migrate.c 85.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pagewalk.h>
42
#include <linux/pfn_t.h>
43
#include <linux/memremap.h>
44
#include <linux/userfaultfd_k.h>
45
#include <linux/balloon_compaction.h>
46
#include <linux/mmu_notifier.h>
47
#include <linux/page_idle.h>
48
#include <linux/page_owner.h>
49
#include <linux/sched/mm.h>
50
#include <linux/ptrace.h>
51
#include <linux/oom.h>
52
#include <linux/memory.h>
C
Christoph Lameter 已提交
53

54 55
#include <asm/tlbflush.h>

56 57 58
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
59 60
#include "internal.h"

61
int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
W
Wei Yang 已提交
80
	 * so unconditionally grabbing the lock ruins page's owner side.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

112
	return 0;
113 114 115 116 117 118

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
119
	return -EBUSY;
120 121
}

122
static void putback_movable_page(struct page *page)
123 124 125 126 127 128 129 130
{
	struct address_space *mapping;

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

131 132 133 134
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
135 136 137
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
138 139 140 141 142 143
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
144
	list_for_each_entry_safe(page, page2, l, lru) {
145 146 147 148
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
149
		list_del(&page->lru);
150 151 152 153 154
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
155
		if (unlikely(__PageMovable(page))) {
156 157 158 159 160 161 162 163 164
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
165
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166
					page_is_file_lru(page), -thp_nr_pages(page));
167
			putback_lru_page(page);
168
		}
C
Christoph Lameter 已提交
169 170 171
	}
}

172 173 174
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
175
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
176
				 unsigned long addr, void *old)
177
{
178 179 180 181 182 183 184 185
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
186 187
	swp_entry_t entry;

188 189
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
190 191 192 193 194
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
195

196 197 198 199 200 201 202 203 204
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

205 206 207 208
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
209

210 211 212 213
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
214
		if (is_writable_migration_entry(entry))
215
			pte = maybe_mkwrite(pte, vma);
216 217
		else if (pte_swp_uffd_wp(*pvmw.pte))
			pte = pte_mkuffd_wp(pte);
218

219
		if (unlikely(is_device_private_page(new))) {
220 221 222 223 224 225
			if (pte_write(pte))
				entry = make_writable_device_private_entry(
							page_to_pfn(new));
			else
				entry = make_readable_device_private_entry(
							page_to_pfn(new));
226
			pte = swp_entry_to_pte(entry);
227 228
			if (pte_swp_soft_dirty(*pvmw.pte))
				pte = pte_swp_mksoft_dirty(pte);
229 230
			if (pte_swp_uffd_wp(*pvmw.pte))
				pte = pte_swp_mkuffd_wp(pte);
231
		}
232

A
Andi Kleen 已提交
233
#ifdef CONFIG_HUGETLB_PAGE
234
		if (PageHuge(new)) {
235 236
			unsigned int shift = huge_page_shift(hstate_vma(vma));

237
			pte = pte_mkhuge(pte);
238
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
239
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 241 242 243
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
244 245 246 247
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
248

249 250 251 252 253
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
254 255 256
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

257 258 259
		if (PageTransHuge(page) && PageMlocked(page))
			clear_page_mlock(page);

260 261 262
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
263

M
Minchan Kim 已提交
264
	return true;
265 266
}

267 268 269 270
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
271
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272
{
273 274 275 276 277
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

278 279 280 281
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
282 283
}

284 285 286 287 288
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
289
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290
				spinlock_t *ptl)
291
{
292
	pte_t pte;
293 294 295
	swp_entry_t entry;
	struct page *page;

296
	spin_lock(ptl);
297 298 299 300 301 302 303 304
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

305
	page = pfn_swap_entry_to_page(entry);
306
	page = compound_head(page);
307

N
Nick Piggin 已提交
308
	/*
309
	 * Once page cache replacement of page migration started, page_count
310 311
	 * is zero; but we must not call put_and_wait_on_page_locked() without
	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
N
Nick Piggin 已提交
312 313 314
	 */
	if (!get_page_unless_zero(page))
		goto out;
315
	pte_unmap_unlock(ptep, ptl);
316
	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
317 318 319 320 321
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

322 323 324 325 326 327 328 329
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

330 331
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
332
{
333
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
334 335 336
	__migration_entry_wait(mm, pte, ptl);
}

337 338 339 340 341 342 343 344 345
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
346
	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
347 348 349
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
350
	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
351 352 353 354 355 356
	return;
unlock:
	spin_unlock(ptl);
}
#endif

357
static int expected_page_refs(struct address_space *mapping, struct page *page)
358 359 360 361
{
	int expected_count = 1;

	/*
362
	 * Device private pages have an extra refcount as they are
363 364 365
	 * ZONE_DEVICE pages.
	 */
	expected_count += is_device_private_page(page);
366
	if (mapping)
367
		expected_count += thp_nr_pages(page) + page_has_private(page);
368 369 370 371

	return expected_count;
}

C
Christoph Lameter 已提交
372
/*
373
 * Replace the page in the mapping.
374 375 376 377
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
378
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
379
 */
380
int migrate_page_move_mapping(struct address_space *mapping,
381
		struct page *newpage, struct page *page, int extra_count)
C
Christoph Lameter 已提交
382
{
383
	XA_STATE(xas, &mapping->i_pages, page_index(page));
384 385
	struct zone *oldzone, *newzone;
	int dirty;
386
	int expected_count = expected_page_refs(mapping, page) + extra_count;
387
	int nr = thp_nr_pages(page);
388

389
	if (!mapping) {
390
		/* Anonymous page without mapping */
391
		if (page_count(page) != expected_count)
392
			return -EAGAIN;
393 394 395 396 397

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
398
			__SetPageSwapBacked(newpage);
399

400
		return MIGRATEPAGE_SUCCESS;
401 402
	}

403 404 405
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

406 407 408
	xas_lock_irq(&xas);
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
409
		return -EAGAIN;
C
Christoph Lameter 已提交
410 411
	}

412
	if (!page_ref_freeze(page, expected_count)) {
413
		xas_unlock_irq(&xas);
N
Nick Piggin 已提交
414 415 416
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
417
	/*
418 419
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
420
	 */
421 422
	newpage->index = page->index;
	newpage->mapping = page->mapping;
423
	page_ref_add(newpage, nr); /* add cache reference */
424 425 426 427 428 429 430 431
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
432 433
	}

434 435 436 437 438 439 440
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

441
	xas_store(&xas, newpage);
442 443 444
	if (PageTransHuge(page)) {
		int i;

445
		for (i = 1; i < nr; i++) {
446
			xas_next(&xas);
447
			xas_store(&xas, newpage);
448 449
		}
	}
450 451

	/*
452 453
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
454 455
	 * We know this isn't the last reference.
	 */
456
	page_ref_unfreeze(page, expected_count - nr);
457

458
	xas_unlock(&xas);
459 460
	/* Leave irq disabled to prevent preemption while updating stats */

461 462 463 464 465 466 467
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
468
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
469 470
	 * are mapped to swap space.
	 */
471
	if (newzone != oldzone) {
472 473 474 475 476 477 478
		struct lruvec *old_lruvec, *new_lruvec;
		struct mem_cgroup *memcg;

		memcg = page_memcg(page);
		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);

479 480
		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
481
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
482 483
			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
484
		}
485 486 487 488 489 490
#ifdef CONFIG_SWAP
		if (PageSwapCache(page)) {
			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
		}
#endif
491
		if (dirty && mapping_can_writeback(mapping)) {
492 493 494 495
			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
496
		}
497
	}
498
	local_irq_enable();
C
Christoph Lameter 已提交
499

500
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
501
}
502
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
503

N
Naoya Horiguchi 已提交
504 505 506 507 508 509 510
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
511
	XA_STATE(xas, &mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
512 513
	int expected_count;

