migrate.c 66.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/page_idle.h>
46
#include <linux/page_owner.h>
47
#include <linux/sched/mm.h>
48
#include <linux/ptrace.h>
49
#include <linux/oom.h>
50
#include <linux/memory.h>
51
#include <linux/random.h>
52
#include <linux/sched/sysctl.h>
C
Christoph Lameter 已提交
53

54 55
#include <asm/tlbflush.h>

56 57
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
58 59
#include "internal.h"

60
int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
W
Wei Yang 已提交
79
	 * so unconditionally grabbing the lock ruins page's owner side.
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
108
	SetPageIsolated(page);
109 110
	unlock_page(page);

111
	return 0;
112 113 114 115 116 117

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
118
	return -EBUSY;
119 120
}

121
static void putback_movable_page(struct page *page)
122 123 124 125 126
{
	struct address_space *mapping;

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
127
	ClearPageIsolated(page);
128 129
}

130 131 132 133
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
134 135 136
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
137 138 139 140 141 142
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
143
	list_for_each_entry_safe(page, page2, l, lru) {
144 145 146 147
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
148
		list_del(&page->lru);
149 150 151 152 153
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
154
		if (unlikely(__PageMovable(page))) {
155 156 157 158 159
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
160
				ClearPageIsolated(page);
161 162 163
			unlock_page(page);
			put_page(page);
		} else {
164
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165
					page_is_file_lru(page), -thp_nr_pages(page));
166
			putback_lru_page(page);
167
		}
C
Christoph Lameter 已提交
168 169 170
	}
}

171 172 173
/*
 * Restore a potential migration pte to a working pte entry
 */
174 175
static bool remove_migration_pte(struct folio *folio,
		struct vm_area_struct *vma, unsigned long addr, void *old)
176
{
177
	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178

179
	while (page_vma_mapped_walk(&pvmw)) {
180
		rmap_t rmap_flags = RMAP_NONE;
181 182 183 184 185 186 187 188 189
		pte_t pte;
		swp_entry_t entry;
		struct page *new;
		unsigned long idx = 0;

		/* pgoff is invalid for ksm pages, but they are never large */
		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
		new = folio_page(folio, idx);
190

191 192 193
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
194 195
			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
					!folio_test_pmd_mappable(folio), folio);
196 197 198 199 200
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

201
		folio_get(folio);
202 203 204
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
205

206 207 208 209
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
210
		if (is_writable_migration_entry(entry))
211
			pte = maybe_mkwrite(pte, vma);
212 213
		else if (pte_swp_uffd_wp(*pvmw.pte))
			pte = pte_mkuffd_wp(pte);
214

215 216 217
		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
			rmap_flags |= RMAP_EXCLUSIVE;

218
		if (unlikely(is_device_private_page(new))) {
219 220 221 222 223 224
			if (pte_write(pte))
				entry = make_writable_device_private_entry(
							page_to_pfn(new));
			else
				entry = make_readable_device_private_entry(
							page_to_pfn(new));
225
			pte = swp_entry_to_pte(entry);
226 227
			if (pte_swp_soft_dirty(*pvmw.pte))
				pte = pte_swp_mksoft_dirty(pte);
228 229
			if (pte_swp_uffd_wp(*pvmw.pte))
				pte = pte_swp_mkuffd_wp(pte);
230
		}
231

A
Andi Kleen 已提交
232
#ifdef CONFIG_HUGETLB_PAGE
233
		if (folio_test_hugetlb(folio)) {
234 235
			unsigned int shift = huge_page_shift(hstate_vma(vma));

236
			pte = pte_mkhuge(pte);
237
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238
			if (folio_test_anon(folio))
239
				hugepage_add_anon_rmap(new, vma, pvmw.address,
240
						       rmap_flags);
241
			else
242
				page_dup_file_rmap(new, true);
243
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244 245 246
		} else
#endif
		{
247
			if (folio_test_anon(folio))
248
				page_add_anon_rmap(new, vma, pvmw.address,
249
						   rmap_flags);
250
			else
251
				page_add_file_rmap(new, vma, false);
252
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253
		}
254
		if (vma->vm_flags & VM_LOCKED)
255
			mlock_page_drain_local();
256

257 258 259
		trace_remove_migration_pte(pvmw.address, pte_val(pte),
					   compound_order(new));

260 261 262
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
263

M
Minchan Kim 已提交
264
	return true;
265 266
}

267 268 269 270
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
271
void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
272
{
273 274
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
275
		.arg = src,
276 277
	};

278
	if (locked)
279
		rmap_walk_locked(dst, &rwc);
280
	else
281
		rmap_walk(dst, &rwc);
282 283
}

284 285 286 287 288
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
289
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290
				spinlock_t *ptl)
291
{
292
	pte_t pte;
293 294
	swp_entry_t entry;

295
	spin_lock(ptl);
296 297 298 299 300 301 302 303
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

304
	migration_entry_wait_on_locked(entry, ptep, ptl);
305 306 307 308 309
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

310 311 312 313 314 315 316 317
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

318 319
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
320
{
321
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
322 323 324
	__migration_entry_wait(mm, pte, ptl);
}

325 326 327 328 329 330 331 332
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
333
	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
334 335 336 337 338 339
	return;
unlock:
	spin_unlock(ptl);
}
#endif

340
static int expected_page_refs(struct address_space *mapping, struct page *page)
341 342 343
{
	int expected_count = 1;

344
	if (mapping)
345
		expected_count += compound_nr(page) + page_has_private(page);
346 347 348
	return expected_count;
}

C
Christoph Lameter 已提交
349
/*
350
 * Replace the page in the mapping.
351 352 353 354
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
355
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
356
 */
357 358
int folio_migrate_mapping(struct address_space *mapping,
		struct folio *newfolio, struct folio *folio, int extra_count)
C
Christoph Lameter 已提交
359
{
360
	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
361 362
	struct zone *oldzone, *newzone;
	int dirty;
363 364
	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
	long nr = folio_nr_pages(folio);
365

366
	if (!mapping) {
367
		/* Anonymous page without mapping */
368
		if (folio_ref_count(folio) != expected_count)
369
			return -EAGAIN;
370 371

		/* No turning back from here */
372 373 374 375
		newfolio->index = folio->index;
		newfolio->mapping = folio->mapping;
		if (folio_test_swapbacked(folio))
			__folio_set_swapbacked(newfolio);
376

377
		return MIGRATEPAGE_SUCCESS;
378 379
	}

380 381
	oldzone = folio_zone(folio);
	newzone = folio_zone(newfolio);
382

383
	xas_lock_irq(&xas);
384
	if (!folio_ref_freeze(folio, expected_count)) {
385
		xas_unlock_irq(&xas);
N
Nick Piggin 已提交
386 387 388
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
389
	/*
390
	 * Now we know that no one else is looking at the folio:
391
	 * no turning back from here.
C
Christoph Lameter 已提交
392
	 */
393 394 395 396 397 398 399 400
	newfolio->index = folio->index;
	newfolio->mapping = folio->mapping;
	folio_ref_add(newfolio, nr); /* add cache reference */
	if (folio_test_swapbacked(folio)) {
		__folio_set_swapbacked(newfolio);
		if (folio_test_swapcache(folio)) {
			folio_set_swapcache(newfolio);
			newfolio->private = folio_get_private(folio);
401 402
		}
	} else {
403
		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
C
Christoph Lameter 已提交
404 405
	}

406
	/* Move dirty while page refs frozen and newpage not yet exposed */
407
	dirty = folio_test_dirty(folio);
408
	if (dirty) {
409 410
		folio_clear_dirty(folio);
		folio_set_dirty(newfolio);
411 412
	}

