devices btree.
	 */
Y
Yan Zheng 已提交
5643

5644
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5645
	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5646 5647
	if (IS_ERR(meta_bg))
		return PTR_ERR(meta_bg);
Y
Yan Zheng 已提交
5648

5649
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5650
	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5651 5652 5653 5654
	if (IS_ERR(sys_bg))
		return PTR_ERR(sys_bg);

	return 0;
Y
Yan Zheng 已提交
5655 5656
}

5657 5658
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5659
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5660

5661
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5662 5663
}

5664
bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5665 5666 5667
{
	struct extent_map *em;
	struct map_lookup *map;
5668
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5669
	int i;
5670
	bool ret = true;
Y
Yan Zheng 已提交
5671

5672
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5673
	if (IS_ERR(em))
5674
		return false;
Y
Yan Zheng 已提交
5675

5676
	map = em->map_lookup;
Y
Yan Zheng 已提交
5677
	for (i = 0; i < map->num_stripes; i++) {
5678 5679
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5680 5681 5682
			miss_ndevs++;
			continue;
		}
5683 5684
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
5685
			ret = false;
5686
			goto end;
Y
Yan Zheng 已提交
5687 5688
		}
	}
5689 5690

	/*
5691 5692
	 * If the number of missing devices is larger than max errors, we can
	 * not write the data into that chunk successfully.
5693 5694
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
5695
		ret = false;
5696
end:
5697
	free_extent_map(em);
5698
	return ret;
5699 5700
}

5701
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5702 5703 5704
{
	struct extent_map *em;

C
Chris Mason 已提交
5705
	while (1) {
5706 5707
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5708
		if (em)
5709 5710
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5711 5712 5713 5714 5715 5716 5717 5718 5719
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5720
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5721 5722 5723 5724 5725
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5726
	em = btrfs_get_chunk_map(fs_info, logical, len);
5727 5728 5729 5730 5731 5732 5733
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5734 5735
		return 1;

5736
	map = em->map_lookup;
5737
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5738
		ret = map->num_stripes;
C
Chris Mason 已提交
5739 5740
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5741 5742 5743
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5744 5745 5746
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5747
		 *
L
Liu Bo 已提交
5748 5749 5750 5751
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5752 5753 5754
	else
		ret = 1;
	free_extent_map(em);
5755

5756
	down_read(&fs_info->dev_replace.rwsem);
5757 5758
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5759
		ret++;
5760
	up_read(&fs_info->dev_replace.rwsem);
5761

5762 5763 5764
	return ret;
}

5765
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5766 5767 5768 5769
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5770
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5771

5772
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5773

5774 5775 5776 5777 5778 5779
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5780 5781 5782
	return len;
}

5783
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5784 5785 5786 5787 5788
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5789
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5790

5791 5792 5793 5794 5795 5796
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5797 5798 5799
	return ret;
}

5800
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5801
			    struct map_lookup *map, int first,
5802
			    int dev_replace_is_ongoing)
5803 5804
{
	int i;
5805
	int num_stripes;
5806
	int preferred_mirror;
5807 5808 5809
	int tolerance;
	struct btrfs_device *srcdev;

5810
	ASSERT((map->type &
5811
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5812 5813 5814 5815 5816 5817

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

A
Anand Jain 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
	switch (fs_info->fs_devices->read_policy) {
	default:
		/* Shouldn't happen, just warn and use pid instead of failing */
		btrfs_warn_rl(fs_info,
			      "unknown read_policy type %u, reset to pid",
			      fs_info->fs_devices->read_policy);
		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
		fallthrough;
	case BTRFS_READ_POLICY_PID:
		preferred_mirror = first + (current->pid % num_stripes);
		break;
	}
5830

5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5844 5845 5846
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5847
		for (i = first; i < first + num_stripes; i++) {
5848 5849 5850 5851
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5852
	}
5853

5854 5855 5856
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5857
	return preferred_mirror;
5858 5859
}

D
David Woodhouse 已提交
5860
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5861
static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
D
David Woodhouse 已提交
5862 5863 5864 5865 5866 5867
{
	int i;
	int again = 1;

	while (again) {
		again = 0;
5868
		for (i = 0; i < num_stripes - 1; i++) {
5869
			/* Swap if parity is on a smaller index */
5870 5871 5872
			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
				swap(bioc->stripes[i], bioc->stripes[i + 1]);
				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
D
David Woodhouse 已提交
5873 5874 5875 5876 5877 5878
				again = 1;
			}
		}
	}
}

5879 5880
static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
						       int total_stripes,
5881
						       int real_stripes)
5882
{
5883 5884 5885 5886 5887 5888
	struct btrfs_io_context *bioc = kzalloc(
		 /* The size of btrfs_io_context */
		sizeof(struct btrfs_io_context) +
		/* Plus the variable array for the stripes */
		sizeof(struct btrfs_io_stripe) * (total_stripes) +
		/* Plus the variable array for the tgt dev */
5889
		sizeof(int) * (real_stripes) +
5890
		/*
5891 5892
		 * Plus the raid_map, which includes both the tgt dev
		 * and the stripes.
5893 5894
		 */
		sizeof(u64) * (total_stripes),
5895
		GFP_NOFS|__GFP_NOFAIL);
5896

5897 5898
	atomic_set(&bioc->error, 0);
	refcount_set(&bioc->refs, 1);
5899

5900
	bioc->fs_info = fs_info;
5901 5902
	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5903

5904
	return bioc;
5905 5906
}

5907
void btrfs_get_bioc(struct btrfs_io_context *bioc)
5908
{
5909 5910
	WARN_ON(!refcount_read(&bioc->refs));
	refcount_inc(&bioc->refs);
5911 5912
}

5913
void btrfs_put_bioc(struct btrfs_io_context *bioc)
5914
{
5915
	if (!bioc)
5916
		return;
5917 5918
	if (refcount_dec_and_test(&bioc->refs))
		kfree(bioc);
5919 5920
}

5921 5922 5923 5924 5925 5926
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5927
					 u64 logical, u64 *length_ret,
5928
					 struct btrfs_io_context **bioc_ret)
5929 5930 5931
{
	struct extent_map *em;
	struct map_lookup *map;
5932
	struct btrfs_io_context *bioc;
5933
	u64 length = *length_ret;
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

5951 5952
	/* Discard always returns a bioc. */
	ASSERT(bioc_ret);
5953

5954
	em = btrfs_get_chunk_map(fs_info, logical, length);
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
5966
	length = min_t(u64, em->start + em->len - logical, length);
5967
	*length_ret = length;
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5980
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
6007
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6008 6009 6010 6011 6012 6013 6014
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