514
	xas_lock_irq(&xas);
N
Naoya Horiguchi 已提交
515
	expected_count = 2 + page_has_private(page);
516 517
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
518 519 520
		return -EAGAIN;
	}

521
	if (!page_ref_freeze(page, expected_count)) {
522
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
523 524 525
		return -EAGAIN;
	}

526 527
	newpage->index = page->index;
	newpage->mapping = page->mapping;
528

N
Naoya Horiguchi 已提交
529 530
	get_page(newpage);

531
	xas_store(&xas, newpage);
N
Naoya Horiguchi 已提交
532

533
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
534

535
	xas_unlock_irq(&xas);
536

537
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
538 539
}

C
Christoph Lameter 已提交
540 541 542
/*
 * Copy the page to its new location
 */
543
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
544
{
545 546
	int cpupid;

C
Christoph Lameter 已提交
547 548 549 550 551 552
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
553
	if (TestClearPageActive(page)) {
554
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
555
		SetPageActive(newpage);
556 557
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
558 559
	if (PageWorkingset(page))
		SetPageWorkingset(newpage);
C
Christoph Lameter 已提交
560 561 562 563 564
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

565 566 567
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
568

569 570 571 572 573
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

574 575 576 577 578 579 580
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

581
	ksm_migrate_page(newpage, page);
582 583 584 585
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
586 587
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
588
	ClearPagePrivate(page);
589 590 591 592

	/* page->private contains hugetlb specific flags */
	if (!PageHuge(page))
		set_page_private(page, 0);
C
Christoph Lameter 已提交
593 594 595 596 597 598 599

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
600

601 602 603 604 605 606 607 608
	/*
	 * PG_readahead shares the same bit with PG_reclaim.  The above
	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
	 * bit after that.
	 */
	if (PageReadahead(page))
		SetPageReadahead(newpage);

609
	copy_page_owner(page, newpage);
610

611 612
	if (!PageHuge(page))
		mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
613
}
614 615 616 617 618 619 620 621 622 623 624
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
625
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
626

627 628 629 630
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
631
/*
632
 * Common logic to directly migrate a single LRU page suitable for
633
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
634 635 636
 *
 * Pages are locked upon entry and exit.
 */
637
int migrate_page(struct address_space *mapping,
638 639
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
640 641 642 643 644
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

645
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
C
Christoph Lameter 已提交
646

647
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
648 649
		return rc;

650 651 652 653
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
654
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
655 656 657
}
EXPORT_SYMBOL(migrate_page);

658
#ifdef CONFIG_BLOCK
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
	if (mode != MIGRATE_ASYNC) {
		do {
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}

697 698 699
static int __buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode,
		bool check_refs)
700 701 702
{
	struct buffer_head *bh, *head;
	int rc;
703
	int expected_count;
704 705

	if (!page_has_buffers(page))
706
		return migrate_page(mapping, newpage, page, mode);
707

708
	/* Check whether page does not have extra refs before we do more work */
709
	expected_count = expected_page_refs(mapping, page);
710 711
	if (page_count(page) != expected_count)
		return -EAGAIN;
712

713 714 715
	head = page_buffers(page);
	if (!buffer_migrate_lock_buffers(head, mode))
		return -EAGAIN;
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	if (check_refs) {
		bool busy;
		bool invalidated = false;

recheck_buffers:
		busy = false;
		spin_lock(&mapping->private_lock);
		bh = head;
		do {
			if (atomic_read(&bh->b_count)) {
				busy = true;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		if (busy) {
			if (invalidated) {
				rc = -EAGAIN;
				goto unlock_buffers;
			}
737
			spin_unlock(&mapping->private_lock);
738 739 740 741 742 743
			invalidate_bh_lrus();
			invalidated = true;
			goto recheck_buffers;
		}
	}

744
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
745
	if (rc != MIGRATEPAGE_SUCCESS)
746
		goto unlock_buffers;
747

748
	attach_page_private(newpage, detach_page_private(page));
749 750 751 752 753 754 755 756

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

757 758 759 760
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
761

762 763
	rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
764 765
	if (check_refs)
		spin_unlock(&mapping->private_lock);
766 767 768 769 770 771 772
	bh = head;
	do {
		unlock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

773
	return rc;
774
}
775 776 777 778 779 780 781 782 783 784 785

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist. For example attached buffer heads are accessed only under page lock.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
786
EXPORT_SYMBOL(buffer_migrate_page);
787 788 789 790 791 792 793 794 795 796 797 798

/*
 * Same as above except that this variant is more careful and checks that there
 * are also no buffer head references. This function is the right one for
 * mappings where buffer heads are directly looked up and referenced (such as
 * block device mappings).
 */
int buffer_migrate_page_norefs(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
799
#endif
800

801 802 803 804
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
805
{
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

823
	/*
824 825 826 827 828 829
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
830
	 */
831
	remove_migration_ptes(page, page, false);
832

833
	rc = mapping->a_ops->writepage(page, &wbc);
834

835 836 837 838
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
839
	return (rc < 0) ? -EIO : -EAGAIN;
840 841 842 843 844 845
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
846
	struct page *newpage, struct page *page, enum migrate_mode mode)
847
{
848
	if (PageDirty(page)) {
849
		/* Only writeback pages in full synchronous migration */
850 851 852 853 854
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
855
			return -EBUSY;
856
		}
857
		return writeout(mapping, page);
858
	}
859 860 861 862 863

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
864
	if (page_has_private(page) &&
865
	    !try_to_release_page(page, GFP_KERNEL))
866
		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
867

868
	return migrate_page(mapping, newpage, page, mode);
869 870
}

871 872 873 874 875 876
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
877 878 879
 *
 * Return value:
 *   < 0 - error code
880
 *  MIGRATEPAGE_SUCCESS - success
881
 */
882
static int move_to_new_page(struct page *newpage, struct page *page,
883
				enum migrate_mode mode)
884 885
{
	struct address_space *mapping;
886 887
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
888

889 890
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
891 892

	mapping = page_mapping(page);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
911
		/*
912 913
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
914
		 */
915 916 917 918 919 920 921 922 923 924 925 926
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
927

928 929 930 931 932
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
933 934 935 936 937 938 939 940 941 942 943
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
944
		 * Anonymous and movable page->mapping will be cleared by
945 946 947 948
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
949
			page->mapping = NULL;
950

951
		if (likely(!is_zone_device_page(newpage)))
952 953
			flush_dcache_page(newpage);

954
	}
955
out:
956 957 958
	return rc;
}

959
static int __unmap_and_move(struct page *page, struct page *newpage,
960
				int force, enum migrate_mode mode)
961
{
962
	int rc = -EAGAIN;
963
	bool page_was_mapped = false;
964
	struct anon_vma *anon_vma = NULL;
965
	bool is_lru = !__PageMovable(page);
966

N
Nick Piggin 已提交
967
	if (!trylock_page(page)) {
968
		if (!force || mode == MIGRATE_ASYNC)
969
			goto out;
970 971 972 973 974 975 976

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
977
		 * mpage_readahead). If an allocation happens for the
978 979 980 981 982 983 984
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
985
			goto out;
986

987 988 989 990
		lock_page(page);
	}

	if (PageWriteback(page)) {
991
		/*
992
		 * Only in the case of a full synchronous migration is it
993 994 995
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
996
		 */
997 998 999 1000 1001
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1002
			rc = -EBUSY;
1003
			goto out_unlock;
1004 1005
		}
		if (!force)
1006
			goto out_unlock;
1007 1008
		wait_on_page_writeback(page);
	}
1009

