migrate.c 77.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pagewalk.h>
42
#include <linux/pfn_t.h>
43
#include <linux/memremap.h>
44
#include <linux/userfaultfd_k.h>
45
#include <linux/balloon_compaction.h>
46
#include <linux/mmu_notifier.h>
47
#include <linux/page_idle.h>
48
#include <linux/page_owner.h>
49
#include <linux/sched/mm.h>
50
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
51

52 53
#include <asm/tlbflush.h>

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
57 58 59
#include "internal.h"

/*
60
 * migrate_prep() needs to be called before we start compiling a list of pages
61 62
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

77 78 79 80 81 82 83 84
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

85
int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
W
Wei Yang 已提交
104
	 * so unconditionally grabbing the lock ruins page's owner side.
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

136
	return 0;
137 138 139 140 141 142

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
143
	return -EBUSY;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

160 161 162 163
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
164 165 166
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
167 168 169 170 171 172
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
173
	list_for_each_entry_safe(page, page2, l, lru) {
174 175 176 177
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
178
		list_del(&page->lru);
179 180 181 182 183
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
184
		if (unlikely(__PageMovable(page))) {
185 186 187 188 189 190 191 192 193
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
194 195
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
196
			putback_lru_page(page);
197
		}
C
Christoph Lameter 已提交
198 199 200
	}
}

201 202 203
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
204
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205
				 unsigned long addr, void *old)
206
{
207 208 209 210 211 212 213 214
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
215 216
	swp_entry_t entry;

217 218
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
219 220 221 222 223
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
224

225 226 227 228 229 230 231 232 233
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

234 235 236 237
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
238

239 240 241 242 243 244
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
245

246 247 248 249 250
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			}
251
		}
252

A
Andi Kleen 已提交
253
#ifdef CONFIG_HUGETLB_PAGE
254 255 256
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
257
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 259 260 261
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
262 263 264 265
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266

267 268 269 270 271
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
272 273 274
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

275 276 277
		if (PageTransHuge(page) && PageMlocked(page))
			clear_page_mlock(page);

278 279 280
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
281

M
Minchan Kim 已提交
282
	return true;
283 284
}

285 286 287 288
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
289
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290
{
291 292 293 294 295
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

296 297 298 299
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
300 301
}

302 303 304 305 306
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
307
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308
				spinlock_t *ptl)
309
{
310
	pte_t pte;
311 312 313
	swp_entry_t entry;
	struct page *page;

314
	spin_lock(ptl);
315 316 317 318 319 320 321 322 323 324
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
325
	/*
326
	 * Once page cache replacement of page migration started, page_count
327 328
	 * is zero; but we must not call put_and_wait_on_page_locked() without
	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
N
Nick Piggin 已提交
329 330 331
	 */
	if (!get_page_unless_zero(page))
		goto out;
332
	pte_unmap_unlock(ptep, ptl);
333
	put_and_wait_on_page_locked(page);
334 335 336 337 338
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

339 340 341 342 343 344 345 346
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

347 348
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
349
{
350
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
351 352 353
	__migration_entry_wait(mm, pte, ptl);
}

354 355 356 357 358 359 360 361 362 363 364 365 366
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
367
	put_and_wait_on_page_locked(page);
368 369 370 371 372 373
	return;
unlock:
	spin_unlock(ptl);
}
#endif

374
static int expected_page_refs(struct address_space *mapping, struct page *page)
375 376 377 378 379 380 381 382
{
	int expected_count = 1;

	/*
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
	 */
	expected_count += is_device_private_page(page);
383
	if (mapping)
384 385 386 387 388
		expected_count += hpage_nr_pages(page) + page_has_private(page);

	return expected_count;
}

C
Christoph Lameter 已提交
389
/*
390
 * Replace the page in the mapping.
391 392 393 394
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
395
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
396
 */
397
int migrate_page_move_mapping(struct address_space *mapping,
398
		struct page *newpage, struct page *page, int extra_count)
C
Christoph Lameter 已提交
399
{
400
	XA_STATE(xas, &mapping->i_pages, page_index(page));
401 402
	struct zone *oldzone, *newzone;
	int dirty;
403
	int expected_count = expected_page_refs(mapping, page) + extra_count;
404

405
	if (!mapping) {
406
		/* Anonymous page without mapping */
407
		if (page_count(page) != expected_count)
408
			return -EAGAIN;
409 410 411 412 413

