migrate.c 66.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/page_idle.h>
46
#include <linux/page_owner.h>
47
#include <linux/sched/mm.h>
48
#include <linux/ptrace.h>
49
#include <linux/oom.h>
50
#include <linux/memory.h>
51
#include <linux/random.h>
52
#include <linux/sched/sysctl.h>
53

54 55
#include <asm/tlbflush.h>

56 57
#include <trace/events/migrate.h>

58 59
#include "internal.h"

60
int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
79
	 * so unconditionally grabbing the lock ruins page's owner side.
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
108
	SetPageIsolated(page);
109 110
	unlock_page(page);

111
	return 0;
112 113 114 115 116 117

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
118
	return -EBUSY;
119 120
}

121
static void putback_movable_page(struct page *page)
122 123 124 125 126
{
	struct address_space *mapping;

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
127
	ClearPageIsolated(page);
128 129
}

130 131 132 133
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
134 135 136
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
137 138 139 140 141 142
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

143
	list_for_each_entry_safe(page, page2, l, lru) {
144 145 146 147
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
148
		list_del(&page->lru);
149 150 151 152 153
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
154
		if (unlikely(__PageMovable(page))) {
155 156 157 158 159
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
160
				ClearPageIsolated(page);
161 162 163
			unlock_page(page);
			put_page(page);
		} else {
164
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165
					page_is_file_lru(page), -thp_nr_pages(page));
166
			putback_lru_page(page);
167
		}
168 169 170
	}
}

171 172 173
/*
 * Restore a potential migration pte to a working pte entry
 */
174 175
static bool remove_migration_pte(struct folio *folio,
		struct vm_area_struct *vma, unsigned long addr, void *old)
176
{
177
	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178

179
	while (page_vma_mapped_walk(&pvmw)) {
180 181 182 183 184 185 186 187 188
		pte_t pte;
		swp_entry_t entry;
		struct page *new;
		unsigned long idx = 0;

		/* pgoff is invalid for ksm pages, but they are never large */
		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
		new = folio_page(folio, idx);
189

190 191 192
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
193 194
			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
					!folio_test_pmd_mappable(folio), folio);
195 196 197 198 199
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

200
		folio_get(folio);
201 202 203
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
204

205 206 207 208
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
209
		if (is_writable_migration_entry(entry))
210
			pte = maybe_mkwrite(pte, vma);
211 212
		else if (pte_swp_uffd_wp(*pvmw.pte))
			pte = pte_mkuffd_wp(pte);
213

214
		if (unlikely(is_device_private_page(new))) {
215 216 217 218 219 220
			if (pte_write(pte))
				entry = make_writable_device_private_entry(
							page_to_pfn(new));
			else
				entry = make_readable_device_private_entry(
							page_to_pfn(new));
221
			pte = swp_entry_to_pte(entry);
222 223
			if (pte_swp_soft_dirty(*pvmw.pte))
				pte = pte_swp_mksoft_dirty(pte);
224 225
			if (pte_swp_uffd_wp(*pvmw.pte))
				pte = pte_swp_mkuffd_wp(pte);
226
		}
227

228
#ifdef CONFIG_HUGETLB_PAGE
229
		if (folio_test_hugetlb(folio)) {
230 231
			unsigned int shift = huge_page_shift(hstate_vma(vma));

232
			pte = pte_mkhuge(pte);
233
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
234
			if (folio_test_anon(folio))
235 236 237
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
238
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 240 241
		} else
#endif
		{
242
			if (folio_test_anon(folio))
243 244
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
245
				page_add_file_rmap(new, vma, false);
246
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247
		}
248
		if (vma->vm_flags & VM_LOCKED)
249
			mlock_page_drain_local();
250

251 252 253
		trace_remove_migration_pte(pvmw.address, pte_val(pte),
					   compound_order(new));

254 255 256
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
257

258
	return true;
259 260
}

261 262 263 264
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
265
void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
266
{
267 268
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
269
		.arg = src,
270 271
	};

272
	if (locked)
273
		rmap_walk_locked(dst, &rwc);
274
	else
275
		rmap_walk(dst, &rwc);
276 277
}

278 279 280 281 282
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
283
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284
				spinlock_t *ptl)
285
{
286
	pte_t pte;
287 288
	swp_entry_t entry;

289
	spin_lock(ptl);
290 291 292 293 294 295 296 297
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

298
	migration_entry_wait_on_locked(entry, ptep, ptl);
299 300 301 302 303
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

304 305 306 307 308 309 310 311
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

312 313
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
314
{
315
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
316 317 318
	__migration_entry_wait(mm, pte, ptl);
}

319 320 321 322 323 324 325 326
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
327
	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
328 329 330 331 332 333
	return;
unlock:
	spin_unlock(ptl);
}
#endif

334
static int expected_page_refs(struct address_space *mapping, struct page *page)
335 336 337
{
	int expected_count = 1;

338
	if (mapping)
339
		expected_count += compound_nr(page) + page_has_private(page);
340 341 342
	return expected_count;
}

343
/*
344
 * Replace the page in the mapping.
345 346 347 348
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
349
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
350
 */
351 352
int folio_migrate_mapping(struct address_space *mapping,
		struct folio *newfolio, struct folio *folio, int extra_count)
353
{
354
	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
355 356
	struct zone *oldzone, *newzone;
	int dirty;
357 358
	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
	long nr = folio_nr_pages(folio);
359

360
	if (!mapping) {
361
		/* Anonymous page without mapping */
362
		if (folio_ref_count(folio) != expected_count)
363
			return -EAGAIN;
364 365

		/* No turning back from here */
366 367 368 369
		newfolio->index = folio->index;
		newfolio->mapping = folio->mapping;
		if (folio_test_swapbacked(folio))
			__folio_set_swapbacked(newfolio);
370

371
		return MIGRATEPAGE_SUCCESS;
372 373
	}

374 375
	oldzone = folio_zone(folio);
	newzone = folio_zone(newfolio);
376

377
	xas_lock_irq(&xas);
378
	if (!folio_ref_freeze(folio, expected_count)) {
379
		xas_unlock_irq(&xas);
380 381 382
		return -EAGAIN;
	}

383
	/*
384
	 * Now we know that no one else is looking at the folio:
385
	 * no turning back from here.
386
	 */
387 388 389 390 391 392 393 394
	newfolio->index = folio->index;
	newfolio->mapping = folio->mapping;
	folio_ref_add(newfolio, nr); /* add cache reference */
	if (folio_test_swapbacked(folio)) {
		__folio_set_swapbacked(newfolio);
		if (folio_test_swapcache(folio)) {
			folio_set_swapcache(newfolio);
			newfolio->private = folio_get_private(folio);
395 396
		}
	} else {
397
		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
398 399
	}

400
	/* Move dirty while page refs frozen and newpage not yet exposed */
401
	dirty = folio_test_dirty(folio);
402
	if (dirty) {
403 404
		folio_clear_dirty(folio);
		folio_set_dirty(newfolio);
405 406
	}

407
	xas_store(&xas, newfolio);
408 409

	/*
410 411
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
412 413
	 * We know this isn't the last reference.
	 */
414
	folio_ref_unfreeze(folio, expected_count - nr);
415