6015
	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6016
	if (!bioc) {
6017 6018 6019 6020 6021
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
6022
		bioc->stripes[i].physical =
6023 6024
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
6025
		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6026 6027 6028

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
6029
			bioc->stripes[i].length = stripes_per_dev *
6030 6031 6032
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
6033
				bioc->stripes[i].length += map->stripe_len;
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
6044
				bioc->stripes[i].length -= stripe_offset;
6045 6046 6047 6048

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
6049
				bioc->stripes[i].length -= stripe_end_offset;
6050 6051 6052 6053

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
6054
			bioc->stripes[i].length = length;
6055 6056 6057 6058 6059 6060 6061 6062 6063
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

6064 6065 6066
	*bioc_ret = bioc;
	bioc->map_type = map->type;
	bioc->num_stripes = num_stripes;
6067 6068 6069 6070 6071
out:
	free_extent_map(em);
	return ret;
}

6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
6090
	struct btrfs_io_context *bioc = NULL;
6091 6092 6093 6094 6095 6096 6097 6098
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6099
				logical, &length, &bioc, 0, 0);
6100
	if (ret) {
6101
		ASSERT(bioc == NULL);
6102 6103 6104
		return ret;
	}

6105
	num_stripes = bioc->num_stripes;
6106 6107 6108 6109 6110 6111
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
6112
		btrfs_put_bioc(bioc);
6113 6114 6115 6116 6117 6118 6119 6120 6121
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
6122
		if (bioc->stripes[i].dev->devid != srcdev_devid)
6123 6124 6125 6126 6127 6128 6129
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
6130
		    physical_of_found <= bioc->stripes[i].physical)
6131 6132 6133 6134
			continue;

		index_srcdev = i;
		found = 1;
6135
		physical_of_found = bioc->stripes[i].physical;
6136 6137
	}

6138
	btrfs_put_bioc(bioc);
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

6149 6150 6151 6152 6153
static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
{
	struct btrfs_block_group *cache;
	bool ret;

6154
	/* Non zoned filesystem does not use "to_copy" flag */
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
	if (!btrfs_is_zoned(fs_info))
		return false;

	cache = btrfs_lookup_block_group(fs_info, logical);

	spin_lock(&cache->lock);
	ret = cache->to_copy;
	spin_unlock(&cache->lock);

	btrfs_put_block_group(cache);
	return ret;
}

6168
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6169
				      struct btrfs_io_context **bioc_ret,
6170
				      struct btrfs_dev_replace *dev_replace,
6171
				      u64 logical,
6172 6173
				      int *num_stripes_ret, int *max_errors_ret)
{
6174
	struct btrfs_io_context *bioc = *bioc_ret;
6175 6176 6177 6178 6179 6180 6181 6182 6183
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

6184 6185 6186 6187 6188 6189 6190
		/*
		 * A block group which have "to_copy" set will eventually
		 * copied by dev-replace process. We can avoid cloning IO here.
		 */
		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
			return;

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
6204
			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6205
				/* write to new disk, too */
6206 6207 6208 6209
				struct btrfs_io_stripe *new =
					bioc->stripes + index_where_to_add;
				struct btrfs_io_stripe *old =
					bioc->stripes + i;
6210 6211 6212 6213

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
6214
				bioc->tgtdev_map[i] = index_where_to_add;
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
6234
			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6235 6236 6237 6238 6239 6240
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
6241
				    physical_of_found <= bioc->stripes[i].physical)
6242 6243 6244
					continue;
				index_srcdev = i;
				found = 1;
6245
				physical_of_found = bioc->stripes[i].physical;
6246 6247 6248
			}
		}
		if (found) {
6249 6250
			struct btrfs_io_stripe *tgtdev_stripe =
				bioc->stripes + num_stripes;
6251 6252 6253

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
6254
				bioc->stripes[index_srcdev].length;
6255
			tgtdev_stripe->dev = dev_replace->tgtdev;
6256
			bioc->tgtdev_map[index_srcdev] = num_stripes;
6257 6258 6259 6260 6261 6262 6263 6264

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
6265 6266
	bioc->num_tgtdevs = tgtdev_indexes;
	*bioc_ret = bioc;
6267 6268
}

6269 6270 6271 6272 6273
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

6274
/*
6275 6276 6277
 * Calculate the geometry of a particular (address, len) tuple. This
 * information is used to calculate how big a particular bio can get before it
 * straddles a stripe.
6278
 *
6279 6280 6281 6282 6283
 * @fs_info: the filesystem
 * @em:      mapping containing the logical extent
 * @op:      type of operation - write or read
 * @logical: address that we want to figure out the geometry of
 * @io_geom: pointer used to return values
6284 6285 6286 6287
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
6288
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6289
			  enum btrfs_map_op op, u64 logical,
6290
			  struct btrfs_io_geometry *io_geom)
6291 6292
{
	struct map_lookup *map;
6293
	u64 len;
6294 6295 6296
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
6297
	u32 stripe_len;
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;

	ASSERT(op != BTRFS_MAP_DISCARD);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
6308 6309 6310 6311 6312 6313
	/*
	 * Stripe_nr is where this block falls in
	 * stripe_offset is the offset of this block in its stripe.
	 */
	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
	ASSERT(stripe_offset < U32_MAX);
6314 6315 6316

	data_stripes = nr_data_stripes(map);

6317 6318
	/* Only stripe based profiles needs to check against stripe length. */
	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

6358
	return 0;
6359 6360
}

6361 6362
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
6363
			     u64 logical, u64 *length,
6364
			     struct btrfs_io_context **bioc_ret,
6365
			     int mirror_num, int need_raid_map)
6366 6367 6368
{
	struct extent_map *em;
	struct map_lookup *map;
6369 6370
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6371
	u64 stripe_len;
6372
	u32 stripe_index;
6373
	int data_stripes;
6374
	int i;
L
Li Zefan 已提交
6375
	int ret = 0;
6376
	int num_stripes;
6377
	int max_errors = 0;
6378
	int tgtdev_indexes = 0;
6379
	struct btrfs_io_context *bioc = NULL;
6380 6381 6382
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6383 6384
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6385
	u64 raid56_full_stripe_start = (u64)-1;
6386 6387
	struct btrfs_io_geometry geom;

6388
	ASSERT(bioc_ret);
6389
	ASSERT(op != BTRFS_MAP_DISCARD);
6390

6391 6392 6393
	em = btrfs_get_chunk_map(fs_info, logical, *length);
	ASSERT(!IS_ERR(em));

6394
	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6395 6396
	if (ret < 0)
		return ret;
6397