1010
	/*
1011
	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1012
	 * we cannot notice that anon_vma is freed while we migrates a page.
1013
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1014
	 * of migration. File cache pages are no problem because of page_lock()
1015 1016
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1017 1018 1019 1020 1021 1022
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1023
	 */
1024
	if (PageAnon(page) && !PageKsm(page))
1025
		anon_vma = page_get_anon_vma(page);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1038 1039 1040 1041 1042
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1043
	/*
1044 1045 1046 1047 1048
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
1049
	 * 2. An orphaned page (see truncate_cleanup_page) might have
1050 1051 1052 1053
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1054
	 */
1055
	if (!page->mapping) {
1056
		VM_BUG_ON_PAGE(PageAnon(page), page);
1057
		if (page_has_private(page)) {
1058
			try_to_free_buffers(page);
1059
			goto out_unlock_both;
1060
		}
1061 1062
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1063 1064
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1065
		try_to_migrate(page, 0);
1066
		page_was_mapped = true;
1067
	}
1068

1069
	if (!page_mapped(page))
1070
		rc = move_to_new_page(newpage, page, mode);
1071

1072 1073
	if (page_was_mapped)
		remove_migration_ptes(page,
1074
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1075

1076 1077 1078
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1079
	/* Drop an anon_vma reference if we took one */
1080
	if (anon_vma)
1081
		put_anon_vma(anon_vma);
1082
	unlock_page(page);
1083
out:
1084 1085 1086 1087
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
1088 1089 1090 1091
	 * list in here. Use the old state of the isolated source page to
	 * determine if we migrated a LRU page. newpage was already unlocked
	 * and possibly modified by its owner - don't rely on the page
	 * state.
1092 1093
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1094
		if (unlikely(!is_lru))
1095 1096 1097 1098 1099
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1100 1101
	return rc;
}
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

/*
 * node_demotion[] example:
 *
 * Consider a system with two sockets.  Each socket has
 * three classes of memory attached: fast, medium and slow.
 * Each memory class is placed in its own NUMA node.  The
 * CPUs are placed in the node with the "fast" memory.  The
 * 6 NUMA nodes (0-5) might be split among the sockets like
 * this:
 *
 *	Socket A: 0, 1, 2
 *	Socket B: 3, 4, 5
 *
 * When Node 0 fills up, its memory should be migrated to
 * Node 1.  When Node 1 fills up, it should be migrated to
 * Node 2.  The migration path start on the nodes with the
 * processors (since allocations default to this node) and
 * fast memory, progress through medium and end with the
 * slow memory:
 *
 *	0 -> 1 -> 2 -> stop
 *	3 -> 4 -> 5 -> stop
 *
 * This is represented in the node_demotion[] like this:
 *
 *	{  1, // Node 0 migrates to 1
 *	   2, // Node 1 migrates to 2
 *	  -1, // Node 2 does not migrate
 *	   4, // Node 3 migrates to 4
 *	   5, // Node 4 migrates to 5
 *	  -1} // Node 5 does not migrate
 */

/*
 * Writes to this array occur without locking.  Cycles are
 * not allowed: Node X demotes to Y which demotes to X...
 *
 * If multiple reads are performed, a single rcu_read_lock()
 * must be held over all reads to ensure that no cycles are
 * observed.
 */
static int node_demotion[MAX_NUMNODES] __read_mostly =
	{[0 ...  MAX_NUMNODES - 1] = NUMA_NO_NODE};

/**
 * next_demotion_node() - Get the next node in the demotion path
 * @node: The starting node to lookup the next node
 *
1152
 * Return: node id for next memory node in the demotion path hierarchy
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
 * @node online or guarantee that it *continues* to be the next demotion
 * target.
 */
int next_demotion_node(int node)
{
	int target;

	/*
	 * node_demotion[] is updated without excluding this
	 * function from running.  RCU doesn't provide any
	 * compiler barriers, so the READ_ONCE() is required
	 * to avoid compiler reordering or read merging.
	 *
	 * Make sure to use RCU over entire code blocks if
	 * node_demotion[] reads need to be consistent.
	 */
	rcu_read_lock();
	target = READ_ONCE(node_demotion[node]);
	rcu_read_unlock();

	return target;
}

1177 1178 1179 1180
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1181
static int unmap_and_move(new_page_t get_new_page,
1182 1183
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1184
				   int force, enum migrate_mode mode,
1185 1186
				   enum migrate_reason reason,
				   struct list_head *ret)
1187
{
1188
	int rc = MIGRATEPAGE_SUCCESS;
1189
	struct page *newpage = NULL;
1190

M
Michal Hocko 已提交
1191
	if (!thp_migration_supported() && PageTransHuge(page))
1192
		return -ENOSYS;
M
Michal Hocko 已提交
1193

1194 1195
	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1196 1197
		ClearPageActive(page);
		ClearPageUnevictable(page);
1198 1199 1200 1201 1202 1203
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1204 1205 1206
		goto out;
	}

1207 1208 1209 1210
	newpage = get_new_page(page, private);
	if (!newpage)
		return -ENOMEM;

1211
	rc = __unmap_and_move(page, newpage, force, mode);
1212
	if (rc == MIGRATEPAGE_SUCCESS)
1213
		set_page_owner_migrate_reason(newpage, reason);
1214

1215
out:
1216
	if (rc != -EAGAIN) {
1217 1218 1219
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
1220
		 * migrated will have kept its references and be restored.
1221 1222
		 */
		list_del(&page->lru);
1223
	}
1224

1225 1226 1227 1228 1229 1230
	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1231 1232 1233 1234 1235 1236
		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1237
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1238
					page_is_file_lru(page), -thp_nr_pages(page));
1239

1240
		if (reason != MR_MEMORY_FAILURE)
1241
			/*
1242
			 * We release the page in page_handle_poison.
1243
			 */
1244
			put_page(page);
1245
	} else {
1246 1247
		if (rc != -EAGAIN)
			list_add_tail(&page->lru, ret);
1248

1249 1250 1251 1252
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1253
	}
1254

1255 1256 1257
	return rc;
}

N
Naoya Horiguchi 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 1278
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1279 1280
				enum migrate_mode mode, int reason,
				struct list_head *ret)
N
Naoya Horiguchi 已提交
1281
{
1282
	int rc = -EAGAIN;
1283
	int page_was_mapped = 0;
1284
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1285
	struct anon_vma *anon_vma = NULL;
1286
	struct address_space *mapping = NULL;
N
Naoya Horiguchi 已提交
1287

1288
	/*
1289
	 * Migratability of hugepages depends on architectures and their size.
1290 1291 1292 1293 1294
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1295
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1296
		list_move_tail(&hpage->lru, ret);
1297
		return -ENOSYS;
1298
	}
1299

1300 1301 1302 1303 1304 1305
	if (page_count(hpage) == 1) {
		/* page was freed from under us. So we are done. */
		putback_active_hugepage(hpage);
		return MIGRATEPAGE_SUCCESS;
	}

1306
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1307 1308 1309 1310
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1311
		if (!force)
N
Naoya Horiguchi 已提交
1312
			goto out;
1313 1314 1315 1316 1317 1318 1319
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1320 1321 1322
		lock_page(hpage);
	}

1323 1324 1325 1326 1327
	/*
	 * Check for pages which are in the process of being freed.  Without
	 * page_mapping() set, hugetlbfs specific move page routine will not
	 * be called and we could leak usage counts for subpools.
	 */
1328
	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1329 1330 1331 1332
		rc = -EBUSY;
		goto out_unlock;
	}

1333 1334
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1335

1336 1337 1338
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1339
	if (page_mapped(hpage)) {
1340
		bool mapping_locked = false;
1341
		enum ttu_flags ttu = 0;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

		if (!PageAnon(hpage)) {
			/*
			 * In shared mappings, try_to_unmap could potentially
			 * call huge_pmd_unshare.  Because of this, take
			 * semaphore in write mode here and set TTU_RMAP_LOCKED
			 * to let lower levels know we have taken the lock.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (unlikely(!mapping))
				goto unlock_put_anon;

			mapping_locked = true;
			ttu |= TTU_RMAP_LOCKED;
		}
1357

1358
		try_to_migrate(hpage, ttu);
1359
		page_was_mapped = 1;
1360 1361 1362

		if (mapping_locked)
			i_mmap_unlock_write(mapping);
1363
	}
N
Naoya Horiguchi 已提交
1364 1365

	if (!page_mapped(hpage))
1366
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1367