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
414
			__SetPageSwapBacked(newpage);
415

416
		return MIGRATEPAGE_SUCCESS;
417 418
	}

419 420 421
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

422 423 424
	xas_lock_irq(&xas);
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
425
		return -EAGAIN;
C
Christoph Lameter 已提交
426 427
	}

428
	if (!page_ref_freeze(page, expected_count)) {
429
		xas_unlock_irq(&xas);
N
Nick Piggin 已提交
430 431 432
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
433
	/*
434 435
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
436
	 */
437 438
	newpage->index = page->index;
	newpage->mapping = page->mapping;
439
	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440 441 442 443 444 445 446 447
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
448 449
	}

450 451 452 453 454 455 456
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

457
	xas_store(&xas, newpage);
458 459 460
	if (PageTransHuge(page)) {
		int i;

461
		for (i = 1; i < HPAGE_PMD_NR; i++) {
462
			xas_next(&xas);
463
			xas_store(&xas, newpage);
464 465
		}
	}
466 467

	/*
468 469
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
470 471
	 * We know this isn't the last reference.
	 */
472
	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
473

474
	xas_unlock(&xas);
475 476
	/* Leave irq disabled to prevent preemption while updating stats */

477 478 479 480 481 482 483
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
484
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485 486
	 * are mapped to swap space.
	 */
487
	if (newzone != oldzone) {
488 489
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
491 492
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493 494
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
495
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
499
		}
500
	}
501
	local_irq_enable();
C
Christoph Lameter 已提交
502

503
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
504
}
505
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
506

N
Naoya Horiguchi 已提交
507 508 509 510 511 512 513
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
514
	XA_STATE(xas, &mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
515 516
	int expected_count;

517
	xas_lock_irq(&xas);
N
Naoya Horiguchi 已提交
518
	expected_count = 2 + page_has_private(page);
519 520
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
521 522 523
		return -EAGAIN;
	}

524
	if (!page_ref_freeze(page, expected_count)) {
525
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
526 527 528
		return -EAGAIN;
	}

529 530
	newpage->index = page->index;
	newpage->mapping = page->mapping;
531

N
Naoya Horiguchi 已提交
532 533
	get_page(newpage);

534
	xas_store(&xas, newpage);
N
Naoya Horiguchi 已提交
535

536
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
537

538
	xas_unlock_irq(&xas);
539

540
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
541 542
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
591 592 593
/*
 * Copy the page to its new location
 */
594
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
595
{
596 597
	int cpupid;

C
Christoph Lameter 已提交
598 599 600 601 602 603
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
604
	if (TestClearPageActive(page)) {
605
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
606
		SetPageActive(newpage);
607 608
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
609 610
	if (PageWorkingset(page))
		SetPageWorkingset(newpage);
C
Christoph Lameter 已提交
611 612 613 614 615
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

616 617 618
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
619

620 621 622 623 624
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

625 626 627 628 629 630 631
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

632
	ksm_migrate_page(newpage, page);
633 634 635 636
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
637 638
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
639 640 641 642 643 644 645 646 647
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
648 649

	copy_page_owner(page, newpage);
650 651

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
652
}
653 654 655 656 657 658 659 660 661 662 663
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
664
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
665

666 667 668 669
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
670
/*
671
 * Common logic to directly migrate a single LRU page suitable for
672
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
673 674 675
 *
 * Pages are locked upon entry and exit.
 */
676
int migrate_page(struct address_space *mapping,
677 678
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
679 680 681 682 683
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

684
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
C
Christoph Lameter 已提交
685

686
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
687 688
		return rc;

689 690 691 692
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
693
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
694 695 696
}
EXPORT_SYMBOL(migrate_page);

697
#ifdef CONFIG_BLOCK
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
	if (mode != MIGRATE_ASYNC) {
		do {
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}

736 737 738
static int __buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode,
		bool check_refs)
739 740 741
{
	struct buffer_head *bh, *head;
	int rc;
742
	int expected_count;
743 744

	if (!page_has_buffers(page))
745
		return migrate_page(mapping, newpage, page, mode);
746

747
	/* Check whether page does not have extra refs before we do more work */
748
	expected_count = expected_page_refs(mapping, page);
749 750
	if (page_count(page) != expected_count)
		return -EAGAIN;
751