413
	xas_store(&xas, newfolio);
414 415

	/*
416 417
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
418 419
	 * We know this isn't the last reference.
	 */
420
	folio_ref_unfreeze(folio, expected_count - nr);
421

422
	xas_unlock(&xas);
423 424
	/* Leave irq disabled to prevent preemption while updating stats */

425 426 427 428 429 430 431
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
432
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
433 434
	 * are mapped to swap space.
	 */
435
	if (newzone != oldzone) {
436 437 438
		struct lruvec *old_lruvec, *new_lruvec;
		struct mem_cgroup *memcg;

439
		memcg = folio_memcg(folio);
440 441 442
		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);

443 444
		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
445
		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
446 447
			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
448
		}
449
#ifdef CONFIG_SWAP
450
		if (folio_test_swapcache(folio)) {
451 452 453 454
			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
		}
#endif
455
		if (dirty && mapping_can_writeback(mapping)) {
456 457 458 459
			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
460
		}
461
	}
462
	local_irq_enable();
C
Christoph Lameter 已提交
463

464
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
465
}
466
EXPORT_SYMBOL(folio_migrate_mapping);
C
Christoph Lameter 已提交
467

N
Naoya Horiguchi 已提交
468 469
/*
 * The expected number of remaining references is the same as that
470
 * of folio_migrate_mapping().
N
Naoya Horiguchi 已提交
471 472 473 474
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
475
	XA_STATE(xas, &mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
476 477
	int expected_count;

478
	xas_lock_irq(&xas);
N
Naoya Horiguchi 已提交
479
	expected_count = 2 + page_has_private(page);
480
	if (!page_ref_freeze(page, expected_count)) {
481
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
482 483 484
		return -EAGAIN;
	}

485 486
	newpage->index = page->index;
	newpage->mapping = page->mapping;
487

N
Naoya Horiguchi 已提交
488 489
	get_page(newpage);

490
	xas_store(&xas, newpage);
N
Naoya Horiguchi 已提交
491

492
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
493

494
	xas_unlock_irq(&xas);
495

496
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
497 498
}

C
Christoph Lameter 已提交
499
/*
500
 * Copy the flags and some other ancillary information
C
Christoph Lameter 已提交
501
 */
502
void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
C
Christoph Lameter 已提交
503
{
504 505
	int cpupid;

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	if (folio_test_error(folio))
		folio_set_error(newfolio);
	if (folio_test_referenced(folio))
		folio_set_referenced(newfolio);
	if (folio_test_uptodate(folio))
		folio_mark_uptodate(newfolio);
	if (folio_test_clear_active(folio)) {
		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
		folio_set_active(newfolio);
	} else if (folio_test_clear_unevictable(folio))
		folio_set_unevictable(newfolio);
	if (folio_test_workingset(folio))
		folio_set_workingset(newfolio);
	if (folio_test_checked(folio))
		folio_set_checked(newfolio);
521 522 523 524 525 526
	/*
	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
	 * migration entries. We can still have PG_anon_exclusive set on an
	 * effectively unmapped and unreferenced first sub-pages of an
	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
	 */
527 528
	if (folio_test_mappedtodisk(folio))
		folio_set_mappedtodisk(newfolio);
C
Christoph Lameter 已提交
529

530
	/* Move dirty on pages not done by folio_migrate_mapping() */
531 532
	if (folio_test_dirty(folio))
		folio_set_dirty(newfolio);
C
Christoph Lameter 已提交
533

534 535 536 537
	if (folio_test_young(folio))
		folio_set_young(newfolio);
	if (folio_test_idle(folio))
		folio_set_idle(newfolio);
538

539 540 541 542
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
543 544
	cpupid = page_cpupid_xchg_last(&folio->page, -1);
	page_cpupid_xchg_last(&newfolio->page, cpupid);
545

546
	folio_migrate_ksm(newfolio, folio);
547 548 549 550
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
551 552 553
	if (folio_test_swapcache(folio))
		folio_clear_swapcache(folio);
	folio_clear_private(folio);
554 555

	/* page->private contains hugetlb specific flags */
556 557
	if (!folio_test_hugetlb(folio))
		folio->private = NULL;
C
Christoph Lameter 已提交
558 559 560 561 562

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
563 564
	if (folio_test_writeback(newfolio))
		folio_end_writeback(newfolio);
565

566 567 568 569 570
	/*
	 * PG_readahead shares the same bit with PG_reclaim.  The above
	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
	 * bit after that.
	 */
571 572
	if (folio_test_readahead(folio))
		folio_set_readahead(newfolio);
573

574
	folio_copy_owner(newfolio, folio);
575

576
	if (!folio_test_hugetlb(folio))
577
		mem_cgroup_migrate(folio, newfolio);
C
Christoph Lameter 已提交
578
}
579
EXPORT_SYMBOL(folio_migrate_flags);
580

581
void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
582
{
583 584
	folio_copy(newfolio, folio);
	folio_migrate_flags(newfolio, folio);
585
}
586
EXPORT_SYMBOL(folio_migrate_copy);
C
Christoph Lameter 已提交
587

588 589 590 591
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
592
/*
593
 * Common logic to directly migrate a single LRU page suitable for
594
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
595 596 597
 *
 * Pages are locked upon entry and exit.
 */
598
int migrate_page(struct address_space *mapping,
599 600
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
601
{
602 603
	struct folio *newfolio = page_folio(newpage);
	struct folio *folio = page_folio(page);
C
Christoph Lameter 已提交
604 605
	int rc;

606
	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
C
Christoph Lameter 已提交
607

608
	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
C
Christoph Lameter 已提交
609

610
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
611 612
		return rc;

613
	if (mode != MIGRATE_SYNC_NO_COPY)
614
		folio_migrate_copy(newfolio, folio);
615
	else
616
		folio_migrate_flags(newfolio, folio);
617
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
618 619 620
}
EXPORT_SYMBOL(migrate_page);

621
#ifdef CONFIG_BLOCK
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
	if (mode != MIGRATE_ASYNC) {
		do {
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}

660 661 662
static int __buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode,
		bool check_refs)
663 664 665
{
	struct buffer_head *bh, *head;
	int rc;
666
	int expected_count;
667 668

	if (!page_has_buffers(page))
669
		return migrate_page(mapping, newpage, page, mode);
670

671
	/* Check whether page does not have extra refs before we do more work */
672
	expected_count = expected_page_refs(mapping, page);
673 674
	if (page_count(page) != expected_count)
		return -EAGAIN;
675

676 677 678
	head = page_buffers(page);
	if (!buffer_migrate_lock_buffers(head, mode))
		return -EAGAIN;
679

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	if (check_refs) {
		bool busy;
		bool invalidated = false;

recheck_buffers:
		busy = false;
		spin_lock(&mapping->private_lock);
		bh = head;
		do {
			if (atomic_read(&bh->b_count)) {
				busy = true;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		if (busy) {
			if (invalidated) {
				rc = -EAGAIN;
				goto unlock_buffers;
			}
700
			spin_unlock(&mapping->private_lock);
701 702 703 704 705 706
			invalidate_bh_lrus();
			invalidated = true;
			goto recheck_buffers;
		}
	}

707
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
708
	if (rc != MIGRATEPAGE_SUCCESS)
709
		goto unlock_buffers;
710

711
	attach_page_private(newpage, detach_page_private(page));
712 713 714 715 716 717 718 719