1368
	if (page_was_mapped)
1369
		remove_migration_ptes(hpage,
1370
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1371

1372
unlock_put_anon:
1373 1374 1375
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1376
	if (anon_vma)
1377
		put_anon_vma(anon_vma);
1378

1379
	if (rc == MIGRATEPAGE_SUCCESS) {
1380
		move_hugetlb_state(hpage, new_hpage, reason);
1381 1382
		put_new_page = NULL;
	}
1383

1384
out_unlock:
N
Naoya Horiguchi 已提交
1385
	unlock_page(hpage);
1386
out:
1387
	if (rc == MIGRATEPAGE_SUCCESS)
1388
		putback_active_hugepage(hpage);
1389
	else if (rc != -EAGAIN)
1390
		list_move_tail(&hpage->lru, ret);
1391 1392 1393 1394 1395 1396

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1397
	if (put_new_page)
1398 1399
		put_new_page(new_hpage, private);
	else
1400
		putback_active_hugepage(new_hpage);
1401

N
Naoya Horiguchi 已提交
1402 1403 1404
	return rc;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static inline int try_split_thp(struct page *page, struct page **page2,
				struct list_head *from)
{
	int rc = 0;

	lock_page(page);
	rc = split_huge_page_to_list(page, from);
	unlock_page(page);
	if (!rc)
		list_safe_reset_next(page, *page2, lru);

	return rc;
}

C
Christoph Lameter 已提交
1419
/*
1420 1421
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1422
 *
1423 1424 1425
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1426 1427
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1428 1429 1430 1431
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
1432 1433
 * @ret_succeeded:	Set to the number of pages migrated successfully if
 *			the caller passes a non-NULL pointer.
C
Christoph Lameter 已提交
1434
 *
1435 1436
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1437 1438
 * It is caller's responsibility to call putback_movable_pages() to return pages
 * to the LRU or free list only if ret != 0.
C
Christoph Lameter 已提交
1439
 *
1440
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1441
 */
1442
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1443
		free_page_t put_new_page, unsigned long private,
1444
		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
C
Christoph Lameter 已提交
1445
{
1446
	int retry = 1;
1447
	int thp_retry = 1;
C
Christoph Lameter 已提交
1448
	int nr_failed = 0;
1449
	int nr_succeeded = 0;
1450 1451 1452
	int nr_thp_succeeded = 0;
	int nr_thp_failed = 0;
	int nr_thp_split = 0;
C
Christoph Lameter 已提交
1453
	int pass = 0;
1454
	bool is_thp = false;
C
Christoph Lameter 已提交
1455 1456 1457
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
1458
	int rc, nr_subpages;
1459
	LIST_HEAD(ret_pages);
1460
	bool nosplit = (reason == MR_NUMA_MISPLACED);
C
Christoph Lameter 已提交
1461

1462 1463
	trace_mm_migrate_pages_start(mode, reason);

C
Christoph Lameter 已提交
1464 1465 1466
	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1467
	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1468
		retry = 0;
1469
		thp_retry = 0;
C
Christoph Lameter 已提交
1470

1471
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1472
retry:
1473 1474 1475 1476 1477
			/*
			 * THP statistics is based on the source huge page.
			 * Capture required information that might get lost
			 * during migration.
			 */
Z
Zi Yan 已提交
1478
			is_thp = PageTransHuge(page) && !PageHuge(page);
1479
			nr_subpages = thp_nr_pages(page);
1480
			cond_resched();
1481

1482 1483
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1484
						put_new_page, private, page,
1485 1486
						pass > 2, mode, reason,
						&ret_pages);
1487
			else
1488
				rc = unmap_and_move(get_new_page, put_new_page,
1489
						private, page, pass > 2, mode,
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
						reason, &ret_pages);
			/*
			 * The rules are:
			 *	Success: non hugetlb page will be freed, hugetlb
			 *		 page will be put back
			 *	-EAGAIN: stay on the from list
			 *	-ENOMEM: stay on the from list
			 *	Other errno: put on ret_pages list then splice to
			 *		     from list
			 */
1500
			switch(rc) {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			/*
			 * THP migration might be unsupported or the
			 * allocation could've failed so we should
			 * retry on the same page with the THP split
			 * to base pages.
			 *
			 * Head page is retried immediately and tail
			 * pages are added to the tail of the list so
			 * we encounter them after the rest of the list
			 * is processed.
			 */
			case -ENOSYS:
				/* THP migration is unsupported */
				if (is_thp) {
					if (!try_split_thp(page, &page2, from)) {
						nr_thp_split++;
						goto retry;
					}

					nr_thp_failed++;
					nr_failed += nr_subpages;
					break;
				}

				/* Hugetlb migration is unsupported */
				nr_failed++;
				break;
1528
			case -ENOMEM:
M
Michal Hocko 已提交
1529
				/*
1530 1531
				 * When memory is low, don't bother to try to migrate
				 * other pages, just exit.
1532
				 * THP NUMA faulting doesn't split THP to retry.
M
Michal Hocko 已提交
1533
				 */
1534
				if (is_thp && !nosplit) {
1535
					if (!try_split_thp(page, &page2, from)) {
1536
						nr_thp_split++;
M
Michal Hocko 已提交
1537 1538
						goto retry;
					}
Z
Zi Yan 已提交
1539

1540 1541 1542 1543
					nr_thp_failed++;
					nr_failed += nr_subpages;
					goto out;
				}
1544
				nr_failed++;
1545
				goto out;
1546
			case -EAGAIN:
1547 1548 1549 1550
				if (is_thp) {
					thp_retry++;
					break;
				}
1551
				retry++;
1552
				break;
1553
			case MIGRATEPAGE_SUCCESS:
1554 1555 1556 1557 1558
				if (is_thp) {
					nr_thp_succeeded++;
					nr_succeeded += nr_subpages;
					break;
				}
1559
				nr_succeeded++;
1560 1561
				break;
			default:
1562
				/*
1563
				 * Permanent failure (-EBUSY, etc.):
1564 1565 1566 1567
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1568 1569 1570 1571 1572
				if (is_thp) {
					nr_thp_failed++;
					nr_failed += nr_subpages;
					break;
				}
1573
				nr_failed++;
1574
				break;
1575
			}
C
Christoph Lameter 已提交
1576 1577
		}
	}
1578 1579
	nr_failed += retry + thp_retry;
	nr_thp_failed += thp_retry;
1580
	rc = nr_failed;
1581
out:
1582 1583 1584 1585 1586 1587
	/*
	 * Put the permanent failure page back to migration list, they
	 * will be put back to the right list by the caller.
	 */
	list_splice(&ret_pages, from);

1588 1589 1590 1591 1592 1593 1594
	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	count_vm_events(PGMIGRATE_FAIL, nr_failed);
	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
			       nr_thp_failed, nr_thp_split, mode, reason);
1595

C
Christoph Lameter 已提交
1596 1597 1598
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1599 1600 1601
	if (ret_succeeded)
		*ret_succeeded = nr_succeeded;

1602
	return rc;
C
Christoph Lameter 已提交
1603
}
1604

1605
struct page *alloc_migration_target(struct page *page, unsigned long private)
1606
{
1607 1608
	struct migration_target_control *mtc;
	gfp_t gfp_mask;
1609 1610
	unsigned int order = 0;
	struct page *new_page = NULL;
1611 1612 1613 1614 1615 1616 1617 1618
	int nid;
	int zidx;

	mtc = (struct migration_target_control *)private;
	gfp_mask = mtc->gfp_mask;
	nid = mtc->nid;
	if (nid == NUMA_NO_NODE)
		nid = page_to_nid(page);
1619

1620 1621 1622
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(compound_head(page));