6398
	map = em->map_lookup;
6399

6400 6401 6402 6403 6404
	*length = geom.len;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6405
	data_stripes = nr_data_stripes(map);
6406

6407
	down_read(&dev_replace->rwsem);
6408
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6409 6410 6411 6412
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6413
	if (!dev_replace_is_ongoing)
6414
		up_read(&dev_replace->rwsem);
6415

6416
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6417
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6418 6419 6420 6421 6422
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6423
			goto out;
6424 6425
		else
			patch_the_first_stripe_for_dev_replace = 1;
6426 6427 6428 6429
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6430
	num_stripes = 1;
6431
	stripe_index = 0;
6432
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6433 6434
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6435
		if (!need_full_stripe(op))
6436
			mirror_num = 1;
6437
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6438
		if (need_full_stripe(op))
6439
			num_stripes = map->num_stripes;
6440
		else if (mirror_num)
6441
			stripe_index = mirror_num - 1;
6442
		else {
6443 6444
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6445
			mirror_num = stripe_index + 1;
6446
		}
6447

6448
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6449
		if (need_full_stripe(op)) {
6450
			num_stripes = map->num_stripes;
6451
		} else if (mirror_num) {
6452
			stripe_index = mirror_num - 1;
6453 6454 6455
		} else {
			mirror_num = 1;
		}
6456

C
Chris Mason 已提交
6457
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6458
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6459

6460
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6461 6462
		stripe_index *= map->sub_stripes;

6463
		if (need_full_stripe(op))
6464
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6465 6466
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6467
		else {
J
Jan Schmidt 已提交
6468
			int old_stripe_index = stripe_index;
6469 6470 6471
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6472
			mirror_num = stripe_index - old_stripe_index + 1;
6473
		}
D
David Woodhouse 已提交
6474

6475
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6476
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6477
			/* push stripe_nr back to the start of the full stripe */
6478
			stripe_nr = div64_u64(raid56_full_stripe_start,
6479
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6494
			stripe_nr = div_u64_rem(stripe_nr,
6495
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6496
			if (mirror_num > 1)
6497
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6498 6499

			/* We distribute the parity blocks across stripes */
6500 6501
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6502
			if (!need_full_stripe(op) && mirror_num <= 1)
6503
				mirror_num = 1;
D
David Woodhouse 已提交
6504
		}
6505 6506
	} else {
		/*
6507 6508 6509
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6510
		 */
6511 6512
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6513
		mirror_num = stripe_index + 1;
6514
	}
6515
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6516 6517
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6518 6519 6520 6521
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6522

6523
	num_alloc_stripes = num_stripes;
6524
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6525
		if (op == BTRFS_MAP_WRITE)
6526
			num_alloc_stripes <<= 1;
6527
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6528
			num_alloc_stripes++;
6529
		tgtdev_indexes = num_stripes;
6530
	}
6531

6532
	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6533
	if (!bioc) {
L
Li Zefan 已提交
6534 6535 6536
		ret = -ENOMEM;
		goto out;
	}
6537 6538

	for (i = 0; i < num_stripes; i++) {
6539
		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6540
			stripe_offset + stripe_nr * map->stripe_len;
6541
		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6542 6543
		stripe_index++;
	}
L
Li Zefan 已提交
6544

6545
	/* Build raid_map */
6546 6547
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6548
		u64 tmp;
6549
		unsigned rot;
6550 6551

		/* Work out the disk rotation on this stripe-set */
6552
		div_u64_rem(stripe_nr, num_stripes, &rot);
6553 6554

		/* Fill in the logical address of each stripe */
6555 6556
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6557
			bioc->raid_map[(i + rot) % num_stripes] =
6558 6559
				em->start + (tmp + i) * map->stripe_len;

6560
		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6561
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6562
			bioc->raid_map[(i + rot + 1) % num_stripes] =
6563 6564
				RAID6_Q_STRIPE;

6565
		sort_parity_stripes(bioc, num_stripes);
6566
	}
L
Li Zefan 已提交
6567

6568
	if (need_full_stripe(op))
6569
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6570

6571
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6572
	    need_full_stripe(op)) {
6573
		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6574
					  &num_stripes, &max_errors);
6575 6576
	}

6577 6578 6579 6580 6581
	*bioc_ret = bioc;
	bioc->map_type = map->type;
	bioc->num_stripes = num_stripes;
	bioc->max_errors = max_errors;
	bioc->mirror_num = mirror_num;
6582 6583 6584 6585 6586 6587 6588 6589

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
6590 6591 6592
		bioc->stripes[0].dev = dev_replace->tgtdev;
		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
		bioc->mirror_num = map->num_stripes + 1;
6593
	}
6594
out:
6595
	if (dev_replace_is_ongoing) {
6596 6597
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6598
		up_read(&dev_replace->rwsem);
6599
	}
6600
	free_extent_map(em);
L
Li Zefan 已提交
6601
	return ret;
6602 6603
}

6604
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6605
		      u64 logical, u64 *length,
6606
		      struct btrfs_io_context **bioc_ret, int mirror_num)
6607
{
6608 6609
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
6610
						     length, bioc_ret);
6611

6612
	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6613
				 mirror_num, 0);
6614 6615
}

6616
/* For Scrub/replace */
6617
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6618
		     u64 logical, u64 *length,
6619
		     struct btrfs_io_context **bioc_ret)
6620
{
6621
	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6622 6623
}

6624
static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6625
{
6626 6627
	bio->bi_private = bioc->private;
	bio->bi_end_io = bioc->end_io;
6628
	bio_endio(bio);
6629

6630
	btrfs_put_bioc(bioc);
6631 6632
}

6633
static void btrfs_end_bio(struct bio *bio)
6634
{
6635
	struct btrfs_io_context *bioc = bio->bi_private;
6636
	int is_orig_bio = 0;
6637

6638
	if (bio->bi_status) {
6639
		atomic_inc(&bioc->error);
6640 6641
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6642
			struct btrfs_device *dev = btrfs_bio(bio)->device;
6643

6644
			ASSERT(dev->bdev);
6645
			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6646
				btrfs_dev_stat_inc_and_print(dev,
6647
						BTRFS_DEV_STAT_WRITE_ERRS);
6648 6649
			else if (!(bio->bi_opf & REQ_RAHEAD))
				btrfs_dev_stat_inc_and_print(dev,
6650
						BTRFS_DEV_STAT_READ_ERRS);
6651 6652
			if (bio->bi_opf & REQ_PREFLUSH)
				btrfs_dev_stat_inc_and_print(dev,
6653
						BTRFS_DEV_STAT_FLUSH_ERRS);
6654 6655
		}
	}
6656