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

720 721 722 723
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
724

725 726
	rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
727 728
	if (check_refs)
		spin_unlock(&mapping->private_lock);
729 730 731 732 733 734 735
	bh = head;
	do {
		unlock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

736
	return rc;
737
}
738 739 740 741 742 743 744 745 746 747 748

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist. For example attached buffer heads are accessed only under page lock.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
749
EXPORT_SYMBOL(buffer_migrate_page);
750 751 752 753 754 755 756 757 758 759 760 761

/*
 * Same as above except that this variant is more careful and checks that there
 * are also no buffer head references. This function is the right one for
 * mappings where buffer heads are directly looked up and referenced (such as
 * block device mappings).
 */
int buffer_migrate_page_norefs(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
762
#endif
763

764 765 766 767
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
768
{
769
	struct folio *folio = page_folio(page);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

787
	/*
788 789 790 791 792 793
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
794
	 */
795
	remove_migration_ptes(folio, folio, false);
796

797
	rc = mapping->a_ops->writepage(page, &wbc);
798

799 800 801 802
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
803
	return (rc < 0) ? -EIO : -EAGAIN;
804 805 806 807 808 809
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
810
	struct page *newpage, struct page *page, enum migrate_mode mode)
811
{
812
	if (PageDirty(page)) {
813
		/* Only writeback pages in full synchronous migration */
814 815 816 817 818
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
819
			return -EBUSY;
820
		}
821
		return writeout(mapping, page);
822
	}
823 824 825 826 827

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
828
	if (page_has_private(page) &&
829
	    !try_to_release_page(page, GFP_KERNEL))
830
		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
831

832
	return migrate_page(mapping, newpage, page, mode);
833 834
}

835 836 837 838 839 840
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
841 842 843
 *
 * Return value:
 *   < 0 - error code
844
 *  MIGRATEPAGE_SUCCESS - success
845
 */
846
static int move_to_new_page(struct page *newpage, struct page *page,
847
				enum migrate_mode mode)
848 849
{
	struct address_space *mapping;
850 851
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
852

853 854
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
855 856

	mapping = page_mapping(page);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
875
		/*
876 877
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
878
		 */
879 880 881
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
882
			ClearPageIsolated(page);
883 884 885 886 887 888 889 890
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
891

892 893 894 895 896
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
897 898 899 900 901 902 903
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
904
			ClearPageIsolated(page);
905 906 907
		}

		/*
908
		 * Anonymous and movable page->mapping will be cleared by
909 910 911 912
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
913
			page->mapping = NULL;
914

915 916
		if (likely(!is_zone_device_page(newpage)))
			flush_dcache_folio(page_folio(newpage));
917
	}
918
out:
919 920 921
	return rc;
}

922
static int __unmap_and_move(struct page *page, struct page *newpage,
923
				int force, enum migrate_mode mode)
924
{
925
	struct folio *folio = page_folio(page);
926
	struct folio *dst = page_folio(newpage);
927
	int rc = -EAGAIN;
928
	bool page_was_mapped = false;
929
	struct anon_vma *anon_vma = NULL;
930
	bool is_lru = !__PageMovable(page);
931

N
Nick Piggin 已提交
932
	if (!trylock_page(page)) {
933
		if (!force || mode == MIGRATE_ASYNC)
934
			goto out;
935 936 937 938 939 940 941

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
942
		 * mpage_readahead). If an allocation happens for the
943 944 945 946 947 948 949
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
950
			goto out;
951

952 953 954 955
		lock_page(page);
	}

	if (PageWriteback(page)) {
956
		/*
957
		 * Only in the case of a full synchronous migration is it
958 959 960
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
961
		 */
962 963 964 965 966
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
967
			rc = -EBUSY;
968
			goto out_unlock;
969 970
		}
		if (!force)
971
			goto out_unlock;
972 973
		wait_on_page_writeback(page);
	}
974

975
	/*
976
	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
977
	 * we cannot notice that anon_vma is freed while we migrates a page.
978
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
979
	 * of migration. File cache pages are no problem because of page_lock()
980 981
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
982 983 984 985 986 987
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
988
	 */
989
	if (PageAnon(page) && !PageKsm(page))
990
		anon_vma = page_get_anon_vma(page);
991

992 993 994 995 996 997 998 999 1000 1001 1002
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1003 1004 1005 1006 1007
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1008
	/*
1009 1010 1011 1012 1013
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
1014
	 * 2. An orphaned page (see truncate_cleanup_page) might have
1015 1016 1017 1018
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1019
	 */
1020
	if (!page->mapping) {
1021
		VM_BUG_ON_PAGE(PageAnon(page), page);
1022
		if (page_has_private(page)) {
1023
			try_to_free_buffers(page);
1024
			goto out_unlock_both;
1025
		}
1026 1027
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1028 1029
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1030
		try_to_migrate(folio, 0);
1031
		page_was_mapped = true;
1032
	}
1033

1034
	if (!page_mapped(page))
1035
		rc = move_to_new_page(newpage, page, mode);
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * When successful, push newpage to LRU immediately: so that if it
	 * turns out to be an mlocked page, remove_migration_ptes() will
	 * automatically build up the correct newpage->mlock_count for it.
	 *
	 * We would like to do something similar for the old page, when
	 * unsuccessful, and other cases when a page has been temporarily
	 * isolated from the unevictable LRU: but this case is the easiest.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		lru_cache_add(newpage);
		if (page_was_mapped)
			lru_add_drain();
	}

1052
	if (page_was_mapped)
1053 1054
		remove_migration_ptes(folio,
			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1055

1056 1057 1058
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1059
	/* Drop an anon_vma reference if we took one */
1060
	if (anon_vma)
1061
		put_anon_vma(anon_vma);
1062
	unlock_page(page);
1063
out:
1064
	/*
1065
	 * If migration is successful, decrease refcount of the newpage,
1066
	 * which will not free the page because new page owner increased
1067
	 * refcounter.
1068
	 */
1069 1070
	if (rc == MIGRATEPAGE_SUCCESS)
		put_page(newpage);
1071

1072 1073
	return rc;
}
1074

1075 1076 1077 1078
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1079
static int unmap_and_move(new_page_t get_new_page,
1080 1081
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1082
				   int force, enum migrate_mode mode,
1083 1084
				   enum migrate_reason reason,
				   struct list_head *ret)
1085
{
1086
	int rc = MIGRATEPAGE_SUCCESS;
1087
	struct page *newpage = NULL;
1088

M
Michal Hocko 已提交
1089
	if (!thp_migration_supported() && PageTransHuge(page))
1090
		return -ENOSYS;
M
Michal Hocko 已提交
1091

1092 1093
	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1094 1095
		ClearPageActive(page);
		ClearPageUnevictable(page);
1096 1097 1098
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
1099
				ClearPageIsolated(page);
1100 1101
			unlock_page(page);
		}
1102 1103 1104
		goto out;
	}

1105 1106 1107 1108
	newpage = get_new_page(page, private);
	if (!newpage)
		return -ENOMEM;

1109
	rc = __unmap_and_move(page, newpage, force, mode);
1110
	if (rc == MIGRATEPAGE_SUCCESS)
1111
		set_page_owner_migrate_reason(newpage, reason);
1112

1113
out:
1114
	if (rc != -EAGAIN) {
1115 1116 1117
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
1118
		 * migrated will have kept its references and be restored.
1119 1120
		 */
		list_del(&page->lru);
1121
	}
1122

1123 1124 1125 1126 1127 1128
	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1129 1130 1131 1132 1133 1134
		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1135
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1136
					page_is_file_lru(page), -thp_nr_pages(page));
1137