752 753 754
	head = page_buffers(page);
	if (!buffer_migrate_lock_buffers(head, mode))
		return -EAGAIN;
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	if (check_refs) {
		bool busy;
		bool invalidated = false;

recheck_buffers:
		busy = false;
		spin_lock(&mapping->private_lock);
		bh = head;
		do {
			if (atomic_read(&bh->b_count)) {
				busy = true;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		if (busy) {
			if (invalidated) {
				rc = -EAGAIN;
				goto unlock_buffers;
			}
776
			spin_unlock(&mapping->private_lock);
777 778 779 780 781 782
			invalidate_bh_lrus();
			invalidated = true;
			goto recheck_buffers;
		}
	}

783
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
784
	if (rc != MIGRATEPAGE_SUCCESS)
785
		goto unlock_buffers;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

802 803 804 805
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
806

807 808
	rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
809 810
	if (check_refs)
		spin_unlock(&mapping->private_lock);
811 812 813 814 815 816 817
	bh = head;
	do {
		unlock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

818
	return rc;
819
}
820 821 822 823 824 825 826 827 828 829 830

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist. For example attached buffer heads are accessed only under page lock.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
831
EXPORT_SYMBOL(buffer_migrate_page);
832 833 834 835 836 837 838 839 840 841 842 843

/*
 * Same as above except that this variant is more careful and checks that there
 * are also no buffer head references. This function is the right one for
 * mappings where buffer heads are directly looked up and referenced (such as
 * block device mappings).
 */
int buffer_migrate_page_norefs(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
844
#endif
845

846 847 848 849
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
850
{
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

868
	/*
869 870 871 872 873 874
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
875
	 */
876
	remove_migration_ptes(page, page, false);
877

878
	rc = mapping->a_ops->writepage(page, &wbc);
879

880 881 882 883
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
884
	return (rc < 0) ? -EIO : -EAGAIN;
885 886 887 888 889 890
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
891
	struct page *newpage, struct page *page, enum migrate_mode mode)
892
{
893
	if (PageDirty(page)) {
894
		/* Only writeback pages in full synchronous migration */
895 896 897 898 899
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
900
			return -EBUSY;
901
		}
902
		return writeout(mapping, page);
903
	}
904 905 906 907 908

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
909
	if (page_has_private(page) &&
910
	    !try_to_release_page(page, GFP_KERNEL))
911
		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
912

913
	return migrate_page(mapping, newpage, page, mode);
914 915
}

916 917 918 919 920 921
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
922 923 924
 *
 * Return value:
 *   < 0 - error code
925
 *  MIGRATEPAGE_SUCCESS - success
926
 */
927
static int move_to_new_page(struct page *newpage, struct page *page,
928
				enum migrate_mode mode)
929 930
{
	struct address_space *mapping;
931 932
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
933

934 935
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
936 937

	mapping = page_mapping(page);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
956
		/*
957 958
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
959
		 */
960 961 962 963 964 965 966 967 968 969 970 971
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
972

973 974 975 976 977
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
994
			page->mapping = NULL;
995

996
		if (likely(!is_zone_device_page(newpage)))
997 998
			flush_dcache_page(newpage);

999
	}
1000
out:
1001 1002 1003
	return rc;
}

1004
static int __unmap_and_move(struct page *page, struct page *newpage,
1005
				int force, enum migrate_mode mode)
1006
{
1007
	int rc = -EAGAIN;
1008
	int page_was_mapped = 0;
1009
	struct anon_vma *anon_vma = NULL;
1010
	bool is_lru = !__PageMovable(page);
1011

N
Nick Piggin 已提交
1012
	if (!trylock_page(page)) {
1013
		if (!force || mode == MIGRATE_ASYNC)
1014
			goto out;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1030
			goto out;
1031

1032 1033 1034 1035
		lock_page(page);
	}

	if (PageWriteback(page)) {
1036
		/*
1037
		 * Only in the case of a full synchronous migration is it
1038 1039 1040
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1041
		 */
1042 1043 1044 1045 1046
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1047
			rc = -EBUSY;
1048
			goto out_unlock;
1049 1050
		}
		if (!force)
1051
			goto out_unlock;
1052 1053
		wait_on_page_writeback(page);
	}
1054