6657
	if (bio == bioc->orig_bio)
6658 6659
		is_orig_bio = 1;

6660
	btrfs_bio_counter_dec(bioc->fs_info);
6661

6662
	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6663 6664
		if (!is_orig_bio) {
			bio_put(bio);
6665
			bio = bioc->orig_bio;
6666
		}
6667

6668
		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6669
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6670
		 * beyond the tolerance of the btrfs bio
6671
		 */
6672
		if (atomic_read(&bioc->error) > bioc->max_errors) {
6673
			bio->bi_status = BLK_STS_IOERR;
6674
		} else {
6675 6676 6677 6678
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6679
			bio->bi_status = BLK_STS_OK;
6680
		}
6681

6682
		btrfs_end_bioc(bioc, bio);
6683
	} else if (!is_orig_bio) {
6684 6685 6686 6687
		bio_put(bio);
	}
}

6688
static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6689
			      u64 physical, struct btrfs_device *dev)
6690
{
6691
	struct btrfs_fs_info *fs_info = bioc->fs_info;
6692

6693
	bio->bi_private = bioc;
6694
	btrfs_bio(bio)->device = dev;
6695
	bio->bi_end_io = btrfs_end_bio;
6696
	bio->bi_iter.bi_sector = physical >> 9;
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
	/*
	 * For zone append writing, bi_sector must point the beginning of the
	 * zone
	 */
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
		if (btrfs_dev_is_sequential(dev, physical)) {
			u64 zone_start = round_down(physical, fs_info->zone_size);

			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
		} else {
			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
			bio->bi_opf |= REQ_OP_WRITE;
		}
	}
6711 6712
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
D
David Sterba 已提交
6713
		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6714 6715
		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
		dev->devid, bio->bi_iter.bi_size);
6716

6717
	btrfs_bio_counter_inc_noblocked(fs_info);
6718

6719 6720
	btrfsic_check_bio(bio);
	submit_bio(bio);
6721 6722
}

6723
static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6724
{
6725 6726
	atomic_inc(&bioc->error);
	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6727
		/* Should be the original bio. */
6728
		WARN_ON(bio != bioc->orig_bio);
6729

6730
		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6731
		bio->bi_iter.bi_sector = logical >> 9;
6732
		if (atomic_read(&bioc->error) > bioc->max_errors)
6733 6734 6735
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6736
		btrfs_end_bioc(bioc, bio);
6737 6738 6739
	}
}

6740
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6741
			   int mirror_num)
6742 6743
{
	struct btrfs_device *dev;
6744
	struct bio *first_bio = bio;
D
David Sterba 已提交
6745
	u64 logical = bio->bi_iter.bi_sector << 9;
6746 6747 6748
	u64 length = 0;
	u64 map_length;
	int ret;
6749 6750
	int dev_nr;
	int total_devs;
6751
	struct btrfs_io_context *bioc = NULL;
6752

6753
	length = bio->bi_iter.bi_size;
6754
	map_length = length;
6755

6756
	btrfs_bio_counter_inc_blocked(fs_info);
6757
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6758
				&map_length, &bioc, mirror_num, 1);
6759
	if (ret) {
6760
		btrfs_bio_counter_dec(fs_info);
6761
		return errno_to_blk_status(ret);
6762
	}
6763

6764 6765 6766 6767 6768
	total_devs = bioc->num_stripes;
	bioc->orig_bio = first_bio;
	bioc->private = first_bio->bi_private;
	bioc->end_io = first_bio->bi_end_io;
	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
D
David Woodhouse 已提交
6769

6770
	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6771
	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6772 6773
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
6774
		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6775
			ret = raid56_parity_write(bio, bioc, map_length);
D
David Woodhouse 已提交
6776
		} else {
6777 6778
			ret = raid56_parity_recover(bio, bioc, map_length,
						    mirror_num, 1);
D
David Woodhouse 已提交
6779
		}
6780

6781
		btrfs_bio_counter_dec(fs_info);
6782
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6783 6784
	}

6785
	if (map_length < length) {
6786
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6787 6788
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6789 6790
		BUG();
	}
6791

6792
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6793
		dev = bioc->stripes[dev_nr].dev;
6794 6795
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6796
		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6797
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6798
			bioc_error(bioc, first_bio, logical);
6799 6800 6801
			continue;
		}

6802 6803 6804
		if (dev_nr < total_devs - 1) {
			bio = btrfs_bio_clone(dev->bdev, first_bio);
		} else {
6805
			bio = first_bio;
6806 6807
			bio_set_dev(bio, dev->bdev);
		}
6808

6809
		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6810
	}
6811
	btrfs_bio_counter_dec(fs_info);
6812
	return BLK_STS_OK;
6813 6814
}

6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
				      const struct btrfs_fs_devices *fs_devices)
{
	if (args->fsid == NULL)
		return true;
	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
		return true;
	return false;
}

static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
				  const struct btrfs_device *device)
{
	ASSERT((args->devid != (u64)-1) || args->missing);

	if ((args->devid != (u64)-1) && device->devid != args->devid)
		return false;
	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
		return false;
	if (!args->missing)
		return true;
	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
	    !device->bdev)
		return true;
	return false;
}

6842 6843 6844 6845 6846 6847 6848
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 */
6849 6850
struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
				       const struct btrfs_dev_lookup_args *args)
6851
{
Y
Yan Zheng 已提交
6852
	struct btrfs_device *device;
6853 6854
	struct btrfs_fs_devices *seed_devs;

6855
	if (dev_args_match_fs_devices(args, fs_devices)) {
6856
		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6857
			if (dev_args_match_device(args, device))
6858 6859 6860
				return device;
		}
	}
Y
Yan Zheng 已提交
6861

6862
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6863 6864 6865 6866 6867
		if (!dev_args_match_fs_devices(args, seed_devs))
			continue;
		list_for_each_entry(device, &seed_devs->devices, dev_list) {
			if (dev_args_match_device(args, device))
				return device;
Y
Yan Zheng 已提交
6868 6869
		}
	}
6870

Y
Yan Zheng 已提交
6871
	return NULL;
6872 6873
}

6874
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6875 6876 6877
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
6878
	unsigned int nofs_flag;
6879

6880 6881 6882 6883 6884 6885 6886
	/*
	 * We call this under the chunk_mutex, so we want to use NOFS for this
	 * allocation, however we don't want to change btrfs_alloc_device() to
	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
	 * places.
	 */
	nofs_flag = memalloc_nofs_save();
6887
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6888
	memalloc_nofs_restore(nofs_flag);
6889
	if (IS_ERR(device))
6890
		return device;
6891 6892