1138
		if (reason != MR_MEMORY_FAILURE)
1139
			/*
1140
			 * We release the page in page_handle_poison.
1141
			 */
1142
			put_page(page);
1143
	} else {
1144 1145
		if (rc != -EAGAIN)
			list_add_tail(&page->lru, ret);
1146

1147 1148 1149 1150
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1151
	}
1152

1153 1154 1155
	return rc;
}

N
Naoya Horiguchi 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1175 1176
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1177 1178
				enum migrate_mode mode, int reason,
				struct list_head *ret)
N
Naoya Horiguchi 已提交
1179
{
1180
	struct folio *dst, *src = page_folio(hpage);
1181
	int rc = -EAGAIN;
1182
	int page_was_mapped = 0;
1183
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1184
	struct anon_vma *anon_vma = NULL;
1185
	struct address_space *mapping = NULL;
N
Naoya Horiguchi 已提交
1186

1187
	/*
1188
	 * Migratability of hugepages depends on architectures and their size.
1189 1190 1191 1192 1193
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1194
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1195
		list_move_tail(&hpage->lru, ret);
1196
		return -ENOSYS;
1197
	}
1198

1199 1200 1201 1202 1203 1204
	if (page_count(hpage) == 1) {
		/* page was freed from under us. So we are done. */
		putback_active_hugepage(hpage);
		return MIGRATEPAGE_SUCCESS;
	}

1205
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1206 1207
	if (!new_hpage)
		return -ENOMEM;
1208
	dst = page_folio(new_hpage);
N
Naoya Horiguchi 已提交
1209 1210

	if (!trylock_page(hpage)) {
1211
		if (!force)
N
Naoya Horiguchi 已提交
1212
			goto out;
1213 1214 1215 1216 1217 1218 1219
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1220 1221 1222
		lock_page(hpage);
	}

1223 1224 1225 1226 1227
	/*
	 * Check for pages which are in the process of being freed.  Without
	 * page_mapping() set, hugetlbfs specific move page routine will not
	 * be called and we could leak usage counts for subpools.
	 */
1228
	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1229 1230 1231 1232
		rc = -EBUSY;
		goto out_unlock;
	}

1233 1234
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1235

1236 1237 1238
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1239
	if (page_mapped(hpage)) {
1240
		enum ttu_flags ttu = 0;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

		if (!PageAnon(hpage)) {
			/*
			 * In shared mappings, try_to_unmap could potentially
			 * call huge_pmd_unshare.  Because of this, take
			 * semaphore in write mode here and set TTU_RMAP_LOCKED
			 * to let lower levels know we have taken the lock.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (unlikely(!mapping))
				goto unlock_put_anon;

1253
			ttu = TTU_RMAP_LOCKED;
1254
		}
1255

1256
		try_to_migrate(src, ttu);
1257
		page_was_mapped = 1;
1258

1259
		if (ttu & TTU_RMAP_LOCKED)
1260
			i_mmap_unlock_write(mapping);
1261
	}
N
Naoya Horiguchi 已提交
1262 1263

	if (!page_mapped(hpage))
1264
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1265

1266
	if (page_was_mapped)
1267 1268
		remove_migration_ptes(src,
			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
N
Naoya Horiguchi 已提交
1269

1270
unlock_put_anon:
1271 1272 1273
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1274
	if (anon_vma)
1275
		put_anon_vma(anon_vma);
1276

1277
	if (rc == MIGRATEPAGE_SUCCESS) {
1278
		move_hugetlb_state(hpage, new_hpage, reason);
1279 1280
		put_new_page = NULL;
	}
1281

1282
out_unlock:
N
Naoya Horiguchi 已提交
1283
	unlock_page(hpage);
1284
out:
1285
	if (rc == MIGRATEPAGE_SUCCESS)
1286
		putback_active_hugepage(hpage);
1287
	else if (rc != -EAGAIN)
1288
		list_move_tail(&hpage->lru, ret);
1289 1290 1291 1292 1293 1294

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1295
	if (put_new_page)
1296 1297
		put_new_page(new_hpage, private);
	else
1298
		putback_active_hugepage(new_hpage);
1299

N
Naoya Horiguchi 已提交
1300 1301 1302
	return rc;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static inline int try_split_thp(struct page *page, struct page **page2,
				struct list_head *from)
{
	int rc = 0;

	lock_page(page);
	rc = split_huge_page_to_list(page, from);
	unlock_page(page);
	if (!rc)
		list_safe_reset_next(page, *page2, lru);

	return rc;
}

C
Christoph Lameter 已提交
1317
/*
1318 1319
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1320
 *
1321 1322 1323
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1324 1325
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1326 1327 1328 1329
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
1330
 * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1331
 *			the caller passes a non-NULL pointer.
C
Christoph Lameter 已提交
1332
 *
1333 1334
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1335 1336
 * It is caller's responsibility to call putback_movable_pages() to return pages
 * to the LRU or free list only if ret != 0.
C
Christoph Lameter 已提交
1337
 *
1338 1339 1340
 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
 * an error code. The number of THP splits will be considered as the number of
 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
C
Christoph Lameter 已提交
1341
 */
1342
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1343
		free_page_t put_new_page, unsigned long private,
1344
		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
C
Christoph Lameter 已提交
1345
{
1346
	int retry = 1;
1347
	int thp_retry = 1;
C
Christoph Lameter 已提交
1348
	int nr_failed = 0;
1349
	int nr_failed_pages = 0;
1350
	int nr_succeeded = 0;
1351 1352 1353
	int nr_thp_succeeded = 0;
	int nr_thp_failed = 0;
	int nr_thp_split = 0;
C
Christoph Lameter 已提交
1354
	int pass = 0;
1355
	bool is_thp = false;
C
Christoph Lameter 已提交
1356 1357
	struct page *page;
	struct page *page2;
1358
	int rc, nr_subpages;
1359
	LIST_HEAD(ret_pages);
1360
	LIST_HEAD(thp_split_pages);
1361
	bool nosplit = (reason == MR_NUMA_MISPLACED);
1362
	bool no_subpage_counting = false;
C
Christoph Lameter 已提交
1363

1364 1365
	trace_mm_migrate_pages_start(mode, reason);

1366
thp_subpage_migration:
1367
	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1368
		retry = 0;
1369
		thp_retry = 0;
C
Christoph Lameter 已提交
1370

1371
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1372
retry:
1373 1374 1375 1376 1377
			/*
			 * THP statistics is based on the source huge page.
			 * Capture required information that might get lost
			 * during migration.
			 */
Z
Zi Yan 已提交
1378
			is_thp = PageTransHuge(page) && !PageHuge(page);
1379
			nr_subpages = compound_nr(page);
1380
			cond_resched();
1381

1382 1383
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1384
						put_new_page, private, page,
1385 1386
						pass > 2, mode, reason,
						&ret_pages);
1387
			else
1388
				rc = unmap_and_move(get_new_page, put_new_page,
1389
						private, page, pass > 2, mode,
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
						reason, &ret_pages);
			/*
			 * The rules are:
			 *	Success: non hugetlb page will be freed, hugetlb
			 *		 page will be put back
			 *	-EAGAIN: stay on the from list
			 *	-ENOMEM: stay on the from list
			 *	Other errno: put on ret_pages list then splice to
			 *		     from list
			 */
1400
			switch(rc) {
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
			/*
			 * THP migration might be unsupported or the
			 * allocation could've failed so we should
			 * retry on the same page with the THP split
			 * to base pages.
			 *
			 * Head page is retried immediately and tail
			 * pages are added to the tail of the list so
			 * we encounter them after the rest of the list
			 * is processed.
			 */
			case -ENOSYS:
				/* THP migration is unsupported */
				if (is_thp) {
1415 1416
					nr_thp_failed++;
					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1417 1418 1419 1420
						nr_thp_split++;
						goto retry;
					}
				/* Hugetlb migration is unsupported */
1421
				} else if (!no_subpage_counting) {
1422
					nr_failed++;
1423 1424
				}