1055
	/*
1056 1057
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1058
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1059
	 * of migration. File cache pages are no problem because of page_lock()
1060 1061
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1062 1063 1064 1065 1066 1067
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1068
	 */
1069
	if (PageAnon(page) && !PageKsm(page))
1070
		anon_vma = page_get_anon_vma(page);
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1083 1084 1085 1086 1087
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1088
	/*
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1099
	 */
1100
	if (!page->mapping) {
1101
		VM_BUG_ON_PAGE(PageAnon(page), page);
1102
		if (page_has_private(page)) {
1103
			try_to_free_buffers(page);
1104
			goto out_unlock_both;
1105
		}
1106 1107
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1108 1109
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1110
		try_to_unmap(page,
1111
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112 1113
		page_was_mapped = 1;
	}
1114

1115
	if (!page_mapped(page))
1116
		rc = move_to_new_page(newpage, page, mode);
1117

1118 1119
	if (page_was_mapped)
		remove_migration_ptes(page,
1120
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121

1122 1123 1124
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1125
	/* Drop an anon_vma reference if we took one */
1126
	if (anon_vma)
1127
		put_anon_vma(anon_vma);
1128
	unlock_page(page);
1129
out:
1130 1131 1132 1133
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
1134 1135 1136 1137
	 * list in here. Use the old state of the isolated source page to
	 * determine if we migrated a LRU page. newpage was already unlocked
	 * and possibly modified by its owner - don't rely on the page
	 * state.
1138 1139
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1140
		if (unlikely(!is_lru))
1141 1142 1143 1144 1145
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1146 1147
	return rc;
}
1148

1149 1150 1151 1152
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
1153 1154
#if defined(CONFIG_ARM) && \
	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 1156 1157 1158 1159
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1160 1161 1162 1163
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1164 1165 1166
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1167 1168
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1169
{
1170
	int rc = MIGRATEPAGE_SUCCESS;
1171
	struct page *newpage = NULL;
1172

M
Michal Hocko 已提交
1173 1174 1175
	if (!thp_migration_supported() && PageTransHuge(page))
		return -ENOMEM;

1176 1177
	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1178 1179
		ClearPageActive(page);
		ClearPageUnevictable(page);
1180 1181 1182 1183 1184 1185
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1186 1187 1188
		goto out;
	}

1189 1190 1191 1192
	newpage = get_new_page(page, private);
	if (!newpage)
		return -ENOMEM;

1193
	rc = __unmap_and_move(page, newpage, force, mode);
1194
	if (rc == MIGRATEPAGE_SUCCESS)
1195
		set_page_owner_migrate_reason(newpage, reason);
1196

1197
out:
1198
	if (rc != -EAGAIN) {
1199 1200 1201 1202 1203 1204 1205
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1206 1207 1208 1209 1210 1211 1212

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1213 1214
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1225
			/*
1226 1227 1228
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1229
			 */
1230
			if (set_hwpoison_free_buddy_page(page))
1231
				num_poisoned_pages_inc();
1232 1233
		}
	} else {
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1249 1250 1251 1252
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1253
	}
1254

1255 1256 1257
	return rc;
}

N
Naoya Horiguchi 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 1278
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1279
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1280
{
1281
	int rc = -EAGAIN;
1282
	int page_was_mapped = 0;
1283
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1284 1285
	struct anon_vma *anon_vma = NULL;

1286
	/*
1287
	 * Migratability of hugepages depends on architectures and their size.
1288 1289 1290 1291 1292
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1293
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1294
		putback_active_hugepage(hpage);
1295
		return -ENOSYS;
1296
	}
1297

1298
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1299 1300 1301 1302
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1303
		if (!force)
N
Naoya Horiguchi 已提交
1304
			goto out;
1305 1306 1307 1308 1309 1310 1311
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1312 1313 1314
		lock_page(hpage);
	}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * Check for pages which are in the process of being freed.  Without
	 * page_mapping() set, hugetlbfs specific move page routine will not
	 * be called and we could leak usage counts for subpools.
	 */
	if (page_private(hpage) && !page_mapping(hpage)) {
		rc = -EBUSY;
		goto out_unlock;
	}

1325 1326
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1327

1328 1329 1330
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1331 1332
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
1333
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334 1335
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1336 1337

	if (!page_mapped(hpage))
1338
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1339

1340 1341
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1342
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1343

1344 1345 1346
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1347
	if (anon_vma)
1348
		put_anon_vma(anon_vma);
1349

1350
	if (rc == MIGRATEPAGE_SUCCESS) {
1351
		move_hugetlb_state(hpage, new_hpage, reason);
1352 1353
		put_new_page = NULL;
	}
1354