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6893
	device->fs_devices = fs_devices;
6894
	fs_devices->num_devices++;
6895

6896
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6897
	fs_devices->missing_devices++;
6898

6899 6900 6901
	return device;
}

6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6912
 * on error.  Returned struct is not linked onto any lists and must be
6913
 * destroyed with btrfs_free_device.
6914 6915 6916 6917 6918 6919 6920 6921
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6922
	if (WARN_ON(!devid && !fs_info))
6923 6924
		return ERR_PTR(-EINVAL);

D
David Sterba 已提交
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
	INIT_LIST_HEAD(&dev->post_commit_list);

	atomic_set(&dev->dev_stats_ccnt, 0);
	btrfs_device_data_ordered_init(dev);
	extent_io_tree_init(fs_info, &dev->alloc_state,
			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6947 6948 6949 6950 6951 6952 6953 6954

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6955
			btrfs_free_device(dev);
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

	return dev;
}

6969
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6970
					u64 devid, u8 *uuid, bool error)
6971
{
6972 6973 6974 6975 6976 6977
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6978 6979
}

6980 6981
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
6982
	const int data_stripes = calc_data_stripes(type, num_stripes);
6983

6984 6985 6986
	return div_u64(chunk_len, data_stripes);
}

6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
#if BITS_PER_LONG == 32
/*
 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
 * can't be accessed on 32bit systems.
 *
 * This function do mount time check to reject the fs if it already has
 * metadata chunk beyond that limit.
 */
static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
				  u64 logical, u64 length, u64 type)
{
	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
		return 0;

	if (logical + length < MAX_LFS_FILESIZE)
		return 0;

	btrfs_err_32bit_limit(fs_info);
	return -EOVERFLOW;
}

/*
 * This is to give early warning for any metadata chunk reaching
 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
 * Although we can still access the metadata, it's not going to be possible
 * once the limit is reached.
 */
static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
				  u64 logical, u64 length, u64 type)
{
	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
		return;

	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		return;

	btrfs_warn_32bit_limit(fs_info);
}
#endif

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
						  u64 devid, u8 *uuid)
{
	struct btrfs_device *dev;

	if (!btrfs_test_opt(fs_info, DEGRADED)) {
		btrfs_report_missing_device(fs_info, devid, uuid, true);
		return ERR_PTR(-ENOENT);
	}

	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
	if (IS_ERR(dev)) {
		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
			  devid, PTR_ERR(dev));
		return dev;
	}
	btrfs_report_missing_device(fs_info, devid, uuid, false);

	return dev;
}

7048
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7049 7050
			  struct btrfs_chunk *chunk)
{
7051
	BTRFS_DEV_LOOKUP_ARGS(args);
7052
	struct btrfs_fs_info *fs_info = leaf->fs_info;
7053
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7054 7055 7056 7057 7058
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
7059
	u64 type;
7060 7061 7062 7063 7064 7065 7066
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
7067
	type = btrfs_chunk_type(leaf, chunk);
7068 7069
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

7070 7071 7072 7073 7074 7075 7076
#if BITS_PER_LONG == 32
	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
	if (ret < 0)
		return ret;
	warn_32bit_meta_chunk(fs_info, logical, length, type);
#endif

7077 7078 7079 7080 7081
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7082
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7083 7084 7085
		if (ret)
			return ret;
	}
7086

7087 7088 7089
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
7090 7091 7092 7093 7094 7095 7096 7097 7098

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

7099
	em = alloc_extent_map();
7100 7101
	if (!em)
		return -ENOMEM;
7102
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7103 7104 7105 7106 7107
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

7108
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7109
	em->map_lookup = map;
7110 7111
	em->start = logical;
	em->len = length;
7112
	em->orig_start = 0;
7113
	em->block_start = 0;
C
Chris Mason 已提交
7114
	em->block_len = em->len;
7115

7116 7117 7118 7119
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7120
	map->type = type;
C
Chris Mason 已提交
7121
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7122
	map->verified_stripes = 0;
7123
	em->orig_block_len = calc_stripe_length(type, em->len,
7124
						map->num_stripes);
7125 7126 7127 7128
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7129
		args.devid = devid;
7130 7131 7132
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
7133 7134
		args.uuid = uuid;
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7135
		if (!map->stripes[i].dev) {
7136 7137
			map->stripes[i].dev = handle_missing_device(fs_info,
								    devid, uuid);
7138
			if (IS_ERR(map->stripes[i].dev)) {
7139
				free_extent_map(em);
7140
				return PTR_ERR(map->stripes[i].dev);
7141 7142
			}
		}
7143

7144 7145
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));
7146 7147
	}

7148 7149 7150
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
7151 7152 7153 7154 7155
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
7156 7157
	free_extent_map(em);

7158
	return ret;
7159 7160
}

7161
static void fill_device_from_item(struct extent_buffer *leaf,
7162 7163 7164 7165 7166 7167
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
7168 7169
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
7170
	device->commit_total_bytes = device->disk_total_bytes;
7171
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7172
	device->commit_bytes_used = device->bytes_used;
7173 7174 7175 7176
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7177
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7178
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7179

7180
	ptr = btrfs_device_uuid(dev_item);
7181
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7182 7183
}

7184
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7185
						  u8 *fsid)
Y
Yan Zheng 已提交
7186 7187 7188 7189
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

7190
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
7191
	ASSERT(fsid);
Y
Yan Zheng 已提交
7192

7193
	/* This will match only for multi-device seed fs */
7194
	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7195
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7196 7197
			return fs_devices;

Y
Yan Zheng 已提交
7198

7199
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
7200
	if (!fs_devices) {
7201
		if (!btrfs_test_opt(fs_info, DEGRADED))
7202 7203
			return ERR_PTR(-ENOENT);

7204
		fs_devices = alloc_fs_devices(fsid, NULL);
7205 7206 7207
		if (IS_ERR(fs_devices))
			return fs_devices;

7208
		fs_devices->seeding = true;
7209 7210
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
7211
	}
Y
Yan Zheng 已提交
7212

7213 7214 7215 7216
	/*
	 * Upon first call for a seed fs fsid, just create a private copy of the
	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
	 */
Y
Yan Zheng 已提交
7217
	fs_devices = clone_fs_devices(fs_devices);
7218 7219
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
7220

7221
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7222 7223
	if (ret) {
		free_fs_devices(fs_devices);
7224
		return ERR_PTR(ret);
7225
	}
Y
Yan Zheng 已提交
7226 7227

	if (!fs_devices->seeding) {
7228
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
7229
		free_fs_devices(fs_devices);
7230
		return ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
7231 7232
	}