416
	xas_unlock(&xas);
417 418
	/* Leave irq disabled to prevent preemption while updating stats */

419 420 421 422 423 424 425
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
426
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
427 428
	 * are mapped to swap space.
	 */
429
	if (newzone != oldzone) {
430 431 432
		struct lruvec *old_lruvec, *new_lruvec;
		struct mem_cgroup *memcg;

433
		memcg = folio_memcg(folio);
434 435 436
		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);

437 438
		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
439
		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
440 441
			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
442
		}
443
#ifdef CONFIG_SWAP
444
		if (folio_test_swapcache(folio)) {
445 446 447 448
			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
		}
#endif
449
		if (dirty && mapping_can_writeback(mapping)) {
450 451 452 453
			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
454
		}
455
	}
456
	local_irq_enable();
457

458
	return MIGRATEPAGE_SUCCESS;
459
}
460
EXPORT_SYMBOL(folio_migrate_mapping);
461

462 463
/*
 * The expected number of remaining references is the same as that
464
 * of folio_migrate_mapping().
465 466 467 468
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
469
	XA_STATE(xas, &mapping->i_pages, page_index(page));
470 471
	int expected_count;

472
	xas_lock_irq(&xas);
473
	expected_count = 2 + page_has_private(page);
474 475
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
476 477 478
		return -EAGAIN;
	}

479
	if (!page_ref_freeze(page, expected_count)) {
480
		xas_unlock_irq(&xas);
481 482 483
		return -EAGAIN;
	}

484 485
	newpage->index = page->index;
	newpage->mapping = page->mapping;
486

487 488
	get_page(newpage);

489
	xas_store(&xas, newpage);
490

491
	page_ref_unfreeze(page, expected_count - 1);
492

493
	xas_unlock_irq(&xas);
494

495
	return MIGRATEPAGE_SUCCESS;
496 497
}

498
/*
499
 * Copy the flags and some other ancillary information
500
 */
501
void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
502
{
503 504
	int cpupid;

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	if (folio_test_error(folio))
		folio_set_error(newfolio);
	if (folio_test_referenced(folio))
		folio_set_referenced(newfolio);
	if (folio_test_uptodate(folio))
		folio_mark_uptodate(newfolio);
	if (folio_test_clear_active(folio)) {
		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
		folio_set_active(newfolio);
	} else if (folio_test_clear_unevictable(folio))
		folio_set_unevictable(newfolio);
	if (folio_test_workingset(folio))
		folio_set_workingset(newfolio);
	if (folio_test_checked(folio))
		folio_set_checked(newfolio);
	if (folio_test_mappedtodisk(folio))
		folio_set_mappedtodisk(newfolio);
522

523
	/* Move dirty on pages not done by folio_migrate_mapping() */
524 525
	if (folio_test_dirty(folio))
		folio_set_dirty(newfolio);
526

527 528 529 530
	if (folio_test_young(folio))
		folio_set_young(newfolio);
	if (folio_test_idle(folio))
		folio_set_idle(newfolio);
531

532 533 534 535
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
536 537
	cpupid = page_cpupid_xchg_last(&folio->page, -1);
	page_cpupid_xchg_last(&newfolio->page, cpupid);
538

539
	folio_migrate_ksm(newfolio, folio);
540 541 542 543
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
544 545 546
	if (folio_test_swapcache(folio))
		folio_clear_swapcache(folio);
	folio_clear_private(folio);
547 548

	/* page->private contains hugetlb specific flags */
549 550
	if (!folio_test_hugetlb(folio))
		folio->private = NULL;
551 552 553 554 555

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
556 557
	if (folio_test_writeback(newfolio))
		folio_end_writeback(newfolio);
558

559 560 561 562 563
	/*
	 * PG_readahead shares the same bit with PG_reclaim.  The above
	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
	 * bit after that.
	 */
564 565
	if (folio_test_readahead(folio))
		folio_set_readahead(newfolio);
566

567
	folio_copy_owner(newfolio, folio);
568

569
	if (!folio_test_hugetlb(folio))
570
		mem_cgroup_migrate(folio, newfolio);
571
}
572
EXPORT_SYMBOL(folio_migrate_flags);
573

574
void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
575
{
576 577
	folio_copy(newfolio, folio);
	folio_migrate_flags(newfolio, folio);
578
}
579
EXPORT_SYMBOL(folio_migrate_copy);
580

581 582 583 584
/************************************************************
 *                    Migration functions
 ***********************************************************/

585
/*
586
 * Common logic to directly migrate a single LRU page suitable for
587
 * pages that do not use PagePrivate/PagePrivate2.
588 589 590
 *
 * Pages are locked upon entry and exit.
 */
591
int migrate_page(struct address_space *mapping,
592 593
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
594
{
595 596
	struct folio *newfolio = page_folio(newpage);
	struct folio *folio = page_folio(page);
597 598
	int rc;

599
	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
600

601
	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
602

603
	if (rc != MIGRATEPAGE_SUCCESS)
604 605
		return rc;

606
	if (mode != MIGRATE_SYNC_NO_COPY)
607
		folio_migrate_copy(newfolio, folio);
608
	else
609
		folio_migrate_flags(newfolio, folio);
610
	return MIGRATEPAGE_SUCCESS;
611 612 613
}
EXPORT_SYMBOL(migrate_page);

614
#ifdef CONFIG_BLOCK
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
	if (mode != MIGRATE_ASYNC) {
		do {
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}

653 654 655
static int __buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode,
		bool check_refs)
656 657 658
{
	struct buffer_head *bh, *head;
	int rc;
659
	int expected_count;
660 661

	if (!page_has_buffers(page))
662
		return migrate_page(mapping, newpage, page, mode);
663

664
	/* Check whether page does not have extra refs before we do more work */
665
	expected_count = expected_page_refs(mapping, page);
666 667
	if (page_count(page) != expected_count)
		return -EAGAIN;
668

669 670 671
	head = page_buffers(page);
	if (!buffer_migrate_lock_buffers(head, mode))
		return -EAGAIN;
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	if (check_refs) {
		bool busy;
		bool invalidated = false;

recheck_buffers:
		busy = false;
		spin_lock(&mapping->private_lock);
		bh = head;
		do {
			if (atomic_read(&bh->b_count)) {
				busy = true;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		if (busy) {
			if (invalidated) {
				rc = -EAGAIN;
				goto unlock_buffers;
			}
693
			spin_unlock(&mapping->private_lock);
694 695 696 697 698 699
			invalidate_bh_lrus();
			invalidated = true;
			goto recheck_buffers;
		}
	}

700
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
701
	if (rc != MIGRATEPAGE_SUCCESS)
702
		goto unlock_buffers;
703

704
	attach_page_private(newpage, detach_page_private(page));
705 706 707 708 709 710 711 712

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

713 714 715 716
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
717

718 719
	rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
720 721
	if (check_refs)
		spin_unlock(&mapping->private_lock);
722 723 724 725 726 727 728
	bh = head;
	do {
		unlock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