1355
out_unlock:
N
Naoya Horiguchi 已提交
1356
	unlock_page(hpage);
1357
out:
1358 1359
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1360 1361 1362 1363 1364 1365

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1366
	if (put_new_page)
1367 1368
		put_new_page(new_hpage, private);
	else
1369
		putback_active_hugepage(new_hpage);
1370

N
Naoya Horiguchi 已提交
1371 1372 1373
	return rc;
}

C
Christoph Lameter 已提交
1374
/*
1375 1376
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1377
 *
1378 1379 1380
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1381 1382
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1383 1384 1385 1386
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1387
 *
1388 1389
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1390
 * The caller should call putback_movable_pages() to return pages to the LRU
1391
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1392
 *
1393
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1394
 */
1395
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396 1397
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1398
{
1399
	int retry = 1;
C
Christoph Lameter 已提交
1400
	int nr_failed = 0;
1401
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1411 1412
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1413

1414
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1415
retry:
1416
			cond_resched();
1417

1418 1419
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1420
						put_new_page, private, page,
1421
						pass > 2, mode, reason);
1422
			else
1423
				rc = unmap_and_move(get_new_page, put_new_page,
1424 1425
						private, page, pass > 2, mode,
						reason);
1426

1427
			switch(rc) {
1428
			case -ENOMEM:
M
Michal Hocko 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
				/*
				 * THP migration might be unsupported or the
				 * allocation could've failed so we should
				 * retry on the same page with the THP split
				 * to base pages.
				 *
				 * Head page is retried immediately and tail
				 * pages are added to the tail of the list so
				 * we encounter them after the rest of the list
				 * is processed.
				 */
1440
				if (PageTransHuge(page) && !PageHuge(page)) {
M
Michal Hocko 已提交
1441 1442 1443 1444 1445 1446 1447 1448
					lock_page(page);
					rc = split_huge_page_to_list(page, from);
					unlock_page(page);
					if (!rc) {
						list_safe_reset_next(page, page2, lru);
						goto retry;
					}
				}
1449
				nr_failed++;
1450
				goto out;
1451
			case -EAGAIN:
1452
				retry++;
1453
				break;
1454
			case MIGRATEPAGE_SUCCESS:
1455
				nr_succeeded++;
1456 1457
				break;
			default:
1458 1459 1460 1461 1462 1463
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1464
				nr_failed++;
1465
				break;
1466
			}
C
Christoph Lameter 已提交
1467 1468
		}
	}
1469 1470
	nr_failed += retry;
	rc = nr_failed;
1471
out:
1472 1473 1474 1475
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476 1477
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1478 1479 1480
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1481
	return rc;
C
Christoph Lameter 已提交
1482
}
1483

1484 1485
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1486
static int store_status(int __user *status, int start, int value, int nr)
1487
{
M
Michal Hocko 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;

	if (list_empty(pagelist))
		return 0;

	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
			MIGRATE_SYNC, MR_SYSCALL);
	if (err)
		putback_movable_pages(pagelist);
	return err;
1510 1511 1512
}

/*
M
Michal Hocko 已提交
1513 1514
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
1515 1516 1517 1518 1519
 * Returns:
 *     errno - if the page cannot be found/isolated
 *     0 - when it doesn't have to be migrated because it is already on the
 *         target node
 *     1 - when it has been queued
1520
 */
M
Michal Hocko 已提交
1521 1522
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1523
{
M
Michal Hocko 已提交
1524 1525 1526
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1527 1528 1529
	int err;

	down_read(&mm->mmap_sem);
M
Michal Hocko 已提交
1530 1531 1532 1533
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1534

M
Michal Hocko 已提交
1535 1536 1537
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1538

M
Michal Hocko 已提交
1539 1540 1541
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1542

M
Michal Hocko 已提交
1543 1544 1545
	err = -ENOENT;
	if (!page)
		goto out;
1546

M
Michal Hocko 已提交
1547 1548 1549
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1550

M
Michal Hocko 已提交
1551 1552 1553
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1554

M
Michal Hocko 已提交
1555 1556 1557
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
1558
			err = 1;
1559
		}
M
Michal Hocko 已提交
1560 1561
	} else {
		struct page *head;
1562

1563 1564
		head = compound_head(page);
		err = isolate_lru_page(head);
1565
		if (err)
M
Michal Hocko 已提交
1566
			goto out_putpage;
1567