7233
	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7234

7235
	return fs_devices;
Y
Yan Zheng 已提交
7236 7237
}

7238
static int read_one_dev(struct extent_buffer *leaf,
7239 7240
			struct btrfs_dev_item *dev_item)
{
7241
	BTRFS_DEV_LOOKUP_ARGS(args);
7242
	struct btrfs_fs_info *fs_info = leaf->fs_info;
7243
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7244 7245 7246
	struct btrfs_device *device;
	u64 devid;
	int ret;
7247
	u8 fs_uuid[BTRFS_FSID_SIZE];
7248 7249
	u8 dev_uuid[BTRFS_UUID_SIZE];

7250
	devid = args.devid = btrfs_device_id(leaf, dev_item);
7251
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7252
			   BTRFS_UUID_SIZE);
7253
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7254
			   BTRFS_FSID_SIZE);
7255 7256
	args.uuid = dev_uuid;
	args.fsid = fs_uuid;
Y
Yan Zheng 已提交
7257

7258
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7259
		fs_devices = open_seed_devices(fs_info, fs_uuid);
7260 7261
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
7262 7263
	}

7264
	device = btrfs_find_device(fs_info->fs_devices, &args);
7265
	if (!device) {
7266
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7267 7268
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
7269
			return -ENOENT;
7270
		}
Y
Yan Zheng 已提交
7271

7272
		device = add_missing_dev(fs_devices, devid, dev_uuid);
7273 7274 7275 7276 7277 7278
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
7279
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7280
	} else {
7281
		if (!device->bdev) {
7282 7283 7284
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
7285
				return -ENOENT;
7286 7287 7288
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
7289
		}
7290

7291 7292
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7293 7294 7295 7296 7297 7298
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
7299
			device->fs_devices->missing_devices++;
7300
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
7301
		}
7302 7303 7304

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
7305 7306
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
7317 7318
	}

7319
	if (device->fs_devices != fs_info->fs_devices) {
7320
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
7321 7322 7323
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
7324
	}
7325 7326

	fill_device_from_item(leaf, dev_item, device);
7327
	if (device->bdev) {
7328
		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7329 7330 7331 7332 7333 7334 7335 7336

		if (device->total_bytes > max_total_bytes) {
			btrfs_err(fs_info,
			"device total_bytes should be at most %llu but found %llu",
				  max_total_bytes, device->total_bytes);
			return -EINVAL;
		}
	}
7337
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7338
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7339
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
7340
		device->fs_devices->total_rw_bytes += device->total_bytes;
7341 7342
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
7343
	}
7344 7345 7346 7347
	ret = 0;
	return ret;
}

7348
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7349
{
7350
	struct btrfs_super_block *super_copy = fs_info->super_copy;
7351
	struct extent_buffer *sb;
7352 7353
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
7354 7355
	u8 *array_ptr;
	unsigned long sb_array_offset;
7356
	int ret = 0;
7357 7358 7359
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
7360
	u32 cur_offset;
7361
	u64 type;
7362
	struct btrfs_key key;
7363

7364
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7365

7366
	/*
7367 7368 7369
	 * We allocated a dummy extent, just to use extent buffer accessors.
	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
	 * that's fine, we will not go beyond system chunk array anyway.
7370
	 */
7371 7372 7373
	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
	if (!sb)
		return -ENOMEM;
7374
	set_extent_buffer_uptodate(sb);
7375

7376
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7377 7378
	array_size = btrfs_super_sys_array_size(super_copy);

7379 7380 7381
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
7382

7383 7384
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
7385 7386 7387 7388
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

7389 7390
		btrfs_disk_key_to_cpu(&key, disk_key);

7391 7392 7393
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
7394

7395 7396 7397 7398 7399 7400 7401
		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
7402

7403 7404 7405 7406 7407 7408 7409 7410
		chunk = (struct btrfs_chunk *)sb_array_offset;
		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
7411

7412 7413 7414 7415 7416 7417 7418 7419
		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
		if (!num_stripes) {
			btrfs_err(fs_info,
			"invalid number of stripes %u in sys_array at offset %u",
				  num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
7420

7421 7422
		type = btrfs_chunk_type(sb, chunk);
		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7423
			btrfs_err(fs_info,
7424 7425
			"invalid chunk type %llu in sys_array at offset %u",
				  type, cur_offset);
7426 7427
			ret = -EIO;
			break;
7428
		}
7429 7430 7431 7432 7433 7434 7435 7436 7437

		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;

		ret = read_one_chunk(&key, sb, chunk);
		if (ret)
			break;

7438 7439 7440
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
7441
	}
7442
	clear_extent_buffer_uptodate(sb);
7443
	free_extent_buffer_stale(sb);
7444
	return ret;
7445 7446

out_short_read:
7447
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7448
			len, cur_offset);
7449
	clear_extent_buffer_uptodate(sb);
7450
	free_extent_buffer_stale(sb);
7451
	return -EIO;
7452 7453
}

7454 7455 7456
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
7457 7458
 * If the @failing_dev is specified, it's accounted as missing.
 *
7459 7460 7461
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
7462 7463
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
7464
{
7465
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7466 7467 7468 7469
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7470 7471 7472
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7491 7492
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7493 7494
			    dev->last_flush_error)
				missing++;
7495 7496
			else if (failing_dev && failing_dev == dev)
				missing++;
7497 7498
		}
		if (missing > max_tolerated) {
7499 7500
			if (!failing_dev)
				btrfs_warn(fs_info,
7501
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7502 7503 7504 7505 7506 7507 7508 7509
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7510 7511
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7512
					   (u64)(-1) - next_start);
7513
		read_unlock(&map_tree->lock);
7514 7515 7516 7517 7518
	}
out:
	return ret;
}

7519 7520 7521 7522 7523
static void readahead_tree_node_children(struct extent_buffer *node)
{
	int i;
	const int nr_items = btrfs_header_nritems(node);

7524 7525
	for (i = 0; i < nr_items; i++)
		btrfs_readahead_node_child(node, i);
7526 7527
}

7528
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7529
{
7530
	struct btrfs_root *root = fs_info->chunk_root;
7531 7532 7533 7534 7535 7536
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7537
	int iter_ret = 0;
7538
	u64 total_dev = 0;
7539
	u64 last_ra_node = 0;
7540 7541 7542 7543 7544

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7545 7546 7547 7548
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7549 7550
	mutex_lock(&uuid_mutex);

7551 7552 7553 7554 7555 7556 7557 7558
	/*
	 * It is possible for mount and umount to race in such a way that
	 * we execute this code path, but open_fs_devices failed to clear
	 * total_rw_bytes. We certainly want it cleared before reading the
	 * device items, so clear it here.
	 */
	fs_info->fs_devices->total_rw_bytes = 0;