729
	return rc;
730
}
731 732 733 734 735 736 737 738 739 740 741

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist. For example attached buffer heads are accessed only under page lock.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
742
EXPORT_SYMBOL(buffer_migrate_page);
743 744 745 746 747 748 749 750 751 752 753 754

/*
 * Same as above except that this variant is more careful and checks that there
 * are also no buffer head references. This function is the right one for
 * mappings where buffer heads are directly looked up and referenced (such as
 * block device mappings).
 */
int buffer_migrate_page_norefs(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
755
#endif
756

757 758 759 760
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
761
{
762
	struct folio *folio = page_folio(page);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

780
	/*
781 782 783 784 785 786
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
787
	 */
788
	remove_migration_ptes(folio, folio, false);
789

790
	rc = mapping->a_ops->writepage(page, &wbc);
791

792 793 794 795
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

796
	return (rc < 0) ? -EIO : -EAGAIN;
797 798 799 800 801 802
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
803
	struct page *newpage, struct page *page, enum migrate_mode mode)
804
{
805
	if (PageDirty(page)) {
806
		/* Only writeback pages in full synchronous migration */
807 808 809 810 811
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
812
			return -EBUSY;
813
		}
814
		return writeout(mapping, page);
815
	}
816 817 818 819 820

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
821
	if (page_has_private(page) &&
822
	    !try_to_release_page(page, GFP_KERNEL))
823
		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
824

825
	return migrate_page(mapping, newpage, page, mode);
826 827
}

828 829 830 831 832 833
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
834 835 836
 *
 * Return value:
 *   < 0 - error code
837
 *  MIGRATEPAGE_SUCCESS - success
838
 */
839
static int move_to_new_page(struct page *newpage, struct page *page,
840
				enum migrate_mode mode)
841 842
{
	struct address_space *mapping;
843 844
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
845

846 847
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
848 849

	mapping = page_mapping(page);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
868
		/*
869 870
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
871
		 */
872 873 874
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
875
			ClearPageIsolated(page);
876 877 878 879 880 881 882 883
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
884

885 886 887 888 889
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
890 891 892 893 894 895 896
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
897
			ClearPageIsolated(page);
898 899 900
		}

		/*
901
		 * Anonymous and movable page->mapping will be cleared by
902 903 904 905
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
906
			page->mapping = NULL;
907

908 909
		if (likely(!is_zone_device_page(newpage)))
			flush_dcache_folio(page_folio(newpage));
910
	}
911
out:
912 913 914
	return rc;
}

915
static int __unmap_and_move(struct page *page, struct page *newpage,
916
				int force, enum migrate_mode mode)
917
{
918
	struct folio *folio = page_folio(page);
919
	struct folio *dst = page_folio(newpage);
920
	int rc = -EAGAIN;
921
	bool page_was_mapped = false;
922
	struct anon_vma *anon_vma = NULL;
923
	bool is_lru = !__PageMovable(page);
924

N
Nick Piggin 已提交
925
	if (!trylock_page(page)) {
926
		if (!force || mode == MIGRATE_ASYNC)
927
			goto out;
928 929 930 931 932 933 934

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
935
		 * mpage_readahead). If an allocation happens for the
936 937 938 939 940 941 942
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
943
			goto out;
944

945 946 947 948
		lock_page(page);
	}

	if (PageWriteback(page)) {
949
		/*
950
		 * Only in the case of a full synchronous migration is it
951 952 953
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
954
		 */
955 956 957 958 959
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
960
			rc = -EBUSY;
961
			goto out_unlock;
962 963
		}
		if (!force)
964
			goto out_unlock;
965 966
		wait_on_page_writeback(page);
	}
967

968
	/*
969
	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
970
	 * we cannot notice that anon_vma is freed while we migrates a page.
971
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
972
	 * of migration. File cache pages are no problem because of page_lock()
973 974
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
975 976 977 978 979 980
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
981
	 */
982
	if (PageAnon(page) && !PageKsm(page))
983
		anon_vma = page_get_anon_vma(page);
984

985 986 987 988 989 990 991 992 993 994 995
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

996 997 998 999 1000
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1001
	/*
1002 1003 1004 1005 1006
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
1007
	 * 2. An orphaned page (see truncate_cleanup_page) might have
1008 1009 1010 1011
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1012
	 */
1013
	if (!page->mapping) {
1014
		VM_BUG_ON_PAGE(PageAnon(page), page);
1015
		if (page_has_private(page)) {
1016
			try_to_free_buffers(page);
1017
			goto out_unlock_both;
1018
		}
1019 1020
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1021 1022
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1023
		try_to_migrate(folio, 0);
1024
		page_was_mapped = true;
1025
	}
1026

1027
	if (!page_mapped(page))
1028
		rc = move_to_new_page(newpage, page, mode);
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/*
	 * When successful, push newpage to LRU immediately: so that if it
	 * turns out to be an mlocked page, remove_migration_ptes() will
	 * automatically build up the correct newpage->mlock_count for it.
	 *
	 * We would like to do something similar for the old page, when
	 * unsuccessful, and other cases when a page has been temporarily
	 * isolated from the unevictable LRU: but this case is the easiest.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		lru_cache_add(newpage);
		if (page_was_mapped)
			lru_add_drain();
	}

1045
	if (page_was_mapped)
1046 1047
		remove_migration_ptes(folio,
			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1048

1049 1050 1051
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1052
	/* Drop an anon_vma reference if we took one */
1053
	if (anon_vma)
1054
		put_anon_vma(anon_vma);
1055
	unlock_page(page);
1056
out:
1057
	/*
1058
	 * If migration is successful, decrease refcount of the newpage,
1059
	 * which will not free the page because new page owner increased
1060
	 * refcounter.
1061
	 */
1062 1063
	if (rc == MIGRATEPAGE_SUCCESS)
		put_page(newpage);
1064

1065 1066
	return rc;
}
1067

1068 1069 1070 1071
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1072
static int unmap_and_move(new_page_t get_new_page,
1073 1074
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1075
				   int force, enum migrate_mode mode,
1076 1077
				   enum migrate_reason reason,
				   struct list_head *ret)
1078
{
1079
	int rc = MIGRATEPAGE_SUCCESS;
1080
	struct page *newpage = NULL;
1081

1082
	if (!thp_migration_supported() && PageTransHuge(page))
1083
		return -ENOSYS;
1084

1085 1086
	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1087 1088
		ClearPageActive(page);
		ClearPageUnevictable(page);
1089 1090 1091
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
1092
				ClearPageIsolated(page);
1093 1094
			unlock_page(page);
		}
1095 1096 1097
		goto out;
	}

1098 1099 1100 1101
	newpage = get_new_page(page, private);
	if (!newpage)
		return -ENOMEM;

1102
	rc = __unmap_and_move(page, newpage, force, mode);
1103
	if (rc == MIGRATEPAGE_SUCCESS)
1104
		set_page_owner_migrate_reason(newpage, reason);
1105

1106
out:
1107
	if (rc != -EAGAIN) {
1108 1109 1110
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
1111
		 * migrated will have kept its references and be restored.
1112 1113
		 */
		list_del(&page->lru);
1114
	}
1115

1116 1117 1118 1119 1120 1121
	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1122 1123 1124 1125 1126 1127
		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1128
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1129
					page_is_file_lru(page), -thp_nr_pages(page));
1130