1623 1624
		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1625
	}
1626 1627

	if (PageTransHuge(page)) {
1628 1629 1630 1631 1632
		/*
		 * clear __GFP_RECLAIM to make the migration callback
		 * consistent with regular THP allocations.
		 */
		gfp_mask &= ~__GFP_RECLAIM;
1633 1634 1635
		gfp_mask |= GFP_TRANSHUGE;
		order = HPAGE_PMD_ORDER;
	}
1636 1637
	zidx = zone_idx(page_zone(page));
	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1638 1639
		gfp_mask |= __GFP_HIGHMEM;

1640
	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1641 1642 1643 1644 1645 1646 1647

	if (new_page && PageTransHuge(new_page))
		prep_transhuge_page(new_page);

	return new_page;
}

1648 1649
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1650
static int store_status(int __user *status, int start, int value, int nr)
1651
{
M
Michal Hocko 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;
1665 1666 1667 1668
	struct migration_target_control mtc = {
		.nid = node,
		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
	};
M
Michal Hocko 已提交
1669

1670
	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1671
		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
M
Michal Hocko 已提交
1672 1673 1674
	if (err)
		putback_movable_pages(pagelist);
	return err;
1675 1676 1677
}

/*
M
Michal Hocko 已提交
1678 1679
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
1680 1681 1682 1683 1684
 * Returns:
 *     errno - if the page cannot be found/isolated
 *     0 - when it doesn't have to be migrated because it is already on the
 *         target node
 *     1 - when it has been queued
1685
 */
M
Michal Hocko 已提交
1686 1687
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1688
{
M
Michal Hocko 已提交
1689 1690 1691
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1692 1693
	int err;

1694
	mmap_read_lock(mm);
M
Michal Hocko 已提交
1695 1696 1697 1698
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1699

M
Michal Hocko 已提交
1700 1701 1702
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1703

M
Michal Hocko 已提交
1704 1705 1706
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1707

M
Michal Hocko 已提交
1708 1709 1710
	err = -ENOENT;
	if (!page)
		goto out;
1711

M
Michal Hocko 已提交
1712 1713 1714
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1715

M
Michal Hocko 已提交
1716 1717 1718
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1719

M
Michal Hocko 已提交
1720 1721 1722
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
1723
			err = 1;
1724
		}
M
Michal Hocko 已提交
1725 1726
	} else {
		struct page *head;
1727

1728 1729
		head = compound_head(page);
		err = isolate_lru_page(head);
1730
		if (err)
M
Michal Hocko 已提交
1731
			goto out_putpage;
1732

1733
		err = 1;
M
Michal Hocko 已提交
1734 1735
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
H
Huang Ying 已提交
1736
			NR_ISOLATED_ANON + page_is_file_lru(head),
1737
			thp_nr_pages(head));
M
Michal Hocko 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1747
	mmap_read_unlock(mm);
1748 1749 1750
	return err;
}

1751 1752 1753 1754 1755 1756
static int move_pages_and_store_status(struct mm_struct *mm, int node,
		struct list_head *pagelist, int __user *status,
		int start, int i, unsigned long nr_pages)
{
	int err;

1757 1758 1759
	if (list_empty(pagelist))
		return 0;

1760 1761 1762 1763 1764 1765
	err = do_move_pages_to_node(mm, pagelist, node);
	if (err) {
		/*
		 * Positive err means the number of failed
		 * pages to migrate.  Since we are going to
		 * abort and return the number of non-migrated
L
Long Li 已提交
1766
		 * pages, so need to include the rest of the
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		 * nr_pages that have not been attempted as
		 * well.
		 */
		if (err > 0)
			err += nr_pages - i - 1;
		return err;
	}
	return store_status(status, start, node, i - start);
}

1777 1778 1779 1780
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1781
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1782 1783 1784 1785 1786
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1787 1788 1789 1790
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1791

1792
	lru_cache_disable();
1793

M
Michal Hocko 已提交
1794 1795 1796 1797
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1798

M
Michal Hocko 已提交
1799 1800 1801 1802 1803
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
1804
		addr = (unsigned long)untagged_addr(p);
M
Michal Hocko 已提交
1805 1806 1807 1808 1809 1810

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1811

M
Michal Hocko 已提交
1812 1813 1814 1815 1816 1817 1818 1819
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
1820 1821
			err = move_pages_and_store_status(mm, current_node,
					&pagelist, status, start, i, nr_pages);
M
Michal Hocko 已提交
1822 1823 1824 1825
			if (err)
				goto out;
			start = i;
			current_node = node;
1826 1827
		}

M
Michal Hocko 已提交
1828 1829 1830 1831 1832 1833
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
1834

1835
		if (err > 0) {
1836 1837 1838
			/* The page is successfully queued for migration */
			continue;
		}
1839

1840 1841 1842 1843 1844
		/*
		 * If the page is already on the target node (!err), store the
		 * node, otherwise, store the err.
		 */
		err = store_status(status, i, err ? : current_node, 1);
M
Michal Hocko 已提交
1845 1846
		if (err)
			goto out_flush;
1847

1848 1849
		err = move_pages_and_store_status(mm, current_node, &pagelist,
				status, start, i, nr_pages);
1850 1851
		if (err)
			goto out;
M
Michal Hocko 已提交
1852
		current_node = NUMA_NO_NODE;
1853
	}
M
Michal Hocko 已提交
1854 1855
out_flush:
	/* Make sure we do not overwrite the existing error */
1856 1857
	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
				status, start, i, nr_pages);
1858
	if (err >= 0)
M
Michal Hocko 已提交
1859
		err = err1;
1860
out:
1861
	lru_cache_enable();
1862 1863 1864
	return err;
}

1865
/*
1866
 * Determine the nodes of an array of pages and store it in an array of status.
1867
 */
1868 1869
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1870
{
1871 1872
	unsigned long i;

1873
	mmap_read_lock(mm);
1874

1875
	for (i = 0; i < nr_pages; i++) {
1876
		unsigned long addr = (unsigned long)(*pages);
1877 1878
		struct vm_area_struct *vma;
		struct page *page;
1879
		int err = -EFAULT;
1880

1881 1882
		vma = vma_lookup(mm, addr);
		if (!vma)
1883 1884
			goto set_status;

1885 1886
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1887 1888 1889 1890 1891

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1892
		err = page ? page_to_nid(page) : -ENOENT;
1893
set_status:
1894 1895 1896 1897 1898 1899
		*status = err;

		pages++;
		status++;
	}

1900
	mmap_read_unlock(mm);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1915 1916
	while (nr_pages) {
		unsigned long chunk_nr;
1917

1918 1919 1920 1921 1922 1923
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1924 1925 1926

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1927 1928
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1929

1930 1931 1932 1933 1934
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1935 1936
}

1937
static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1938 1939 1940 1941
{
	struct task_struct *task;
	struct mm_struct *mm;

1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * There is no need to check if current process has the right to modify
	 * the specified process when they are same.
	 */
	if (!pid) {
		mmget(current->mm);
		*mem_nodes = cpuset_mems_allowed(current);
		return current->mm;
	}
1951 1952

	/* Find the mm_struct */
1953
	rcu_read_lock();
1954
	task = find_task_by_vpid(pid);
1955
	if (!task) {
1956
		rcu_read_unlock();
1957
		return ERR_PTR(-ESRCH);
1958
	}
1959
	get_task_struct(task);
1960 1961 1962

	/*
	 * Check if this process has the right to modify the specified
1963
	 * process. Use the regular "ptrace_may_access()" checks.
1964
	 */
1965
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1966
		rcu_read_unlock();
1967
		mm = ERR_PTR(-EPERM);
1968
		goto out;
1969
	}
1970
	rcu_read_unlock();
1971

1972 1973
	mm = ERR_PTR(security_task_movememory(task));
	if (IS_ERR(mm))
1974
		goto out;
1975
	*mem_nodes = cpuset_mems_allowed(task);
1976
	mm = get_task_mm(task);
1977
out:
1978
	put_task_struct(task);
1979
	if (!mm)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		mm = ERR_PTR(-EINVAL);
	return mm;
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
{
	struct mm_struct *mm;
	int err;
	nodemask_t task_nodes;