1425
				nr_failed_pages += nr_subpages;
1426
				break;
1427
			case -ENOMEM:
M
Michal Hocko 已提交
1428
				/*
1429 1430
				 * When memory is low, don't bother to try to migrate
				 * other pages, just exit.
1431
				 * THP NUMA faulting doesn't split THP to retry.
M
Michal Hocko 已提交
1432
				 */
1433
				if (is_thp && !nosplit) {
1434 1435
					nr_thp_failed++;
					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1436
						nr_thp_split++;
M
Michal Hocko 已提交
1437 1438
						goto retry;
					}
1439 1440
				} else if (!no_subpage_counting) {
					nr_failed++;
1441
				}
1442

1443
				nr_failed_pages += nr_subpages;
1444 1445 1446 1447 1448 1449 1450 1451
				/*
				 * There might be some subpages of fail-to-migrate THPs
				 * left in thp_split_pages list. Move them back to migration
				 * list so that they could be put back to the right list by
				 * the caller otherwise the page refcnt will be leaked.
				 */
				list_splice_init(&thp_split_pages, from);
				nr_thp_failed += thp_retry;
1452
				goto out;
1453
			case -EAGAIN:
1454
				if (is_thp)
1455
					thp_retry++;
1456 1457
				else
					retry++;
1458
				break;
1459
			case MIGRATEPAGE_SUCCESS:
1460
				nr_succeeded += nr_subpages;
1461
				if (is_thp)
1462
					nr_thp_succeeded++;
1463 1464
				break;
			default:
1465
				/*
1466
				 * Permanent failure (-EBUSY, etc.):
1467 1468 1469 1470
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1471
				if (is_thp)
1472
					nr_thp_failed++;
1473
				else if (!no_subpage_counting)
1474
					nr_failed++;
1475

1476
				nr_failed_pages += nr_subpages;
1477
				break;
1478
			}
C
Christoph Lameter 已提交
1479 1480
		}
	}
1481
	nr_failed += retry;
1482
	nr_thp_failed += thp_retry;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
	 * counting in this round, since all subpages of a THP is counted
	 * as 1 failure in the first round.
	 */
	if (!list_empty(&thp_split_pages)) {
		/*
		 * Move non-migrated pages (after 10 retries) to ret_pages
		 * to avoid migrating them again.
		 */
		list_splice_init(from, &ret_pages);
		list_splice_init(&thp_split_pages, from);
		no_subpage_counting = true;
		retry = 1;
		goto thp_subpage_migration;
	}

	rc = nr_failed + nr_thp_failed;
1501
out:
1502 1503 1504 1505 1506 1507
	/*
	 * Put the permanent failure page back to migration list, they
	 * will be put back to the right list by the caller.
	 */
	list_splice(&ret_pages, from);

1508
	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1509
	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1510 1511 1512
	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1513
	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1514
			       nr_thp_failed, nr_thp_split, mode, reason);
1515

1516 1517 1518
	if (ret_succeeded)
		*ret_succeeded = nr_succeeded;

1519
	return rc;
C
Christoph Lameter 已提交
1520
}
1521

1522
struct page *alloc_migration_target(struct page *page, unsigned long private)
1523
{
1524
	struct folio *folio = page_folio(page);
1525 1526
	struct migration_target_control *mtc;
	gfp_t gfp_mask;
1527
	unsigned int order = 0;
1528
	struct folio *new_folio = NULL;
1529 1530 1531 1532 1533 1534 1535
	int nid;
	int zidx;

	mtc = (struct migration_target_control *)private;
	gfp_mask = mtc->gfp_mask;
	nid = mtc->nid;
	if (nid == NUMA_NO_NODE)
1536
		nid = folio_nid(folio);
1537

1538 1539
	if (folio_test_hugetlb(folio)) {
		struct hstate *h = page_hstate(&folio->page);
1540

1541 1542
		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1543
	}
1544

1545
	if (folio_test_large(folio)) {
1546 1547 1548 1549 1550
		/*
		 * clear __GFP_RECLAIM to make the migration callback
		 * consistent with regular THP allocations.
		 */
		gfp_mask &= ~__GFP_RECLAIM;
1551
		gfp_mask |= GFP_TRANSHUGE;
1552
		order = folio_order(folio);
1553
	}
1554
	zidx = zone_idx(folio_zone(folio));
1555
	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1556 1557
		gfp_mask |= __GFP_HIGHMEM;

1558
	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1559

1560
	return &new_folio->page;
1561 1562
}

1563 1564
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1565
static int store_status(int __user *status, int start, int value, int nr)
1566
{
M
Michal Hocko 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;
1580 1581 1582 1583
	struct migration_target_control mtc = {
		.nid = node,
		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
	};
M
Michal Hocko 已提交
1584

1585
	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1586
		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
M
Michal Hocko 已提交
1587 1588 1589
	if (err)
		putback_movable_pages(pagelist);
	return err;
1590 1591 1592
}

/*
M
Michal Hocko 已提交
1593 1594
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
1595 1596 1597 1598 1599
 * Returns:
 *     errno - if the page cannot be found/isolated
 *     0 - when it doesn't have to be migrated because it is already on the
 *         target node
 *     1 - when it has been queued
1600
 */
M
Michal Hocko 已提交
1601 1602
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1603
{
M
Michal Hocko 已提交
1604 1605
	struct vm_area_struct *vma;
	struct page *page;
1606 1607
	int err;

1608
	mmap_read_lock(mm);
M
Michal Hocko 已提交
1609
	err = -EFAULT;
1610 1611
	vma = vma_lookup(mm, addr);
	if (!vma || !vma_migratable(vma))
M
Michal Hocko 已提交
1612
		goto out;
1613

M
Michal Hocko 已提交
1614
	/* FOLL_DUMP to ignore special (like zero) pages */
1615
	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1616

M
Michal Hocko 已提交
1617 1618 1619
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1620

M
Michal Hocko 已提交
1621 1622 1623
	err = -ENOENT;
	if (!page)
		goto out;
1624

M
Michal Hocko 已提交
1625 1626 1627
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1628

M
Michal Hocko 已提交
1629 1630 1631
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1632

M
Michal Hocko 已提交
1633 1634 1635
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
1636
			err = 1;
1637
		}
M
Michal Hocko 已提交
1638 1639
	} else {
		struct page *head;
1640

1641 1642
		head = compound_head(page);
		err = isolate_lru_page(head);
1643
		if (err)
M
Michal Hocko 已提交
1644
			goto out_putpage;
1645

1646
		err = 1;
M
Michal Hocko 已提交
1647 1648
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
H
Huang Ying 已提交
1649
			NR_ISOLATED_ANON + page_is_file_lru(head),
1650
			thp_nr_pages(head));
M
Michal Hocko 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1660
	mmap_read_unlock(mm);
1661 1662 1663
	return err;
}

1664 1665 1666 1667 1668 1669
static int move_pages_and_store_status(struct mm_struct *mm, int node,
		struct list_head *pagelist, int __user *status,
		int start, int i, unsigned long nr_pages)
{
	int err;

1670 1671 1672
	if (list_empty(pagelist))
		return 0;