1131
		if (reason != MR_MEMORY_FAILURE)
1132
			/*
1133
			 * We release the page in page_handle_poison.
1134
			 */
1135
			put_page(page);
1136
	} else {
1137 1138
		if (rc != -EAGAIN)
			list_add_tail(&page->lru, ret);
1139

1140 1141 1142 1143
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1144
	}
1145

1146 1147 1148
	return rc;
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1168 1169
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1170 1171
				enum migrate_mode mode, int reason,
				struct list_head *ret)
1172
{
1173
	struct folio *dst, *src = page_folio(hpage);
1174
	int rc = -EAGAIN;
1175
	int page_was_mapped = 0;
1176
	struct page *new_hpage;
1177
	struct anon_vma *anon_vma = NULL;
1178
	struct address_space *mapping = NULL;
1179

1180
	/*
1181
	 * Migratability of hugepages depends on architectures and their size.
1182 1183 1184 1185 1186
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1187
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1188
		list_move_tail(&hpage->lru, ret);
1189
		return -ENOSYS;
1190
	}
1191

1192 1193 1194 1195 1196 1197
	if (page_count(hpage) == 1) {
		/* page was freed from under us. So we are done. */
		putback_active_hugepage(hpage);
		return MIGRATEPAGE_SUCCESS;
	}

1198
	new_hpage = get_new_page(hpage, private);
1199 1200
	if (!new_hpage)
		return -ENOMEM;
1201
	dst = page_folio(new_hpage);
1202 1203

	if (!trylock_page(hpage)) {
1204
		if (!force)
1205
			goto out;
1206 1207 1208 1209 1210 1211 1212
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
1213 1214 1215
		lock_page(hpage);
	}

1216 1217 1218 1219 1220
	/*
	 * Check for pages which are in the process of being freed.  Without
	 * page_mapping() set, hugetlbfs specific move page routine will not
	 * be called and we could leak usage counts for subpools.
	 */
1221
	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1222 1223 1224 1225
		rc = -EBUSY;
		goto out_unlock;
	}

1226 1227
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
1228

1229 1230 1231
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1232
	if (page_mapped(hpage)) {
1233
		enum ttu_flags ttu = 0;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

		if (!PageAnon(hpage)) {
			/*
			 * In shared mappings, try_to_unmap could potentially
			 * call huge_pmd_unshare.  Because of this, take
			 * semaphore in write mode here and set TTU_RMAP_LOCKED
			 * to let lower levels know we have taken the lock.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (unlikely(!mapping))
				goto unlock_put_anon;

1246
			ttu = TTU_RMAP_LOCKED;
1247
		}
1248

1249
		try_to_migrate(src, ttu);
1250
		page_was_mapped = 1;
1251

1252
		if (ttu & TTU_RMAP_LOCKED)
1253
			i_mmap_unlock_write(mapping);
1254
	}
1255 1256

	if (!page_mapped(hpage))
1257
		rc = move_to_new_page(new_hpage, hpage, mode);
1258

1259
	if (page_was_mapped)
1260 1261
		remove_migration_ptes(src,
			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1262

1263
unlock_put_anon:
1264 1265 1266
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1267
	if (anon_vma)
1268
		put_anon_vma(anon_vma);
1269

1270
	if (rc == MIGRATEPAGE_SUCCESS) {
1271
		move_hugetlb_state(hpage, new_hpage, reason);
1272 1273
		put_new_page = NULL;
	}
1274

1275
out_unlock:
1276
	unlock_page(hpage);
1277
out:
1278
	if (rc == MIGRATEPAGE_SUCCESS)
1279
		putback_active_hugepage(hpage);
1280
	else if (rc != -EAGAIN)
1281
		list_move_tail(&hpage->lru, ret);
1282 1283 1284 1285 1286 1287

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1288
	if (put_new_page)
1289 1290
		put_new_page(new_hpage, private);
	else
1291
		putback_active_hugepage(new_hpage);
1292

1293 1294 1295
	return rc;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static inline int try_split_thp(struct page *page, struct page **page2,
				struct list_head *from)
{
	int rc = 0;

	lock_page(page);
	rc = split_huge_page_to_list(page, from);
	unlock_page(page);
	if (!rc)
		list_safe_reset_next(page, *page2, lru);

	return rc;
}

1310
/*
1311 1312
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
1313
 *
1314 1315 1316
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1317 1318
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1319 1320 1321 1322
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
1323
 * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1324
 *			the caller passes a non-NULL pointer.
1325
 *
1326 1327
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1328 1329
 * It is caller's responsibility to call putback_movable_pages() to return pages
 * to the LRU or free list only if ret != 0.
1330
 *
1331 1332 1333
 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
 * an error code. The number of THP splits will be considered as the number of
 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1334
 */
1335
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1336
		free_page_t put_new_page, unsigned long private,
1337
		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1338
{
1339
	int retry = 1;
1340
	int thp_retry = 1;
1341
	int nr_failed = 0;
1342
	int nr_failed_pages = 0;
1343
	int nr_succeeded = 0;
1344 1345 1346
	int nr_thp_succeeded = 0;
	int nr_thp_failed = 0;
	int nr_thp_split = 0;
1347
	int pass = 0;
1348
	bool is_thp = false;
1349 1350
	struct page *page;
	struct page *page2;
1351
	int rc, nr_subpages;
1352
	LIST_HEAD(ret_pages);
1353
	LIST_HEAD(thp_split_pages);
1354
	bool nosplit = (reason == MR_NUMA_MISPLACED);
1355
	bool no_subpage_counting = false;
1356

1357 1358
	trace_mm_migrate_pages_start(mode, reason);

1359
thp_subpage_migration:
1360
	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1361
		retry = 0;
1362
		thp_retry = 0;
1363

1364
		list_for_each_entry_safe(page, page2, from, lru) {
1365
retry:
1366 1367 1368 1369 1370
			/*
			 * THP statistics is based on the source huge page.
			 * Capture required information that might get lost
			 * during migration.
			 */
1371
			is_thp = PageTransHuge(page) && !PageHuge(page);
1372
			nr_subpages = compound_nr(page);
1373
			cond_resched();
1374

1375 1376
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1377
						put_new_page, private, page,
1378 1379
						pass > 2, mode, reason,
						&ret_pages);
1380
			else
1381
				rc = unmap_and_move(get_new_page, put_new_page,
1382
						private, page, pass > 2, mode,
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
						reason, &ret_pages);
			/*
			 * The rules are:
			 *	Success: non hugetlb page will be freed, hugetlb
			 *		 page will be put back
			 *	-EAGAIN: stay on the from list
			 *	-ENOMEM: stay on the from list
			 *	Other errno: put on ret_pages list then splice to
			 *		     from list
			 */
1393
			switch(rc) {
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			/*
			 * THP migration might be unsupported or the
			 * allocation could've failed so we should
			 * retry on the same page with the THP split
			 * to base pages.
			 *
			 * Head page is retried immediately and tail
			 * pages are added to the tail of the list so
			 * we encounter them after the rest of the list
			 * is processed.
			 */
			case -ENOSYS:
				/* THP migration is unsupported */
				if (is_thp) {
1408 1409
					nr_thp_failed++;
					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1410 1411 1412 1413
						nr_thp_split++;
						goto retry;
					}