7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
	/*
	 * Lockdep complains about possible circular locking dependency between
	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
	 * used for freeze procection of a fs (struct super_block.s_writers),
	 * which we take when starting a transaction, and extent buffers of the
	 * chunk tree if we call read_one_dev() while holding a lock on an
	 * extent buffer of the chunk tree. Since we are mounting the filesystem
	 * and at this point there can't be any concurrent task modifying the
	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
	 */
	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
	path->skip_locking = 1;

7572 7573 7574 7575 7576
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7577 7578 7579 7580
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
7581 7582
	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
		struct extent_buffer *node = path->nodes[1];
7583

7584 7585
		leaf = path->nodes[0];
		slot = path->slots[0];
7586

7587 7588 7589 7590 7591 7592
		if (node) {
			if (last_ra_node != node->start) {
				readahead_tree_node_children(node);
				last_ra_node = node->start;
			}
		}
7593 7594 7595
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7596
						  struct btrfs_dev_item);
7597
			ret = read_one_dev(leaf, dev_item);
7598 7599
			if (ret)
				goto error;
7600
			total_dev++;
7601 7602
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
7603 7604 7605 7606 7607 7608 7609 7610 7611

			/*
			 * We are only called at mount time, so no need to take
			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
			 * we always lock first fs_info->chunk_mutex before
			 * acquiring any locks on the chunk tree. This is a
			 * requirement for chunk allocation, see the comment on
			 * top of btrfs_chunk_alloc() for details.
			 */
7612
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7613
			ret = read_one_chunk(&found_key, leaf, chunk);
Y
Yan Zheng 已提交
7614 7615
			if (ret)
				goto error;
7616
		}
7617 7618 7619 7620 7621
	}
	/* Catch error found during iteration */
	if (iter_ret < 0) {
		ret = iter_ret;
		goto error;
7622
	}
7623 7624 7625 7626 7627

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7628
	if (total_dev != fs_info->fs_devices->total_devices) {
7629 7630
		btrfs_warn(fs_info,
"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7631
			  btrfs_super_num_devices(fs_info->super_copy),
7632
			  total_dev);
7633 7634
		fs_info->fs_devices->total_devices = total_dev;
		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7635
	}
7636 7637 7638
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7639
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7640 7641
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7642 7643 7644
		ret = -EINVAL;
		goto error;
	}
7645 7646
	ret = 0;
error:
7647 7648
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7649
	btrfs_free_path(path);
7650 7651
	return ret;
}
7652

7653 7654
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
7655
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7656 7657
	struct btrfs_device *device;

7658 7659 7660 7661 7662 7663 7664 7665
	fs_devices->fs_info = fs_info;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list)
		device->fs_info = fs_info;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
		list_for_each_entry(device, &seed_devs->devices, dev_list)
7666
			device->fs_info = fs_info;
7667

7668
		seed_devs->fs_info = fs_info;
7669
	}
7670
	mutex_unlock(&fs_devices->device_list_mutex);
7671 7672
}

7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
				 const struct btrfs_dev_stats_item *ptr,
				 int index)
{
	u64 val;

	read_extent_buffer(eb, &val,
			   offsetof(struct btrfs_dev_stats_item, values) +
			    ((unsigned long)ptr) + (index * sizeof(u64)),
			   sizeof(val));
	return val;
}

static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
				      struct btrfs_dev_stats_item *ptr,
				      int index, u64 val)
{
	write_extent_buffer(eb, &val,
			    offsetof(struct btrfs_dev_stats_item, values) +
			     ((unsigned long)ptr) + (index * sizeof(u64)),
			    sizeof(val));
}

7696 7697
static int btrfs_device_init_dev_stats(struct btrfs_device *device,
				       struct btrfs_path *path)
7698
{
7699
	struct btrfs_dev_stats_item *ptr;
7700
	struct extent_buffer *eb;
7701 7702 7703 7704
	struct btrfs_key key;
	int item_size;
	int i, ret, slot;

7705 7706 7707
	if (!device->fs_info->dev_root)
		return 0;

7708 7709 7710 7711 7712 7713 7714 7715 7716
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
	key.offset = device->devid;
	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
	if (ret) {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			btrfs_dev_stat_set(device, i, 0);
		device->dev_stats_valid = 1;
		btrfs_release_path(path);
7717
		return ret < 0 ? ret : 0;
7718 7719 7720
	}
	slot = path->slots[0];
	eb = path->nodes[0];
7721
	item_size = btrfs_item_size(eb, slot);
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735

	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
		if (item_size >= (1 + i) * sizeof(__le64))
			btrfs_dev_stat_set(device, i,
					   btrfs_dev_stats_value(eb, ptr, i));
		else
			btrfs_dev_stat_set(device, i, 0);
	}

	device->dev_stats_valid = 1;
	btrfs_dev_stat_print_on_load(device);
	btrfs_release_path(path);
7736 7737

	return 0;
7738 7739 7740 7741 7742
}

int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7743 7744
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
7745
	int ret = 0;
7746 7747

	path = btrfs_alloc_path();
A
Anand Jain 已提交
7748 7749
	if (!path)
		return -ENOMEM;
7750 7751

	mutex_lock(&fs_devices->device_list_mutex);
7752 7753 7754 7755 7756
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		ret = btrfs_device_init_dev_stats(device, path);
		if (ret)
			goto out;
	}
7757
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7758 7759 7760 7761 7762
		list_for_each_entry(device, &seed_devs->devices, dev_list) {
			ret = btrfs_device_init_dev_stats(device, path);
			if (ret)
				goto out;
		}
7763
	}
7764
out:
7765 7766 7767
	mutex_unlock(&fs_devices->device_list_mutex);

	btrfs_free_path(path);
7768
	return ret;
7769 7770 7771 7772 7773
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7774
	struct btrfs_fs_info *fs_info = trans->fs_info;
7775
	struct btrfs_root *dev_root = fs_info->dev_root;
7776 7777 7778 7779 7780 7781 7782
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7783 7784
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7785 7786 7787
	key.offset = device->devid;

	path = btrfs_alloc_path();
7788 7789
	if (!path)
		return -ENOMEM;
7790 7791
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7792
		btrfs_warn_in_rcu(fs_info,
7793
			"error %d while searching for dev_stats item for device %s",
7794
			      ret, rcu_str_deref(device->name));
7795 7796 7797 7798
		goto out;
	}

	if (ret == 0 &&
7799
	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7800 7801 7802
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7803
			btrfs_warn_in_rcu(fs_info,
7804
				"delete too small dev_stats item for device %s failed %d",
7805
				      rcu_str_deref(device->name), ret);
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7817
			btrfs_warn_in_rcu(fs_info,
7818 7819
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7839
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7840
{
7841
	struct btrfs_fs_info *fs_info = trans->fs_info;
7842 7843
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7844
	int stats_cnt;
7845 7846 7847 7848
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7849 7850
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7851 7852
			continue;