1568
		err = 1;
M
Michal Hocko 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
			NR_ISOLATED_ANON + page_is_file_cache(head),
			hpage_nr_pages(head));
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1582 1583 1584 1585
	up_read(&mm->mmap_sem);
	return err;
}

1586 1587 1588 1589
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1590
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 1592 1593 1594 1595
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1596 1597 1598 1599
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1600 1601 1602

	migrate_prep();

M
Michal Hocko 已提交
1603 1604 1605 1606
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1607

M
Michal Hocko 已提交
1608 1609 1610 1611 1612
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
1613
		addr = (unsigned long)untagged_addr(p);
M
Michal Hocko 已提交
1614 1615 1616 1617 1618 1619

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1620

M
Michal Hocko 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
			err = do_move_pages_to_node(mm, &pagelist, current_node);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
			if (err) {
				/*
				 * Positive err means the number of failed
				 * pages to migrate.  Since we are going to
				 * abort and return the number of non-migrated
				 * pages, so need to incude the rest of the
				 * nr_pages that have not been attempted as
				 * well.
				 */
				if (err > 0)
					err += nr_pages - i - 1;
M
Michal Hocko 已提交
1641
				goto out;
1642
			}
M
Michal Hocko 已提交
1643 1644 1645 1646 1647
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
			start = i;
			current_node = node;
1648 1649
		}

M
Michal Hocko 已提交
1650 1651 1652 1653 1654 1655
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
1656 1657 1658 1659 1660 1661

		if (!err) {
			/* The page is already on the target node */
			err = store_status(status, i, current_node, 1);
			if (err)
				goto out_flush;
M
Michal Hocko 已提交
1662
			continue;
1663 1664 1665 1666
		} else if (err > 0) {
			/* The page is successfully queued for migration */
			continue;
		}
1667

M
Michal Hocko 已提交
1668 1669 1670
		err = store_status(status, i, err, 1);
		if (err)
			goto out_flush;
1671

M
Michal Hocko 已提交
1672
		err = do_move_pages_to_node(mm, &pagelist, current_node);
1673 1674 1675
		if (err) {
			if (err > 0)
				err += nr_pages - i - 1;
M
Michal Hocko 已提交
1676
			goto out;
1677
		}
M
Michal Hocko 已提交
1678 1679 1680 1681 1682 1683
		if (i > start) {
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
		}
		current_node = NUMA_NO_NODE;
1684
	}
M
Michal Hocko 已提交
1685
out_flush:
1686 1687 1688
	if (list_empty(&pagelist))
		return err;

M
Michal Hocko 已提交
1689 1690
	/* Make sure we do not overwrite the existing error */
	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1691 1692 1693 1694 1695 1696 1697
	/*
	 * Don't have to report non-attempted pages here since:
	 *     - If the above loop is done gracefully all pages have been
	 *       attempted.
	 *     - If the above loop is aborted it means a fatal error
	 *       happened, should return ret.
	 */
M
Michal Hocko 已提交
1698 1699
	if (!err1)
		err1 = store_status(status, start, current_node, i - start);
1700
	if (err >= 0)
M
Michal Hocko 已提交
1701
		err = err1;
1702 1703 1704 1705
out:
	return err;
}

1706
/*
1707
 * Determine the nodes of an array of pages and store it in an array of status.
1708
 */
1709 1710
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1711
{
1712 1713
	unsigned long i;

1714 1715
	down_read(&mm->mmap_sem);

1716
	for (i = 0; i < nr_pages; i++) {
1717
		unsigned long addr = (unsigned long)(*pages);
1718 1719
		struct vm_area_struct *vma;
		struct page *page;
1720
		int err = -EFAULT;
1721 1722

		vma = find_vma(mm, addr);
1723
		if (!vma || addr < vma->vm_start)
1724 1725
			goto set_status;

1726 1727
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1728 1729 1730 1731 1732

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1733
		err = page ? page_to_nid(page) : -ENOENT;
1734
set_status:
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1756 1757
	while (nr_pages) {
		unsigned long chunk_nr;
1758

1759 1760 1761 1762 1763 1764
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1765 1766 1767

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1768 1769
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1770

1771 1772 1773 1774 1775
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1776 1777 1778 1779 1780 1781
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1782 1783 1784 1785
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
1786 1787 1788
{
	struct task_struct *task;
	struct mm_struct *mm;
1789
	int err;
1790
	nodemask_t task_nodes;
1791 1792 1793 1794 1795 1796 1797 1798 1799