1414
					nr_failed_pages += nr_subpages;
1415 1416 1417 1418
					break;
				}

				/* Hugetlb migration is unsupported */
1419 1420
				if (!no_subpage_counting)
					nr_failed++;
1421
				nr_failed_pages += nr_subpages;
1422
				break;
1423
			case -ENOMEM:
1424
				/*
1425 1426
				 * When memory is low, don't bother to try to migrate
				 * other pages, just exit.
1427
				 * THP NUMA faulting doesn't split THP to retry.
1428
				 */
1429
				if (is_thp && !nosplit) {
1430 1431
					nr_thp_failed++;
					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1432
						nr_thp_split++;
1433 1434
						goto retry;
					}
1435

1436
					nr_failed_pages += nr_subpages;
1437 1438
					goto out;
				}
1439 1440 1441

				if (!no_subpage_counting)
					nr_failed++;
1442
				nr_failed_pages += nr_subpages;
1443
				goto out;
1444
			case -EAGAIN:
1445 1446 1447 1448
				if (is_thp) {
					thp_retry++;
					break;
				}
1449
				retry++;
1450
				break;
1451
			case MIGRATEPAGE_SUCCESS:
1452
				nr_succeeded += nr_subpages;
1453 1454 1455 1456
				if (is_thp) {
					nr_thp_succeeded++;
					break;
				}
1457 1458
				break;
			default:
1459
				/*
1460
				 * Permanent failure (-EBUSY, etc.):
1461 1462 1463 1464
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1465 1466
				if (is_thp) {
					nr_thp_failed++;
1467
					nr_failed_pages += nr_subpages;
1468 1469
					break;
				}
1470 1471 1472

				if (!no_subpage_counting)
					nr_failed++;
1473
				nr_failed_pages += nr_subpages;
1474
				break;
1475
			}
1476 1477
		}
	}
1478
	nr_failed += retry;
1479
	nr_thp_failed += thp_retry;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	/*
	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
	 * counting in this round, since all subpages of a THP is counted
	 * as 1 failure in the first round.
	 */
	if (!list_empty(&thp_split_pages)) {
		/*
		 * Move non-migrated pages (after 10 retries) to ret_pages
		 * to avoid migrating them again.
		 */
		list_splice_init(from, &ret_pages);
		list_splice_init(&thp_split_pages, from);
		no_subpage_counting = true;
		retry = 1;
		goto thp_subpage_migration;
	}

	rc = nr_failed + nr_thp_failed;
1498
out:
1499 1500 1501 1502 1503 1504
	/*
	 * Put the permanent failure page back to migration list, they
	 * will be put back to the right list by the caller.
	 */
	list_splice(&ret_pages, from);

1505
	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1506
	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1507 1508 1509
	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1510
	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1511
			       nr_thp_failed, nr_thp_split, mode, reason);
1512

1513 1514 1515
	if (ret_succeeded)
		*ret_succeeded = nr_succeeded;

1516
	return rc;
1517
}
1518

1519
struct page *alloc_migration_target(struct page *page, unsigned long private)
1520
{
1521
	struct folio *folio = page_folio(page);
1522 1523
	struct migration_target_control *mtc;
	gfp_t gfp_mask;
1524
	unsigned int order = 0;
1525
	struct folio *new_folio = NULL;
1526 1527 1528 1529 1530 1531 1532
	int nid;
	int zidx;

	mtc = (struct migration_target_control *)private;
	gfp_mask = mtc->gfp_mask;
	nid = mtc->nid;
	if (nid == NUMA_NO_NODE)
1533
		nid = folio_nid(folio);
1534

1535 1536
	if (folio_test_hugetlb(folio)) {
		struct hstate *h = page_hstate(&folio->page);
1537

1538 1539
		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1540
	}
1541

1542
	if (folio_test_large(folio)) {
1543 1544 1545 1546 1547
		/*
		 * clear __GFP_RECLAIM to make the migration callback
		 * consistent with regular THP allocations.
		 */
		gfp_mask &= ~__GFP_RECLAIM;
1548
		gfp_mask |= GFP_TRANSHUGE;
1549
		order = folio_order(folio);
1550
	}
1551
	zidx = zone_idx(folio_zone(folio));
1552
	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1553 1554
		gfp_mask |= __GFP_HIGHMEM;

1555
	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1556

1557
	return &new_folio->page;
1558 1559
}

1560 1561
#ifdef CONFIG_NUMA

1562
static int store_status(int __user *status, int start, int value, int nr)
1563
{
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;
1577 1578 1579 1580
	struct migration_target_control mtc = {
		.nid = node,
		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
	};
1581

1582
	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1583
		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1584 1585 1586
	if (err)
		putback_movable_pages(pagelist);
	return err;
1587 1588 1589
}

/*
1590 1591
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
1592 1593 1594 1595 1596
 * Returns:
 *     errno - if the page cannot be found/isolated
 *     0 - when it doesn't have to be migrated because it is already on the
 *         target node
 *     1 - when it has been queued
1597
 */
1598 1599
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1600
{
1601 1602
	struct vm_area_struct *vma;
	struct page *page;
1603 1604
	int err;

1605
	mmap_read_lock(mm);
1606 1607 1608 1609
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1610

1611
	/* FOLL_DUMP to ignore special (like zero) pages */
1612
	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1613

1614 1615 1616
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1617

1618 1619 1620
	err = -ENOENT;
	if (!page)
		goto out;
1621

1622 1623 1624
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1625

1626 1627 1628
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1629

1630 1631 1632
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
1633
			err = 1;
1634
		}
1635 1636
	} else {
		struct page *head;
1637

1638 1639
		head = compound_head(page);
		err = isolate_lru_page(head);
1640
		if (err)
1641
			goto out_putpage;
1642

1643
		err = 1;
1644 1645
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
1646
			NR_ISOLATED_ANON + page_is_file_lru(head),
1647
			thp_nr_pages(head));
1648 1649 1650 1651 1652 1653 1654 1655 1656
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1657
	mmap_read_unlock(mm);
1658 1659 1660
	return err;
}

1661 1662 1663 1664 1665 1666
static int move_pages_and_store_status(struct mm_struct *mm, int node,
		struct list_head *pagelist, int __user *status,
		int start, int i, unsigned long nr_pages)
{
	int err;

1667 1668 1669
	if (list_empty(pagelist))
		return 0;

1670 1671 1672 1673 1674 1675
	err = do_move_pages_to_node(mm, pagelist, node);
	if (err) {
		/*
		 * Positive err means the number of failed
		 * pages to migrate.  Since we are going to
		 * abort and return the number of non-migrated
1676
		 * pages, so need to include the rest of the
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		 * nr_pages that have not been attempted as
		 * well.
		 */
		if (err > 0)
			err += nr_pages - i - 1;
		return err;
	}
	return store_status(status, start, node, i - start);
}

1687 1688 1689 1690
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1691
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1692 1693 1694 1695 1696
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1697 1698 1699 1700
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1701