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1999 2000
		return -EINVAL;

2001 2002 2003 2004 2005 2006 2007
	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	mm = find_mm_struct(pid, &task_nodes);
	if (IS_ERR(mm))
		return PTR_ERR(mm);

2008 2009 2010 2011 2012
	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
2013 2014 2015 2016 2017

	mmput(mm);
	return err;
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

2048 2049 2050 2051 2052 2053
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2054
				   unsigned long nr_migrate_pages)
2055 2056
{
	int z;
M
Mel Gorman 已提交
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
2068
				       ZONE_MOVABLE, 0))
2069 2070 2071 2072 2073 2074 2075
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
2076
					   unsigned long data)
2077 2078 2079 2080
{
	int nid = (int) data;
	struct page *newpage;

2081
	newpage = __alloc_pages_node(nid,
2082 2083 2084
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
2085
					 ~__GFP_RECLAIM, 0);
2086

2087 2088 2089
	return newpage;
}

Y
Yang Shi 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static struct page *alloc_misplaced_dst_page_thp(struct page *page,
						 unsigned long data)
{
	int nid = (int) data;
	struct page *newpage;

	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
				   HPAGE_PMD_ORDER);
	if (!newpage)
		goto out;

	prep_transhuge_page(newpage);

out:
	return newpage;
}

2107
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2108
{
2109
	int page_lru;
2110
	int nr_pages = thp_nr_pages(page);
2111

2112
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2113

2114 2115 2116 2117
	/* Do not migrate THP mapped by multiple processes */
	if (PageTransHuge(page) && total_mapcount(page) > 1)
		return 0;

2118
	/* Avoid migrating to a node that is nearly full */
2119
	if (!migrate_balanced_pgdat(pgdat, nr_pages))
2120
		return 0;
2121

2122 2123
	if (isolate_lru_page(page))
		return 0;
2124

H
Huang Ying 已提交
2125
	page_lru = page_is_file_lru(page);
M
Mel Gorman 已提交
2126
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2127
			    nr_pages);
2128

2129
	/*
2130 2131 2132
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
2133 2134
	 */
	put_page(page);
2135
	return 1;
2136 2137 2138 2139 2140 2141 2142
}

/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
2143 2144
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
2145 2146
{
	pg_data_t *pgdat = NODE_DATA(node);
2147
	int isolated;
2148 2149
	int nr_remaining;
	LIST_HEAD(migratepages);
Y
Yang Shi 已提交
2150 2151
	new_page_t *new;
	bool compound;
2152
	int nr_pages = thp_nr_pages(page);
Y
Yang Shi 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

	/*
	 * PTE mapped THP or HugeTLB page can't reach here so the page could
	 * be either base page or THP.  And it must be head page if it is
	 * THP.
	 */
	compound = PageTransHuge(page);

	if (compound)
		new = alloc_misplaced_dst_page_thp;
	else
		new = alloc_misplaced_dst_page;
2165 2166

	/*
2167 2168
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
2169
	 */
2170 2171
	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
	    (vma->vm_flags & VM_EXEC))
2172 2173
		goto out;

2174 2175 2176 2177
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
H
Huang Ying 已提交
2178
	if (page_is_file_lru(page) && PageDirty(page))
2179 2180
		goto out;

2181 2182 2183 2184 2185
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
Y
Yang Shi 已提交
2186
	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2187
				     MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2188
	if (nr_remaining) {
2189 2190
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
2191 2192
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_lru(page), -nr_pages);
2193 2194
			putback_lru_page(page);
		}
2195 2196
		isolated = 0;
	} else
2197
		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2198 2199
	BUG_ON(!list_empty(&migratepages));
	return isolated;
2200 2201 2202 2203

out:
	put_page(page);
	return 0;
2204
}
2205
#endif /* CONFIG_NUMA_BALANCING */
2206
#endif /* CONFIG_NUMA */
2207

2208
#ifdef CONFIG_DEVICE_PRIVATE
2209
static int migrate_vma_collect_skip(unsigned long start,
2210 2211 2212 2213 2214 2215
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2216
	for (addr = start; addr < end; addr += PAGE_SIZE) {
2217
		migrate->dst[migrate->npages] = 0;
2218
		migrate->src[migrate->npages++] = 0;
2219 2220 2221 2222 2223
	}

	return 0;
}

2224
static int migrate_vma_collect_hole(unsigned long start,
2225
				    unsigned long end,
2226
				    __always_unused int depth,
2227 2228 2229 2230 2231
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2232 2233 2234 2235
	/* Only allow populating anonymous memory. */
	if (!vma_is_anonymous(walk->vma))
		return migrate_vma_collect_skip(start, end, walk);

2236
	for (addr = start; addr < end; addr += PAGE_SIZE) {
2237
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2238
		migrate->dst[migrate->npages] = 0;
2239 2240
		migrate->npages++;
		migrate->cpages++;
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2254
	unsigned long addr = start, unmapped = 0;
2255 2256 2257 2258 2259
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
2260
		return migrate_vma_collect_hole(start, end, -1, walk);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2276
				return migrate_vma_collect_skip(start, end,
2277 2278 2279 2280 2281 2282 2283
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2284
				return migrate_vma_collect_skip(start, end,
2285 2286 2287 2288
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2289 2290 2291 2292
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2293
				return migrate_vma_collect_hole(start, end, -1,
2294 2295 2296 2297 2298
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2299
		return migrate_vma_collect_skip(start, end, walk);
2300 2301

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2302 2303
	arch_enter_lazy_mmu_mode();

2304
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2305
		unsigned long mpfn = 0, pfn;
2306
		struct page *page;
2307
		swp_entry_t entry;
2308 2309 2310 2311
		pte_t pte;

		pte = *ptep;

2312
		if (pte_none(pte)) {
2313 2314 2315 2316
			if (vma_is_anonymous(vma)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
			}
2317 2318 2319
			goto next;
		}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		if (!pte_present(pte)) {
			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

2330
			page = pfn_swap_entry_to_page(entry);
2331 2332 2333
			if (!(migrate->flags &
				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
			    page->pgmap->owner != migrate->pgmap_owner)
2334 2335
				goto next;

2336 2337
			mpfn = migrate_pfn(page_to_pfn(page)) |
					MIGRATE_PFN_MIGRATE;
2338
			if (is_writable_device_private_entry(entry))
2339 2340
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2341
			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2342
				goto next;
2343
			pfn = pte_pfn(pte);
2344 2345 2346 2347 2348
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				goto next;
			}
2349
			page = vm_normal_page(migrate->vma, addr, pte);
2350 2351 2352 2353
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2354 2355
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
2356
			mpfn = 0;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
			goto next;
		}

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2384 2385 2386 2387 2388 2389
			if (mpfn & MIGRATE_PFN_WRITE)
				entry = make_writable_migration_entry(
							page_to_pfn(page));
			else
				entry = make_readable_migration_entry(
							page_to_pfn(page));
2390
			swp_pte = swp_entry_to_pte(entry);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			if (pte_present(pte)) {
				if (pte_soft_dirty(pte))
					swp_pte = pte_swp_mksoft_dirty(swp_pte);
				if (pte_uffd_wp(pte))
					swp_pte = pte_swp_mkuffd_wp(swp_pte);
			} else {
				if (pte_swp_soft_dirty(pte))
					swp_pte = pte_swp_mksoft_dirty(swp_pte);
				if (pte_swp_uffd_wp(pte))
					swp_pte = pte_swp_mkuffd_wp(swp_pte);
			}
2402 2403 2404 2405 2406 2407 2408 2409 2410
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2411 2412 2413

			if (pte_present(pte))
				unmapped++;
2414 2415
		}

2416
next:
2417
		migrate->dst[migrate->npages] = 0;
2418 2419
		migrate->src[migrate->npages++] = mpfn;
	}
2420
	arch_leave_lazy_mmu_mode();
2421 2422
	pte_unmap_unlock(ptep - 1, ptl);