1673 1674 1675 1676 1677 1678
	err = do_move_pages_to_node(mm, pagelist, node);
	if (err) {
		/*
		 * Positive err means the number of failed
		 * pages to migrate.  Since we are going to
		 * abort and return the number of non-migrated
L
Long Li 已提交
1679
		 * pages, so need to include the rest of the
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		 * nr_pages that have not been attempted as
		 * well.
		 */
		if (err > 0)
			err += nr_pages - i - 1;
		return err;
	}
	return store_status(status, start, node, i - start);
}

1690 1691 1692 1693
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1694
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1695 1696 1697 1698 1699
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1700 1701 1702 1703
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1704

1705
	lru_cache_disable();
1706

M
Michal Hocko 已提交
1707 1708 1709 1710
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1711

M
Michal Hocko 已提交
1712 1713 1714 1715 1716
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
1717
		addr = (unsigned long)untagged_addr(p);
M
Michal Hocko 已提交
1718 1719 1720 1721 1722 1723

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1724

M
Michal Hocko 已提交
1725 1726 1727 1728 1729 1730 1731 1732
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
1733 1734
			err = move_pages_and_store_status(mm, current_node,
					&pagelist, status, start, i, nr_pages);
M
Michal Hocko 已提交
1735 1736 1737 1738
			if (err)
				goto out;
			start = i;
			current_node = node;
1739 1740
		}

M
Michal Hocko 已提交
1741 1742 1743 1744 1745 1746
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
1747

1748
		if (err > 0) {
1749 1750 1751
			/* The page is successfully queued for migration */
			continue;
		}
1752

1753 1754 1755 1756 1757 1758 1759
		/*
		 * The move_pages() man page does not have an -EEXIST choice, so
		 * use -EFAULT instead.
		 */
		if (err == -EEXIST)
			err = -EFAULT;

1760 1761 1762 1763 1764
		/*
		 * If the page is already on the target node (!err), store the
		 * node, otherwise, store the err.
		 */
		err = store_status(status, i, err ? : current_node, 1);
M
Michal Hocko 已提交
1765 1766
		if (err)
			goto out_flush;
1767

1768 1769
		err = move_pages_and_store_status(mm, current_node, &pagelist,
				status, start, i, nr_pages);
1770 1771
		if (err)
			goto out;
M
Michal Hocko 已提交
1772
		current_node = NUMA_NO_NODE;
1773
	}
M
Michal Hocko 已提交
1774 1775
out_flush:
	/* Make sure we do not overwrite the existing error */
1776 1777
	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
				status, start, i, nr_pages);
1778
	if (err >= 0)
M
Michal Hocko 已提交
1779
		err = err1;
1780
out:
1781
	lru_cache_enable();
1782 1783 1784
	return err;
}

1785
/*
1786
 * Determine the nodes of an array of pages and store it in an array of status.
1787
 */
1788 1789
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1790
{
1791 1792
	unsigned long i;

1793
	mmap_read_lock(mm);
1794

1795
	for (i = 0; i < nr_pages; i++) {
1796
		unsigned long addr = (unsigned long)(*pages);
1797 1798
		struct vm_area_struct *vma;
		struct page *page;
1799
		int err = -EFAULT;
1800

1801 1802
		vma = vma_lookup(mm, addr);
		if (!vma)
1803 1804
			goto set_status;

1805
		/* FOLL_DUMP to ignore special (like zero) pages */
1806
		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1807 1808 1809 1810 1811

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1812 1813 1814 1815 1816 1817
		if (page) {
			err = page_to_nid(page);
			put_page(page);
		} else {
			err = -ENOENT;
		}
1818
set_status:
1819 1820 1821 1822 1823 1824
		*status = err;

		pages++;
		status++;
	}

1825
	mmap_read_unlock(mm);
1826 1827
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static int get_compat_pages_array(const void __user *chunk_pages[],
				  const void __user * __user *pages,
				  unsigned long chunk_nr)
{
	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
	compat_uptr_t p;
	int i;

	for (i = 0; i < chunk_nr; i++) {
		if (get_user(p, pages32 + i))
			return -EFAULT;
		chunk_pages[i] = compat_ptr(p);
	}

	return 0;
}

1845 1846 1847 1848 1849 1850 1851 1852
/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
1853
#define DO_PAGES_STAT_CHUNK_NR 16UL
1854 1855 1856
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1857
	while (nr_pages) {
1858
		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868
		if (in_compat_syscall()) {
			if (get_compat_pages_array(chunk_pages, pages,
						   chunk_nr))
				break;
		} else {
			if (copy_from_user(chunk_pages, pages,
				      chunk_nr * sizeof(*chunk_pages)))
				break;
		}
1869 1870 1871

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1872 1873
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1874

1875 1876 1877 1878 1879
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1880 1881
}

1882
static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1883 1884 1885 1886
{
	struct task_struct *task;
	struct mm_struct *mm;

1887 1888 1889 1890 1891 1892 1893 1894 1895
	/*
	 * There is no need to check if current process has the right to modify
	 * the specified process when they are same.
	 */
	if (!pid) {
		mmget(current->mm);
		*mem_nodes = cpuset_mems_allowed(current);
		return current->mm;
	}
1896 1897

	/* Find the mm_struct */
1898
	rcu_read_lock();
1899
	task = find_task_by_vpid(pid);
1900
	if (!task) {
1901
		rcu_read_unlock();
1902
		return ERR_PTR(-ESRCH);
1903
	}
1904
	get_task_struct(task);
1905 1906 1907

	/*
	 * Check if this process has the right to modify the specified
1908
	 * process. Use the regular "ptrace_may_access()" checks.
1909
	 */
1910
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1911
		rcu_read_unlock();
1912
		mm = ERR_PTR(-EPERM);
1913
		goto out;
1914
	}
1915
	rcu_read_unlock();
1916

1917 1918
	mm = ERR_PTR(security_task_movememory(task));
	if (IS_ERR(mm))
1919
		goto out;
1920
	*mem_nodes = cpuset_mems_allowed(task);
1921
	mm = get_task_mm(task);
1922
out:
1923
	put_task_struct(task);
1924
	if (!mm)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		mm = ERR_PTR(-EINVAL);
	return mm;
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
{
	struct mm_struct *mm;
	int err;
	nodemask_t task_nodes;

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1944 1945
		return -EINVAL;

1946 1947 1948 1949 1950 1951 1952
	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	mm = find_mm_struct(pid, &task_nodes);
	if (IS_ERR(mm))
		return PTR_ERR(mm);

1953 1954 1955 1956 1957
	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1958 1959 1960 1961 1962

	mmput(mm);
	return err;
}

1963 1964 1965 1966 1967 1968 1969 1970
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

1971 1972 1973
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
1974
 * pages. Currently it only checks the watermarks which is crude.
1975 1976
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1977
				   unsigned long nr_migrate_pages)
1978 1979
{
	int z;
M
Mel Gorman 已提交
1980

1981 1982 1983
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

1984
		if (!managed_zone(zone))
1985 1986 1987 1988 1989 1990
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
1991
				       ZONE_MOVABLE, 0))
1992 1993 1994 1995 1996 1997 1998
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1999
					   unsigned long data)
2000 2001
{
	int nid = (int) data;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	int order = compound_order(page);
	gfp_t gfp = __GFP_THISNODE;
	struct folio *new;

	if (order > 0)
		gfp |= GFP_TRANSHUGE_LIGHT;
	else {
		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
			__GFP_NOWARN;
		gfp &= ~__GFP_RECLAIM;
	}
	new = __folio_alloc_node(gfp, order, nid);
Y
Yang Shi 已提交
2014