1702
	lru_cache_disable();
1703

1704 1705 1706 1707
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1708

1709 1710 1711 1712 1713
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
1714
		addr = (unsigned long)untagged_addr(p);
1715 1716 1717 1718 1719 1720

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1721

1722 1723 1724 1725 1726 1727 1728 1729
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
1730 1731
			err = move_pages_and_store_status(mm, current_node,
					&pagelist, status, start, i, nr_pages);
1732 1733 1734 1735
			if (err)
				goto out;
			start = i;
			current_node = node;
1736 1737
		}

1738 1739 1740 1741 1742 1743
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
1744

1745
		if (err > 0) {
1746 1747 1748
			/* The page is successfully queued for migration */
			continue;
		}
1749

1750 1751 1752 1753 1754 1755 1756
		/*
		 * The move_pages() man page does not have an -EEXIST choice, so
		 * use -EFAULT instead.
		 */
		if (err == -EEXIST)
			err = -EFAULT;

1757 1758 1759 1760 1761
		/*
		 * If the page is already on the target node (!err), store the
		 * node, otherwise, store the err.
		 */
		err = store_status(status, i, err ? : current_node, 1);
1762 1763
		if (err)
			goto out_flush;
1764

1765 1766
		err = move_pages_and_store_status(mm, current_node, &pagelist,
				status, start, i, nr_pages);
1767 1768
		if (err)
			goto out;
1769
		current_node = NUMA_NO_NODE;
1770
	}
1771 1772
out_flush:
	/* Make sure we do not overwrite the existing error */
1773 1774
	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
				status, start, i, nr_pages);
1775
	if (err >= 0)
1776
		err = err1;
1777
out:
1778
	lru_cache_enable();
1779 1780 1781
	return err;
}

1782
/*
1783
 * Determine the nodes of an array of pages and store it in an array of status.
1784
 */
1785 1786
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1787
{
1788 1789
	unsigned long i;

1790
	mmap_read_lock(mm);
1791

1792
	for (i = 0; i < nr_pages; i++) {
1793
		unsigned long addr = (unsigned long)(*pages);
1794 1795
		struct vm_area_struct *vma;
		struct page *page;
1796
		int err = -EFAULT;
1797

1798 1799
		vma = vma_lookup(mm, addr);
		if (!vma)
1800 1801
			goto set_status;

1802 1803
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1804 1805 1806 1807 1808

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1809
		err = page ? page_to_nid(page) : -ENOENT;
1810
set_status:
1811 1812 1813 1814 1815 1816
		*status = err;

		pages++;
		status++;
	}

1817
	mmap_read_unlock(mm);
1818 1819
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static int get_compat_pages_array(const void __user *chunk_pages[],
				  const void __user * __user *pages,
				  unsigned long chunk_nr)
{
	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
	compat_uptr_t p;
	int i;

	for (i = 0; i < chunk_nr; i++) {
		if (get_user(p, pages32 + i))
			return -EFAULT;
		chunk_pages[i] = compat_ptr(p);
	}

	return 0;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1849 1850
	while (nr_pages) {
		unsigned long chunk_nr;
1851

1852 1853 1854 1855
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

1856 1857 1858 1859 1860 1861 1862 1863 1864
		if (in_compat_syscall()) {
			if (get_compat_pages_array(chunk_pages, pages,
						   chunk_nr))
				break;
		} else {
			if (copy_from_user(chunk_pages, pages,
				      chunk_nr * sizeof(*chunk_pages)))
				break;
		}
1865 1866 1867

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1868 1869
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1870

1871 1872 1873 1874 1875
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1876 1877
}

1878
static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1879 1880 1881 1882
{
	struct task_struct *task;
	struct mm_struct *mm;

1883 1884 1885 1886 1887 1888 1889 1890 1891
	/*
	 * There is no need to check if current process has the right to modify
	 * the specified process when they are same.
	 */
	if (!pid) {
		mmget(current->mm);
		*mem_nodes = cpuset_mems_allowed(current);
		return current->mm;
	}
1892 1893

	/* Find the mm_struct */
1894
	rcu_read_lock();
1895
	task = find_task_by_vpid(pid);
1896
	if (!task) {
1897
		rcu_read_unlock();
1898
		return ERR_PTR(-ESRCH);
1899
	}
1900
	get_task_struct(task);
1901 1902 1903

	/*
	 * Check if this process has the right to modify the specified
1904
	 * process. Use the regular "ptrace_may_access()" checks.
1905
	 */
1906
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907
		rcu_read_unlock();
1908
		mm = ERR_PTR(-EPERM);
1909
		goto out;
1910
	}
1911
	rcu_read_unlock();
1912

1913 1914
	mm = ERR_PTR(security_task_movememory(task));
	if (IS_ERR(mm))
1915
		goto out;
1916
	*mem_nodes = cpuset_mems_allowed(task);
1917
	mm = get_task_mm(task);
1918
out:
1919
	put_task_struct(task);
1920
	if (!mm)
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		mm = ERR_PTR(-EINVAL);
	return mm;
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
{
	struct mm_struct *mm;
	int err;
	nodemask_t task_nodes;

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1940 1941
		return -EINVAL;

1942 1943 1944 1945 1946 1947 1948
	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	mm = find_mm_struct(pid, &task_nodes);
	if (IS_ERR(mm))
		return PTR_ERR(mm);

1949 1950 1951 1952 1953
	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1954 1955 1956 1957 1958

	mmput(mm);
	return err;
}

1959 1960 1961 1962 1963 1964 1965 1966
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

1967 1968 1969
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
1970
 * pages. Currently it only checks the watermarks which is crude.
1971 1972
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1973
				   unsigned long nr_migrate_pages)
1974 1975
{
	int z;
1976

1977 1978 1979
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

1980
		if (!managed_zone(zone))
1981 1982 1983 1984 1985 1986
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
1987
				       ZONE_MOVABLE, 0))
1988 1989 1990 1991 1992 1993 1994
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1995
					   unsigned long data)
1996 1997
{
	int nid = (int) data;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	int order = compound_order(page);
	gfp_t gfp = __GFP_THISNODE;
	struct folio *new;

	if (order > 0)
		gfp |= GFP_TRANSHUGE_LIGHT;
	else {
		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
			__GFP_NOWARN;
		gfp &= ~__GFP_RECLAIM;
	}
	new = __folio_alloc_node(gfp, order, nid);
2010

2011
	return &new->page;
2012 2013
}

2014
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2015
{
2016
	int page_lru;
2017
	int nr_pages = thp_nr_pages(page);
2018
	int order = compound_order(page);
2019

2020
	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2021

2022 2023 2024 2025
	/* Do not migrate THP mapped by multiple processes */
	if (PageTransHuge(page) && total_mapcount(page) > 1)
		return 0;

2026
	/* Avoid migrating to a node that is nearly full */
2027 2028 2029 2030 2031 2032
	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
		int z;

		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
			return 0;
		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2033
			if (managed_zone(pgdat->node_zones + z))
2034 2035 2036
				break;
		}
		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2037
		return 0;
2038
	}
2039