2423 2424 2425 2426
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2427 2428 2429
	return 0;
}

2430 2431 2432 2433 2434
static const struct mm_walk_ops migrate_vma_walk_ops = {
	.pmd_entry		= migrate_vma_collect_pmd,
	.pte_hole		= migrate_vma_collect_hole,
};

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
2445
	struct mmu_notifier_range range;
2446

2447 2448 2449 2450 2451
	/*
	 * Note that the pgmap_owner is passed to the mmu notifier callback so
	 * that the registered device driver can skip invalidating device
	 * private page mappings that won't be migrated.
	 */
A
Alistair Popple 已提交
2452 2453
	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2454
		migrate->pgmap_owner);
2455
	mmu_notifier_invalidate_range_start(&range);
2456

2457 2458 2459 2460
	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
			&migrate_vma_walk_ops, migrate);

	mmu_notifier_invalidate_range_end(&range);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2489 2490 2491 2492 2493 2494 2495 2496 2497
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
2498
		 * infinite loop (one stopping migration because the other is
2499 2500 2501 2502 2503
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
2504
		return is_device_private_page(page);
2505 2506
	}

2507 2508 2509 2510
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2529 2530
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2531 2532 2533 2534 2535 2536
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2537
		bool remap = true;
2538 2539 2540 2541

		if (!page)
			continue;

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2559 2560
		}

2561 2562 2563 2564 2565 2566 2567
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2581
			}
2582 2583 2584

			/* Drop the reference we took in collect */
			put_page(page);
2585 2586 2587
		}

		if (!migrate_vma_check_page(page)) {
2588 2589 2590 2591
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2592

2593 2594 2595 2596
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2597 2598 2599 2600 2601
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2602 2603 2604 2605
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2606
			}
2607 2608
		}
	}
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2648
		if (page_mapped(page)) {
2649
			try_to_migrate(page, 0);
2650 2651
			if (page_mapped(page))
				goto restore;
2652
		}
2653 2654 2655 2656 2657 2658 2659 2660

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2675 2676 2677 2678
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2679 2680 2681
	}
}

2682 2683
/**
 * migrate_vma_setup() - prepare to migrate a range of memory
2684
 * @args: contains the vma, start, and pfns arrays for the migration
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
 *
 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
 * without an error.
 *
 * Prepare to migrate a range of memory virtual address range by collecting all
 * the pages backing each virtual address in the range, saving them inside the
 * src array.  Then lock those pages and unmap them. Once the pages are locked
 * and unmapped, check whether each page is pinned or not.  Pages that aren't
 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
 * corresponding src array entry.  Then restores any pages that are pinned, by
 * remapping and unlocking those pages.
 *
 * The caller should then allocate destination memory and copy source memory to
 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
 * flag set).  Once these are allocated and copied, the caller must update each
 * corresponding entry in the dst array with the pfn value of the destination
 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
 * (destination pages must have their struct pages locked, via lock_page()).
 *
 * Note that the caller does not have to migrate all the pages that are marked
 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
 * device memory to system memory.  If the caller cannot migrate a device page
 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
 * consequences for the userspace process, so it must be avoided if at all
 * possible.
 *
 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
I
Ingo Molnar 已提交
2713 2714
 * allowing the caller to allocate device memory for those unbacked virtual
 * addresses.  For this the caller simply has to allocate device memory and
2715
 * properly set the destination entry like for regular migration.  Note that
I
Ingo Molnar 已提交
2716 2717
 * this can still fail, and thus inside the device driver you must check if the
 * migration was successful for those entries after calling migrate_vma_pages(),
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
 * just like for regular migration.
 *
 * After that, the callers must call migrate_vma_pages() to go over each entry
 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then migrate_vma_pages() to migrate struct page information from the source
 * struct page to the destination struct page.  If it fails to migrate the
 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
 * src array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * Once migrate_vma_pages() returns the caller may inspect which pages were
 * successfully migrated, and which were not.  Successfully migrated pages will
 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
 *
 * It is safe to update device page table after migrate_vma_pages() because
2737
 * both destination and source page are still locked, and the mmap_lock is held
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
 * in read mode (hence no one can unmap the range being migrated).
 *
 * Once the caller is done cleaning up things and updating its page table (if it
 * chose to do so, this is not an obligation) it finally calls
 * migrate_vma_finalize() to update the CPU page table to point to new pages
 * for successfully migrated pages or otherwise restore the CPU page table to
 * point to the original source pages.
 */
int migrate_vma_setup(struct migrate_vma *args)
{
	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;

	args->start &= PAGE_MASK;
	args->end &= PAGE_MASK;
	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
		return -EINVAL;
	if (nr_pages <= 0)
		return -EINVAL;
	if (args->start < args->vma->vm_start ||
	    args->start >= args->vma->vm_end)
		return -EINVAL;
	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
		return -EINVAL;
	if (!args->src || !args->dst)
		return -EINVAL;

	memset(args->src, 0, sizeof(*args->src) * nr_pages);
	args->cpages = 0;
	args->npages = 0;

	migrate_vma_collect(args);

	if (args->cpages)
		migrate_vma_prepare(args);
	if (args->cpages)
		migrate_vma_unmap(args);

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the drivers.
	 */
	return 0;

}
EXPORT_SYMBOL(migrate_vma_setup);

2786 2787 2788 2789 2790 2791 2792 2793
/*
 * This code closely matches the code in:
 *   __handle_mm_fault()
 *     handle_pte_fault()
 *       do_anonymous_page()
 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
 * private page.
 */
2794 2795 2796
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
2797
				    unsigned long *src)
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
2833
	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2834 2835
	 * parallel threads are excluded by other means.
	 *
2836
	 * Here we only have mmap_read_lock(mm).
2837
	 */
2838
	if (pte_alloc(mm, pmdp))
2839 2840 2841 2842 2843 2844 2845 2846
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
2847
	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2848 2849 2850 2851 2852 2853 2854 2855 2856
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2857 2858 2859 2860
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

2861 2862 2863 2864 2865 2866
			if (vma->vm_flags & VM_WRITE)
				swp_entry = make_writable_device_private_entry(
							page_to_pfn(page));
			else
				swp_entry = make_readable_device_private_entry(
							page_to_pfn(page));
2867
			entry = swp_entry_to_pte(swp_entry);
2868 2869 2870 2871 2872 2873 2874
		} else {
			/*
			 * For now we only support migrating to un-addressable
			 * device memory.
			 */
			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
			goto abort;
2875
		}
2876 2877 2878 2879 2880 2881 2882 2883
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

2884 2885 2886
	if (check_stable_address_space(mm))
		goto unlock_abort;

2887 2888 2889
	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

2890 2891
		if (!is_zero_pfn(pfn))
			goto unlock_abort;
2892
		flush = true;
2893 2894
	} else if (!pte_none(*ptep))
		goto unlock_abort;
2895 2896

	/*
2897
	 * Check for userfaultfd but do not deliver the fault. Instead,
2898 2899
	 * just back off.
	 */
2900 2901
	if (userfaultfd_missing(vma))
		goto unlock_abort;
2902 2903

	inc_mm_counter(mm, MM_ANONPAGES);
2904
	page_add_new_anon_rmap(page, vma, addr, false);
2905
	if (!is_zone_device_page(page))
2906
		lru_cache_add_inactive_or_unevictable(page, vma);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

2924 2925
unlock_abort:
	pte_unmap_unlock(ptep, ptl);
2926 2927 2928 2929
abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2930
/**
2931 2932 2933 2934 2935 2936 2937
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
2938
void migrate_vma_pages(struct migrate_vma *migrate)
2939 2940 2941
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2942 2943
	struct mmu_notifier_range range;
	unsigned long addr, i;
2944
	bool notified = false;
2945 2946 2947 2948 2949 2950 2951