7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7867
		ret = update_dev_stat_item(trans, device);
7868
		if (!ret)
7869
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7870 7871 7872 7873 7874 7875
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7876 7877 7878 7879 7880 7881
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7882
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7883
{
7884 7885
	if (!dev->dev_stats_valid)
		return;
7886
	btrfs_err_rl_in_rcu(dev->fs_info,
7887
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7888
			   rcu_str_deref(dev->name),
7889 7890 7891
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7892 7893
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7894
}
7895

7896 7897
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7898 7899 7900 7901 7902 7903 7904 7905
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7906
	btrfs_info_in_rcu(dev->fs_info,
7907
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7908
	       rcu_str_deref(dev->name),
7909 7910 7911 7912 7913 7914 7915
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7916
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7917
			struct btrfs_ioctl_get_dev_stats *stats)
7918
{
7919
	BTRFS_DEV_LOOKUP_ARGS(args);
7920
	struct btrfs_device *dev;
7921
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7922 7923 7924
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7925 7926
	args.devid = stats->devid;
	dev = btrfs_find_device(fs_info->fs_devices, &args);
7927 7928 7929
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7930
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7931
		return -ENODEV;
7932
	} else if (!dev->dev_stats_valid) {
7933
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7934
		return -ENODEV;
7935
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7936 7937 7938 7939 7940
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
7941
				btrfs_dev_stat_set(dev, i, 0);
7942
		}
7943 7944
		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
			   current->comm, task_pid_nr(current));
7945 7946 7947 7948 7949 7950 7951 7952 7953
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7954

7955
/*
7956 7957 7958 7959 7960
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7961
 */
7962
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7963 7964 7965
{
	struct btrfs_device *curr, *next;

7966
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7967

7968
	if (list_empty(&trans->dev_update_list))
7969 7970
		return;

7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7982
	}
7983
	mutex_unlock(&trans->fs_info->chunk_mutex);
7984
}
7985

7986 7987 7988 7989 7990
/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7991 7992 7993
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7994
}
7995 7996 7997 7998 7999 8000 8001



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
8002
	struct btrfs_dev_lookup_args args = { .devid = devid };
8003
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8004 8005
	struct extent_map *em;
	struct map_lookup *map;
8006
	struct btrfs_device *dev;
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
8056

D
David Sterba 已提交
8057
	/* Make sure no dev extent is beyond device boundary */
8058
	dev = btrfs_find_device(fs_info->fs_devices, &args);
8059 8060 8061 8062 8063
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
8064

8065 8066 8067 8068 8069 8070 8071 8072
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086

	if (dev->zone_info) {
		u64 zone_size = dev->zone_info->zone_size;

		if (!IS_ALIGNED(physical_offset, zone_size) ||
		    !IS_ALIGNED(physical_len, zone_size)) {
			btrfs_err(fs_info,
"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
				  devid, physical_offset, physical_len);
			ret = -EUCLEAN;
			goto out;
		}
	}

8087 8088 8089 8090 8091 8092 8093
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
8094
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8095 8096 8097 8098 8099
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
8100
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
8129 8130
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
8131 8132
	int ret = 0;

8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
	/*
	 * We don't have a dev_root because we mounted with ignorebadroots and
	 * failed to load the root, so we want to skip the verification in this
	 * case for sure.
	 *
	 * However if the dev root is fine, but the tree itself is corrupted
	 * we'd still fail to mount.  This verification is only to make sure
	 * writes can happen safely, so instead just bypass this check
	 * completely in the case of IGNOREBADROOTS.
	 */
	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
		return 0;

8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8160
		ret = btrfs_next_leaf(root, path);
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

8188 8189 8190 8191 8192 8193 8194 8195 8196
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

8197 8198 8199 8200
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
8201 8202 8203
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}
8243 8244 8245

static int relocating_repair_kthread(void *data)
{
Y
Yu Zhe 已提交
8246
	struct btrfs_block_group *cache = data;
8247 8248 8249 8250 8251 8252 8253
	struct btrfs_fs_info *fs_info = cache->fs_info;
	u64 target;
	int ret = 0;

	target = cache->start;
	btrfs_put_block_group(cache);

8254
	sb_start_write(fs_info->sb);
8255 8256 8257 8258
	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
		btrfs_info(fs_info,
			   "zoned: skip relocating block group %llu to repair: EBUSY",
			   target);
8259
		sb_end_write(fs_info->sb);
8260 8261 8262
		return -EBUSY;
	}

8263
	mutex_lock(&fs_info->reclaim_bgs_lock);
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284

	/* Ensure block group still exists */
	cache = btrfs_lookup_block_group(fs_info, target);
	if (!cache)
		goto out;

	if (!cache->relocating_repair)
		goto out;

	ret = btrfs_may_alloc_data_chunk(fs_info, target);
	if (ret < 0)
		goto out;

	btrfs_info(fs_info,
		   "zoned: relocating block group %llu to repair IO failure",
		   target);
	ret = btrfs_relocate_chunk(fs_info, target);

out:
	if (cache)
		btrfs_put_block_group(cache);
8285
	mutex_unlock(&fs_info->reclaim_bgs_lock);
8286
	btrfs_exclop_finish(fs_info);
8287
	sb_end_write(fs_info->sb);
8288 8289 8290 8291

	return ret;
}

8292
bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8293 8294 8295
{
	struct btrfs_block_group *cache;

8296 8297 8298
	if (!btrfs_is_zoned(fs_info))
		return false;

8299 8300
	/* Do not attempt to repair in degraded state */
	if (btrfs_test_opt(fs_info, DEGRADED))
8301
		return true;
8302 8303 8304

	cache = btrfs_lookup_block_group(fs_info, logical);
	if (!cache)
8305
		return true;
8306 8307 8308 8309 8310

	spin_lock(&cache->lock);
	if (cache->relocating_repair) {
		spin_unlock(&cache->lock);
		btrfs_put_block_group(cache);
8311
		return true;
8312 8313 8314 8315 8316 8317 8318
	}
	cache->relocating_repair = 1;
	spin_unlock(&cache->lock);

	kthread_run(relocating_repair_kthread, cache,
		    "btrfs-relocating-repair");

8319
	return true;
8320
}