2040 2041
	if (isolate_lru_page(page))
		return 0;
2042

2043
	page_lru = page_is_file_lru(page);
2044
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2045
			    nr_pages);
2046

2047
	/*
2048 2049 2050
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
2051 2052
	 */
	put_page(page);
2053
	return 1;
2054 2055 2056 2057 2058 2059 2060
}

/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
2061 2062
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
2063 2064
{
	pg_data_t *pgdat = NODE_DATA(node);
2065
	int isolated;
2066
	int nr_remaining;
2067
	unsigned int nr_succeeded;
2068
	LIST_HEAD(migratepages);
2069
	int nr_pages = thp_nr_pages(page);
2070

2071
	/*
2072 2073
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
2074
	 */
2075 2076
	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
	    (vma->vm_flags & VM_EXEC))
2077 2078
		goto out;

2079 2080 2081 2082
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
2083
	if (page_is_file_lru(page) && PageDirty(page))
2084 2085
		goto out;

2086 2087 2088 2089 2090
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
2091 2092 2093
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED, &nr_succeeded);
2094
	if (nr_remaining) {
2095 2096
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
2097 2098
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_lru(page), -nr_pages);
2099 2100
			putback_lru_page(page);
		}
2101
		isolated = 0;
2102 2103 2104 2105 2106 2107 2108
	}
	if (nr_succeeded) {
		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
					    nr_succeeded);
	}
2109 2110
	BUG_ON(!list_empty(&migratepages));
	return isolated;
2111 2112 2113 2114

out:
	put_page(page);
	return 0;
2115
}
2116
#endif /* CONFIG_NUMA_BALANCING */
2117
#endif /* CONFIG_NUMA */
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/*
 * node_demotion[] example:
 *
 * Consider a system with two sockets.  Each socket has
 * three classes of memory attached: fast, medium and slow.
 * Each memory class is placed in its own NUMA node.  The
 * CPUs are placed in the node with the "fast" memory.  The
 * 6 NUMA nodes (0-5) might be split among the sockets like
 * this:
 *
 *	Socket A: 0, 1, 2
 *	Socket B: 3, 4, 5
 *
 * When Node 0 fills up, its memory should be migrated to
 * Node 1.  When Node 1 fills up, it should be migrated to
 * Node 2.  The migration path start on the nodes with the
 * processors (since allocations default to this node) and
 * fast memory, progress through medium and end with the
 * slow memory:
 *
 *	0 -> 1 -> 2 -> stop
 *	3 -> 4 -> 5 -> stop
 *
 * This is represented in the node_demotion[] like this:
 *
 *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
 *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
 *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
 *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
 *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
 *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
 *
 * Moreover some systems may have multiple slow memory nodes.
 * Suppose a system has one socket with 3 memory nodes, node 0
 * is fast memory type, and node 1/2 both are slow memory
 * type, and the distance between fast memory node and slow
 * memory node is same. So the migration path should be:
 *
 *	0 -> 1/2 -> stop
 *
 * This is represented in the node_demotion[] like this:
 *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
 *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
 *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
 */

/*
 * Writes to this array occur without locking.  Cycles are
 * not allowed: Node X demotes to Y which demotes to X...
 *
 * If multiple reads are performed, a single rcu_read_lock()
 * must be held over all reads to ensure that no cycles are
 * observed.
 */
#define DEFAULT_DEMOTION_TARGET_NODES 15

#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
#define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
#else
#define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
#endif

struct demotion_nodes {
	unsigned short nr;
	short nodes[DEMOTION_TARGET_NODES];
};

static struct demotion_nodes *node_demotion __read_mostly;

/**
 * next_demotion_node() - Get the next node in the demotion path
 * @node: The starting node to lookup the next node
 *
 * Return: node id for next memory node in the demotion path hierarchy
 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
 * @node online or guarantee that it *continues* to be the next demotion
 * target.
 */
int next_demotion_node(int node)
{
	struct demotion_nodes *nd;
	unsigned short target_nr, index;
	int target;

	if (!node_demotion)
		return NUMA_NO_NODE;

	nd = &node_demotion[node];

	/*
	 * node_demotion[] is updated without excluding this
	 * function from running.  RCU doesn't provide any
	 * compiler barriers, so the READ_ONCE() is required
	 * to avoid compiler reordering or read merging.
	 *
	 * Make sure to use RCU over entire code blocks if
	 * node_demotion[] reads need to be consistent.
	 */
	rcu_read_lock();
	target_nr = READ_ONCE(nd->nr);

	switch (target_nr) {
	case 0:
		target = NUMA_NO_NODE;
		goto out;
	case 1:
		index = 0;
		break;
	default:
		/*
		 * If there are multiple target nodes, just select one
		 * target node randomly.
		 *
		 * In addition, we can also use round-robin to select
		 * target node, but we should introduce another variable
		 * for node_demotion[] to record last selected target node,
		 * that may cause cache ping-pong due to the changing of
		 * last target node. Or introducing per-cpu data to avoid
		 * caching issue, which seems more complicated. So selecting
		 * target node randomly seems better until now.
		 */
		index = get_random_int() % target_nr;
		break;
	}

	target = READ_ONCE(nd->nodes[index]);

out:
	rcu_read_unlock();
	return target;
}

2251
#if defined(CONFIG_HOTPLUG_CPU)
2252 2253 2254
/* Disable reclaim-based migration. */
static void __disable_all_migrate_targets(void)
{
2255
	int node, i;
2256

2257 2258
	if (!node_demotion)
		return;
2259

2260 2261 2262 2263 2264
	for_each_online_node(node) {
		node_demotion[node].nr = 0;
		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
			node_demotion[node].nodes[i] = NUMA_NO_NODE;
	}
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
}

static void disable_all_migrate_targets(void)
{
	__disable_all_migrate_targets();

	/*
	 * Ensure that the "disable" is visible across the system.
	 * Readers will see either a combination of before+disable
	 * state or disable+after.  They will never see before and
	 * after state together.
	 *
	 * The before+after state together might have cycles and
	 * could cause readers to do things like loop until this
	 * function finishes.  This ensures they can only see a
	 * single "bad" read and would, for instance, only loop
	 * once.
	 */
	synchronize_rcu();
}

/*
 * Find an automatic demotion target for 'node'.
 * Failing here is OK.  It might just indicate
 * being at the end of a chain.
 */
2291 2292
static int establish_migrate_target(int node, nodemask_t *used,
				    int best_distance)
2293
{
2294 2295
	int migration_target, index, val;
	struct demotion_nodes *nd;
2296

2297
	if (!node_demotion)
2298 2299
		return NUMA_NO_NODE;

2300 2301
	nd = &node_demotion[node];

2302 2303 2304 2305
	migration_target = find_next_best_node(node, used);
	if (migration_target == NUMA_NO_NODE)
		return NUMA_NO_NODE;

2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * If the node has been set a migration target node before,
	 * which means it's the best distance between them. Still
	 * check if this node can be demoted to other target nodes
	 * if they have a same best distance.
	 */
	if (best_distance != -1) {
		val = node_distance(node, migration_target);
		if (val > best_distance)
2315
			goto out_clear;
2316 2317 2318 2319 2320
	}

	index = nd->nr;
	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
		      "Exceeds maximum demotion target nodes\n"))
2321
		goto out_clear;
2322 2323 2324

	nd->nodes[index] = migration_target;
	nd->nr++;
2325 2326

	return migration_target;
2327 2328 2329
out_clear:
	node_clear(migration_target, *used);
	return NUMA_NO_NODE;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