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2952 2953
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2954
			continue;
2955 2956 2957
		}

		if (!page) {
2958
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2959 2960 2961
				continue;
			if (!notified) {
				notified = true;
2962

A
Alistair Popple 已提交
2963 2964 2965
				mmu_notifier_range_init_owner(&range,
					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
					migrate->vma->vm_mm, addr, migrate->end,
2966
					migrate->pgmap_owner);
2967
				mmu_notifier_invalidate_range_start(&range);
2968 2969
			}
			migrate_vma_insert_page(migrate, addr, newpage,
2970
						&migrate->src[i]);
2971
			continue;
2972
		}
2973 2974 2975

		mapping = page_mapping(page);

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2986
			} else {
2987 2988 2989 2990 2991 2992 2993 2994 2995
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2996 2997 2998 2999
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
3000

3001 3002 3003 3004 3005
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
3006
	if (notified)
3007
		mmu_notifier_invalidate_range_only_end(&range);
3008
}
3009
EXPORT_SYMBOL(migrate_vma_pages);
3010

3011
/**
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
3022
void migrate_vma_finalize(struct migrate_vma *migrate)
3023 3024 3025 3026 3027 3028 3029 3030
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

3031 3032 3033 3034 3035
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
3036
			continue;
3037 3038
		}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);

3050 3051 3052 3053
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
3054 3055 3056

		if (newpage != page) {
			unlock_page(newpage);
3057 3058 3059 3060
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
3061 3062 3063
		}
	}
}
3064
EXPORT_SYMBOL(migrate_vma_finalize);
3065
#endif /* CONFIG_DEVICE_PRIVATE */
3066

3067
#if defined(CONFIG_MEMORY_HOTPLUG)
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
/* Disable reclaim-based migration. */
static void __disable_all_migrate_targets(void)
{
	int node;

	for_each_online_node(node)
		node_demotion[node] = NUMA_NO_NODE;
}

static void disable_all_migrate_targets(void)
{
	__disable_all_migrate_targets();

	/*
	 * Ensure that the "disable" is visible across the system.
	 * Readers will see either a combination of before+disable
	 * state or disable+after.  They will never see before and
	 * after state together.
	 *
	 * The before+after state together might have cycles and
	 * could cause readers to do things like loop until this
	 * function finishes.  This ensures they can only see a
	 * single "bad" read and would, for instance, only loop
	 * once.
	 */
	synchronize_rcu();
}

/*
 * Find an automatic demotion target for 'node'.
 * Failing here is OK.  It might just indicate
 * being at the end of a chain.
 */
static int establish_migrate_target(int node, nodemask_t *used)
{
	int migration_target;

	/*
	 * Can not set a migration target on a
	 * node with it already set.
	 *
	 * No need for READ_ONCE() here since this
	 * in the write path for node_demotion[].
	 * This should be the only thread writing.
	 */
	if (node_demotion[node] != NUMA_NO_NODE)
		return NUMA_NO_NODE;

	migration_target = find_next_best_node(node, used);
	if (migration_target == NUMA_NO_NODE)
		return NUMA_NO_NODE;

	node_demotion[node] = migration_target;

	return migration_target;
}

/*
 * When memory fills up on a node, memory contents can be
 * automatically migrated to another node instead of
 * discarded at reclaim.
 *
 * Establish a "migration path" which will start at nodes
 * with CPUs and will follow the priorities used to build the
 * page allocator zonelists.
 *
 * The difference here is that cycles must be avoided.  If
 * node0 migrates to node1, then neither node1, nor anything
 * node1 migrates to can migrate to node0.
 *
 * This function can run simultaneously with readers of
 * node_demotion[].  However, it can not run simultaneously
 * with itself.  Exclusion is provided by memory hotplug events
 * being single-threaded.
 */
static void __set_migration_target_nodes(void)
{
	nodemask_t next_pass	= NODE_MASK_NONE;
	nodemask_t this_pass	= NODE_MASK_NONE;
	nodemask_t used_targets = NODE_MASK_NONE;
	int node;

	/*
	 * Avoid any oddities like cycles that could occur
	 * from changes in the topology.  This will leave
	 * a momentary gap when migration is disabled.
	 */
	disable_all_migrate_targets();

	/*
	 * Allocations go close to CPUs, first.  Assume that
	 * the migration path starts at the nodes with CPUs.
	 */
	next_pass = node_states[N_CPU];
again:
	this_pass = next_pass;
	next_pass = NODE_MASK_NONE;
	/*
	 * To avoid cycles in the migration "graph", ensure
	 * that migration sources are not future targets by
	 * setting them in 'used_targets'.  Do this only
	 * once per pass so that multiple source nodes can
	 * share a target node.
	 *
	 * 'used_targets' will become unavailable in future
	 * passes.  This limits some opportunities for
	 * multiple source nodes to share a destination.
	 */
	nodes_or(used_targets, used_targets, this_pass);
	for_each_node_mask(node, this_pass) {
		int target_node = establish_migrate_target(node, &used_targets);

		if (target_node == NUMA_NO_NODE)
			continue;

		/*
		 * Visit targets from this pass in the next pass.
		 * Eventually, every node will have been part of
		 * a pass, and will become set in 'used_targets'.
		 */
		node_set(target_node, next_pass);
	}
	/*
	 * 'next_pass' contains nodes which became migration
	 * targets in this pass.  Make additional passes until
	 * no more migrations targets are available.
	 */
	if (!nodes_empty(next_pass))
		goto again;
}

/*
 * For callers that do not hold get_online_mems() already.
 */
static void set_migration_target_nodes(void)
{
	get_online_mems();
	__set_migration_target_nodes();
	put_online_mems();
}
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

/*
 * React to hotplug events that might affect the migration targets
 * like events that online or offline NUMA nodes.
 *
 * The ordering is also currently dependent on which nodes have
 * CPUs.  That means we need CPU on/offline notification too.
 */
static int migration_online_cpu(unsigned int cpu)
{
	set_migration_target_nodes();
	return 0;
}

static int migration_offline_cpu(unsigned int cpu)
{
	set_migration_target_nodes();
	return 0;
}

/*
 * This leaves migrate-on-reclaim transiently disabled between
 * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
 * whether reclaim-based migration is enabled or not, which
 * ensures that the user can turn reclaim-based migration at
 * any time without needing to recalculate migration targets.
 *
 * These callbacks already hold get_online_mems().  That is why
 * __set_migration_target_nodes() can be used as opposed to
 * set_migration_target_nodes().
 */
static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
						 unsigned long action, void *arg)
{
	switch (action) {
	case MEM_GOING_OFFLINE:
		/*
		 * Make sure there are not transient states where
		 * an offline node is a migration target.  This
		 * will leave migration disabled until the offline
		 * completes and the MEM_OFFLINE case below runs.
		 */
		disable_all_migrate_targets();
		break;
	case MEM_OFFLINE:
	case MEM_ONLINE:
		/*
		 * Recalculate the target nodes once the node
		 * reaches its final state (online or offline).
		 */
		__set_migration_target_nodes();
		break;
	case MEM_CANCEL_OFFLINE:
		/*
		 * MEM_GOING_OFFLINE disabled all the migration
		 * targets.  Reenable them.
		 */
		__set_migration_target_nodes();
		break;
	case MEM_GOING_ONLINE:
	case MEM_CANCEL_ONLINE:
		break;
	}

	return notifier_from_errno(0);
}

static int __init migrate_on_reclaim_init(void)
{
	int ret;

	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "migrate on reclaim",
				migration_online_cpu,
				migration_offline_cpu);
	/*
	 * In the unlikely case that this fails, the automatic
	 * migration targets may become suboptimal for nodes
	 * where N_CPU changes.  With such a small impact in a
	 * rare case, do not bother trying to do anything special.
	 */
	WARN_ON(ret < 0);

	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
	return 0;
}
late_initcall(migrate_on_reclaim_init);
#endif /* CONFIG_MEMORY_HOTPLUG */