2015
	return &new->page;
Y
Yang Shi 已提交
2016 2017
}

2018
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2019
{
2020
	int nr_pages = thp_nr_pages(page);
2021
	int order = compound_order(page);
2022

2023
	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2024

2025 2026 2027 2028
	/* Do not migrate THP mapped by multiple processes */
	if (PageTransHuge(page) && total_mapcount(page) > 1)
		return 0;

2029
	/* Avoid migrating to a node that is nearly full */
2030 2031 2032 2033 2034 2035
	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
		int z;

		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
			return 0;
		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2036
			if (managed_zone(pgdat->node_zones + z))
2037 2038 2039
				break;
		}
		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2040
		return 0;
2041
	}
2042

2043 2044
	if (isolate_lru_page(page))
		return 0;
2045

2046
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2047
			    nr_pages);
2048

2049
	/*
2050 2051 2052
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
2053 2054
	 */
	put_page(page);
2055
	return 1;
2056 2057 2058 2059 2060 2061 2062
}

/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
2063 2064
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
2065 2066
{
	pg_data_t *pgdat = NODE_DATA(node);
2067
	int isolated;
2068
	int nr_remaining;
2069
	unsigned int nr_succeeded;
2070
	LIST_HEAD(migratepages);
2071
	int nr_pages = thp_nr_pages(page);
Y
Yang Shi 已提交
2072

2073
	/*
2074 2075
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
2076
	 */
2077 2078
	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
	    (vma->vm_flags & VM_EXEC))
2079 2080
		goto out;

2081 2082 2083 2084
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
H
Huang Ying 已提交
2085
	if (page_is_file_lru(page) && PageDirty(page))
2086 2087
		goto out;

2088 2089 2090 2091 2092
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
2093 2094 2095
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED, &nr_succeeded);
2096
	if (nr_remaining) {
2097 2098
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
2099 2100
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_lru(page), -nr_pages);
2101 2102
			putback_lru_page(page);
		}
2103
		isolated = 0;
2104 2105 2106 2107 2108 2109 2110
	}
	if (nr_succeeded) {
		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
					    nr_succeeded);
	}
2111 2112
	BUG_ON(!list_empty(&migratepages));
	return isolated;
2113 2114 2115 2116

out:
	put_page(page);
	return 0;
2117
}
2118
#endif /* CONFIG_NUMA_BALANCING */
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/*
 * node_demotion[] example:
 *
 * Consider a system with two sockets.  Each socket has
 * three classes of memory attached: fast, medium and slow.
 * Each memory class is placed in its own NUMA node.  The
 * CPUs are placed in the node with the "fast" memory.  The
 * 6 NUMA nodes (0-5) might be split among the sockets like
 * this:
 *
 *	Socket A: 0, 1, 2
 *	Socket B: 3, 4, 5
 *
 * When Node 0 fills up, its memory should be migrated to
 * Node 1.  When Node 1 fills up, it should be migrated to
 * Node 2.  The migration path start on the nodes with the
 * processors (since allocations default to this node) and
 * fast memory, progress through medium and end with the
 * slow memory:
 *
 *	0 -> 1 -> 2 -> stop
 *	3 -> 4 -> 5 -> stop
 *
 * This is represented in the node_demotion[] like this:
 *
 *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
 *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
 *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
 *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
 *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
 *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
 *
 * Moreover some systems may have multiple slow memory nodes.
 * Suppose a system has one socket with 3 memory nodes, node 0
 * is fast memory type, and node 1/2 both are slow memory
 * type, and the distance between fast memory node and slow
 * memory node is same. So the migration path should be:
 *
 *	0 -> 1/2 -> stop
 *
 * This is represented in the node_demotion[] like this:
 *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
 *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
 *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
 */

/*
 * Writes to this array occur without locking.  Cycles are
 * not allowed: Node X demotes to Y which demotes to X...
 *
 * If multiple reads are performed, a single rcu_read_lock()
 * must be held over all reads to ensure that no cycles are
 * observed.
 */
#define DEFAULT_DEMOTION_TARGET_NODES 15

#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
#define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
#else
#define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
#endif

struct demotion_nodes {
	unsigned short nr;
	short nodes[DEMOTION_TARGET_NODES];
};

static struct demotion_nodes *node_demotion __read_mostly;

/**
 * next_demotion_node() - Get the next node in the demotion path
 * @node: The starting node to lookup the next node
 *
 * Return: node id for next memory node in the demotion path hierarchy
 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
 * @node online or guarantee that it *continues* to be the next demotion
 * target.
 */
int next_demotion_node(int node)
{
	struct demotion_nodes *nd;
	unsigned short target_nr, index;
	int target;

	if (!node_demotion)
		return NUMA_NO_NODE;

	nd = &node_demotion[node];

	/*
	 * node_demotion[] is updated without excluding this
	 * function from running.  RCU doesn't provide any
	 * compiler barriers, so the READ_ONCE() is required
	 * to avoid compiler reordering or read merging.
	 *
	 * Make sure to use RCU over entire code blocks if
	 * node_demotion[] reads need to be consistent.
	 */
	rcu_read_lock();
	target_nr = READ_ONCE(nd->nr);

	switch (target_nr) {
	case 0:
		target = NUMA_NO_NODE;
		goto out;
	case 1:
		index = 0;
		break;
	default:
		/*
		 * If there are multiple target nodes, just select one
		 * target node randomly.
		 *
		 * In addition, we can also use round-robin to select
		 * target node, but we should introduce another variable
		 * for node_demotion[] to record last selected target node,
		 * that may cause cache ping-pong due to the changing of
		 * last target node. Or introducing per-cpu data to avoid
		 * caching issue, which seems more complicated. So selecting
		 * target node randomly seems better until now.
		 */
		index = get_random_int() % target_nr;
		break;
	}

	target = READ_ONCE(nd->nodes[index]);

out:
	rcu_read_unlock();
	return target;
}

2252 2253 2254
/* Disable reclaim-based migration. */
static void __disable_all_migrate_targets(void)
{
2255
	int node, i;
2256

2257 2258
	if (!node_demotion)
		return;
2259

2260 2261 2262 2263 2264
	for_each_online_node(node) {
		node_demotion[node].nr = 0;
		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
			node_demotion[node].nodes[i] = NUMA_NO_NODE;
	}
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
}

static void disable_all_migrate_targets(void)
{
	__disable_all_migrate_targets();

	/*
	 * Ensure that the "disable" is visible across the system.
	 * Readers will see either a combination of before+disable
	 * state or disable+after.  They will never see before and
	 * after state together.
	 *
	 * The before+after state together might have cycles and
	 * could cause readers to do things like loop until this
	 * function finishes.  This ensures they can only see a
	 * single "bad" read and would, for instance, only loop
	 * once.
	 */
	synchronize_rcu();
}

/*
 * Find an automatic demotion target for 'node'.
 * Failing here is OK.  It might just indicate
 * being at the end of a chain.
 */
2291 2292
static int establish_migrate_target(int node, nodemask_t *used,
				    int best_distance)
2293
{
2294 2295
	int migration_target, index, val;
	struct demotion_nodes *nd;
2296

2297
	if (!node_demotion)
2298 2299
		return NUMA_NO_NODE;

2300 2301
	nd = &node_demotion[node];

2302 2303 2304 2305
	migration_target = find_next_best_node(node, used);
	if (migration_target == NUMA_NO_NODE)
		return NUMA_NO_NODE;