/*
 * When memory fills up on a node, memory contents can be
 * automatically migrated to another node instead of
 * discarded at reclaim.
 *
 * Establish a "migration path" which will start at nodes
 * with CPUs and will follow the priorities used to build the
 * page allocator zonelists.
 *
 * The difference here is that cycles must be avoided.  If
 * node0 migrates to node1, then neither node1, nor anything
2343 2344 2345
 * node1 migrates to can migrate to node0. Also one node can
 * be migrated to multiple nodes if the target nodes all have
 * a same best-distance against the source node.
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
 *
 * This function can run simultaneously with readers of
 * node_demotion[].  However, it can not run simultaneously
 * with itself.  Exclusion is provided by memory hotplug events
 * being single-threaded.
 */
static void __set_migration_target_nodes(void)
{
	nodemask_t next_pass	= NODE_MASK_NONE;
	nodemask_t this_pass	= NODE_MASK_NONE;
	nodemask_t used_targets = NODE_MASK_NONE;
2357
	int node, best_distance;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

	/*
	 * Avoid any oddities like cycles that could occur
	 * from changes in the topology.  This will leave
	 * a momentary gap when migration is disabled.
	 */
	disable_all_migrate_targets();

	/*
	 * Allocations go close to CPUs, first.  Assume that
	 * the migration path starts at the nodes with CPUs.
	 */
	next_pass = node_states[N_CPU];
again:
	this_pass = next_pass;
	next_pass = NODE_MASK_NONE;
	/*
	 * To avoid cycles in the migration "graph", ensure
	 * that migration sources are not future targets by
	 * setting them in 'used_targets'.  Do this only
	 * once per pass so that multiple source nodes can
	 * share a target node.
	 *
	 * 'used_targets' will become unavailable in future
	 * passes.  This limits some opportunities for
	 * multiple source nodes to share a destination.
	 */
	nodes_or(used_targets, used_targets, this_pass);

2387 2388
	for_each_node_mask(node, this_pass) {
		best_distance = -1;
2389 2390

		/*
2391 2392 2393
		 * Try to set up the migration path for the node, and the target
		 * migration nodes can be multiple, so doing a loop to find all
		 * the target nodes if they all have a best node distance.
2394
		 */
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		do {
			int target_node =
				establish_migrate_target(node, &used_targets,
							 best_distance);

			if (target_node == NUMA_NO_NODE)
				break;

			if (best_distance == -1)
				best_distance = node_distance(node, target_node);

			/*
			 * Visit targets from this pass in the next pass.
			 * Eventually, every node will have been part of
			 * a pass, and will become set in 'used_targets'.
			 */
			node_set(target_node, next_pass);
		} while (1);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	}
	/*
	 * 'next_pass' contains nodes which became migration
	 * targets in this pass.  Make additional passes until
	 * no more migrations targets are available.
	 */
	if (!nodes_empty(next_pass))
		goto again;
}

/*
 * For callers that do not hold get_online_mems() already.
 */
2426
void set_migration_target_nodes(void)
2427 2428 2429 2430 2431
{
	get_online_mems();
	__set_migration_target_nodes();
	put_online_mems();
}
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

/*
 * This leaves migrate-on-reclaim transiently disabled between
 * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
 * whether reclaim-based migration is enabled or not, which
 * ensures that the user can turn reclaim-based migration at
 * any time without needing to recalculate migration targets.
 *
 * These callbacks already hold get_online_mems().  That is why
 * __set_migration_target_nodes() can be used as opposed to
 * set_migration_target_nodes().
 */
static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2445
						 unsigned long action, void *_arg)
2446
{
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	struct memory_notify *arg = _arg;

	/*
	 * Only update the node migration order when a node is
	 * changing status, like online->offline.  This avoids
	 * the overhead of synchronize_rcu() in most cases.
	 */
	if (arg->status_change_nid < 0)
		return notifier_from_errno(0);

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	switch (action) {
	case MEM_GOING_OFFLINE:
		/*
		 * Make sure there are not transient states where
		 * an offline node is a migration target.  This
		 * will leave migration disabled until the offline
		 * completes and the MEM_OFFLINE case below runs.
		 */
		disable_all_migrate_targets();
		break;
	case MEM_OFFLINE:
	case MEM_ONLINE:
		/*
		 * Recalculate the target nodes once the node
		 * reaches its final state (online or offline).
		 */
		__set_migration_target_nodes();
		break;
	case MEM_CANCEL_OFFLINE:
		/*
		 * MEM_GOING_OFFLINE disabled all the migration
		 * targets.  Reenable them.
		 */
		__set_migration_target_nodes();
		break;
	case MEM_GOING_ONLINE:
	case MEM_CANCEL_ONLINE:
		break;
	}

	return notifier_from_errno(0);
}

2490
void __init migrate_on_reclaim_init(void)
2491
{
2492 2493 2494 2495 2496
	node_demotion = kmalloc_array(nr_node_ids,
				      sizeof(struct demotion_nodes),
				      GFP_KERNEL);
	WARN_ON(!node_demotion);

2497
	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2498
	/*
2499 2500 2501 2502
	 * At this point, all numa nodes with memory/CPus have their state
	 * properly set, so we can build the demotion order now.
	 * Let us hold the cpu_hotplug lock just, as we could possibily have
	 * CPU hotplug events during boot.
2503
	 */
2504 2505 2506
	cpus_read_lock();
	set_migration_target_nodes();
	cpus_read_unlock();
2507
}
2508
#endif /* CONFIG_HOTPLUG_CPU */
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

bool numa_demotion_enabled = false;

#ifdef CONFIG_SYSFS
static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
					  struct kobj_attribute *attr, char *buf)
{
	return sysfs_emit(buf, "%s\n",
			  numa_demotion_enabled ? "true" : "false");
}

static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
		numa_demotion_enabled = true;
	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
		numa_demotion_enabled = false;
	else
		return -EINVAL;

	return count;
}

static struct kobj_attribute numa_demotion_enabled_attr =
	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
	       numa_demotion_enabled_store);

static struct attribute *numa_attrs[] = {
	&numa_demotion_enabled_attr.attr,
	NULL,
};

static const struct attribute_group numa_attr_group = {
	.attrs = numa_attrs,
};

static int __init numa_init_sysfs(void)
{
	int err;
	struct kobject *numa_kobj;

	numa_kobj = kobject_create_and_add("numa", mm_kobj);
	if (!numa_kobj) {
		pr_err("failed to create numa kobject\n");
		return -ENOMEM;
	}
	err = sysfs_create_group(numa_kobj, &numa_attr_group);
	if (err) {
		pr_err("failed to register numa group\n");
		goto delete_obj;
	}
	return 0;

delete_obj:
	kobject_put(numa_kobj);
	return err;
}
subsys_initcall(numa_init_sysfs);
#endif
新手
引导
客服 返回
顶部