2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * If the node has been set a migration target node before,
	 * which means it's the best distance between them. Still
	 * check if this node can be demoted to other target nodes
	 * if they have a same best distance.
	 */
	if (best_distance != -1) {
		val = node_distance(node, migration_target);
		if (val > best_distance)
2315
			goto out_clear;
2316 2317 2318 2319 2320
	}

	index = nd->nr;
	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
		      "Exceeds maximum demotion target nodes\n"))
2321
		goto out_clear;
2322 2323 2324

	nd->nodes[index] = migration_target;
	nd->nr++;
2325 2326

	return migration_target;
2327 2328 2329
out_clear:
	node_clear(migration_target, *used);
	return NUMA_NO_NODE;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

/*
 * When memory fills up on a node, memory contents can be
 * automatically migrated to another node instead of
 * discarded at reclaim.
 *
 * Establish a "migration path" which will start at nodes
 * with CPUs and will follow the priorities used to build the
 * page allocator zonelists.
 *
 * The difference here is that cycles must be avoided.  If
 * node0 migrates to node1, then neither node1, nor anything
2343 2344 2345
 * node1 migrates to can migrate to node0. Also one node can
 * be migrated to multiple nodes if the target nodes all have
 * a same best-distance against the source node.
2346 2347 2348 2349 2350 2351 2352 2353
 *
 * This function can run simultaneously with readers of
 * node_demotion[].  However, it can not run simultaneously
 * with itself.  Exclusion is provided by memory hotplug events
 * being single-threaded.
 */
static void __set_migration_target_nodes(void)
{
2354 2355
	nodemask_t next_pass;
	nodemask_t this_pass;
2356
	nodemask_t used_targets = NODE_MASK_NONE;
2357
	int node, best_distance;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

	/*
	 * Avoid any oddities like cycles that could occur
	 * from changes in the topology.  This will leave
	 * a momentary gap when migration is disabled.
	 */
	disable_all_migrate_targets();

	/*
	 * Allocations go close to CPUs, first.  Assume that
	 * the migration path starts at the nodes with CPUs.
	 */
	next_pass = node_states[N_CPU];
again:
	this_pass = next_pass;
	next_pass = NODE_MASK_NONE;
	/*
	 * To avoid cycles in the migration "graph", ensure
	 * that migration sources are not future targets by
	 * setting them in 'used_targets'.  Do this only
	 * once per pass so that multiple source nodes can
	 * share a target node.
	 *
	 * 'used_targets' will become unavailable in future
	 * passes.  This limits some opportunities for
	 * multiple source nodes to share a destination.
	 */
	nodes_or(used_targets, used_targets, this_pass);

2387 2388
	for_each_node_mask(node, this_pass) {
		best_distance = -1;
2389 2390

		/*
2391 2392 2393
		 * Try to set up the migration path for the node, and the target
		 * migration nodes can be multiple, so doing a loop to find all
		 * the target nodes if they all have a best node distance.
2394
		 */
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		do {
			int target_node =
				establish_migrate_target(node, &used_targets,
							 best_distance);

			if (target_node == NUMA_NO_NODE)
				break;

			if (best_distance == -1)
				best_distance = node_distance(node, target_node);

			/*
			 * Visit targets from this pass in the next pass.
			 * Eventually, every node will have been part of
			 * a pass, and will become set in 'used_targets'.
			 */
			node_set(target_node, next_pass);
		} while (1);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	}
	/*
	 * 'next_pass' contains nodes which became migration
	 * targets in this pass.  Make additional passes until
	 * no more migrations targets are available.
	 */
	if (!nodes_empty(next_pass))
		goto again;
}

/*
 * For callers that do not hold get_online_mems() already.
 */
2426
void set_migration_target_nodes(void)
2427 2428 2429 2430 2431
{
	get_online_mems();
	__set_migration_target_nodes();
	put_online_mems();
}
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

/*
 * This leaves migrate-on-reclaim transiently disabled between
 * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
 * whether reclaim-based migration is enabled or not, which
 * ensures that the user can turn reclaim-based migration at
 * any time without needing to recalculate migration targets.
 *
 * These callbacks already hold get_online_mems().  That is why
 * __set_migration_target_nodes() can be used as opposed to
 * set_migration_target_nodes().
 */
2444
#ifdef CONFIG_MEMORY_HOTPLUG
2445
static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2446
						 unsigned long action, void *_arg)
2447
{
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	struct memory_notify *arg = _arg;

	/*
	 * Only update the node migration order when a node is
	 * changing status, like online->offline.  This avoids
	 * the overhead of synchronize_rcu() in most cases.
	 */
	if (arg->status_change_nid < 0)
		return notifier_from_errno(0);

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	switch (action) {
	case MEM_GOING_OFFLINE:
		/*
		 * Make sure there are not transient states where
		 * an offline node is a migration target.  This
		 * will leave migration disabled until the offline
		 * completes and the MEM_OFFLINE case below runs.
		 */
		disable_all_migrate_targets();
		break;
	case MEM_OFFLINE:
	case MEM_ONLINE:
		/*
		 * Recalculate the target nodes once the node
		 * reaches its final state (online or offline).
		 */
		__set_migration_target_nodes();
		break;
	case MEM_CANCEL_OFFLINE:
		/*
		 * MEM_GOING_OFFLINE disabled all the migration
		 * targets.  Reenable them.
		 */
		__set_migration_target_nodes();
		break;
	case MEM_GOING_ONLINE:
	case MEM_CANCEL_ONLINE:
		break;
	}

	return notifier_from_errno(0);
}
2490
#endif
2491

2492
void __init migrate_on_reclaim_init(void)
2493
{
2494 2495 2496
	node_demotion = kcalloc(nr_node_ids,
				sizeof(struct demotion_nodes),
				GFP_KERNEL);
2497
	WARN_ON(!node_demotion);
2498
#ifdef CONFIG_MEMORY_HOTPLUG
2499
	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2500
#endif
2501
	/*
2502 2503 2504 2505
	 * At this point, all numa nodes with memory/CPus have their state
	 * properly set, so we can build the demotion order now.
	 * Let us hold the cpu_hotplug lock just, as we could possibily have
	 * CPU hotplug events during boot.
2506
	 */
2507 2508 2509
	cpus_read_lock();
	set_migration_target_nodes();
	cpus_read_unlock();
2510
}
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

bool numa_demotion_enabled = false;

#ifdef CONFIG_SYSFS
static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
					  struct kobj_attribute *attr, char *buf)
{
	return sysfs_emit(buf, "%s\n",
			  numa_demotion_enabled ? "true" : "false");
}

static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
2526 2527 2528 2529 2530
	ssize_t ret;

	ret = kstrtobool(buf, &numa_demotion_enabled);
	if (ret)
		return ret;
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

	return count;
}

static struct kobj_attribute numa_demotion_enabled_attr =
	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
	       numa_demotion_enabled_store);

static struct attribute *numa_attrs[] = {
	&numa_demotion_enabled_attr.attr,
	NULL,
};

static const struct attribute_group numa_attr_group = {
	.attrs = numa_attrs,
};

static int __init numa_init_sysfs(void)
{
	int err;
	struct kobject *numa_kobj;

	numa_kobj = kobject_create_and_add("numa", mm_kobj);
	if (!numa_kobj) {
		pr_err("failed to create numa kobject\n");
		return -ENOMEM;
	}
	err = sysfs_create_group(numa_kobj, &numa_attr_group);
	if (err) {
		pr_err("failed to register numa group\n");
		goto delete_obj;
	}
	return 0;

delete_obj:
	kobject_put(numa_kobj);
	return err;
}
subsys_initcall(numa_init_sysfs);
2570 2571
#endif /* CONFIG_SYSFS */
#endif /* CONFIG_NUMA */