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1800
	rcu_read_lock();
1801
	task = pid ? find_task_by_vpid(pid) : current;
1802
	if (!task) {
1803
		rcu_read_unlock();
1804 1805
		return -ESRCH;
	}
1806
	get_task_struct(task);
1807 1808 1809

	/*
	 * Check if this process has the right to modify the specified
1810
	 * process. Use the regular "ptrace_may_access()" checks.
1811
	 */
1812
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1813
		rcu_read_unlock();
1814
		err = -EPERM;
1815
		goto out;
1816
	}
1817
	rcu_read_unlock();
1818

1819 1820
 	err = security_task_movememory(task);
 	if (err)
1821
		goto out;
1822

1823 1824 1825 1826
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1827 1828 1829 1830 1831 1832 1833 1834
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1835 1836 1837

	mmput(mm);
	return err;
1838 1839 1840 1841

out:
	put_task_struct(task);
	return err;
1842 1843
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

1874 1875 1876 1877 1878 1879
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1880
				   unsigned long nr_migrate_pages)
1881 1882
{
	int z;
M
Mel Gorman 已提交
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
1894
				       ZONE_MOVABLE, 0))
1895 1896 1897 1898 1899 1900 1901
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1902
					   unsigned long data)
1903 1904 1905 1906
{
	int nid = (int) data;
	struct page *newpage;

1907
	newpage = __alloc_pages_node(nid,
1908 1909 1910
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1911
					 ~__GFP_RECLAIM, 0);
1912

1913 1914 1915
	return newpage;
}

1916
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1917
{
1918
	int page_lru;
1919

1920
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1921

1922
	/* Avoid migrating to a node that is nearly full */
1923
	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1924
		return 0;
1925

1926 1927
	if (isolate_lru_page(page))
		return 0;
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1939 1940
	}

1941
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1942
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1943 1944
				hpage_nr_pages(page));

1945
	/*
1946 1947 1948
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1949 1950
	 */
	put_page(page);
1951
	return 1;
1952 1953
}

1954 1955 1956 1957 1958 1959
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1960 1961 1962 1963 1964
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1965 1966
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1967 1968
{
	pg_data_t *pgdat = NODE_DATA(node);
1969
	int isolated;
1970 1971 1972 1973
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1974 1975
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1976
	 */
1977 1978
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1979 1980
		goto out;

1981 1982 1983 1984 1985 1986 1987
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
	if (page_is_file_cache(page) && PageDirty(page))
		goto out;

1988 1989 1990 1991 1992
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1993
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1994 1995
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1996
	if (nr_remaining) {
1997 1998
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1999
			dec_node_page_state(page, NR_ISOLATED_ANON +
2000 2001 2002
					page_is_file_cache(page));
			putback_lru_page(page);
		}
2003 2004 2005
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2006 2007
	BUG_ON(!list_empty(&migratepages));
	return isolated;
2008 2009 2010 2011

out:
	put_page(page);
	return 0;
2012
}
2013
#endif /* CONFIG_NUMA_BALANCING */
2014

2015
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2016 2017 2018 2019
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
2020 2021 2022 2023 2024 2025
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
2026
	spinlock_t *ptl;
2027 2028 2029 2030
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2031
	unsigned long start = address & HPAGE_PMD_MASK;
2032 2033

	new_page = alloc_pages_node(node,
2034
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035
		HPAGE_PMD_ORDER);
2036 2037
	if (!new_page)
		goto out_fail;
2038
	prep_transhuge_page(new_page);
2039

2040
	isolated = numamigrate_isolate_page(pgdat, page);
2041
	if (!isolated) {
2042
		put_page(new_page);
2043
		goto out_fail;
2044
	}
2045

2046
	/* Prepare a page as a migration target */
2047
	__SetPageLocked(new_page);
2048 2049
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2050 2051 2052 2053

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
2054 2055
	/* flush the cache before copying using the kernel virtual address */
	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2056 2057 2058 2059
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2060
	ptl = pmd_lock(mm, pmd);
2061
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2062
		spin_unlock(ptl);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2073 2074
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2075
		putback_lru_page(page);
M
Mel Gorman 已提交
2076
		mod_node_page_state(page_pgdat(page),
2077
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078 2079

		goto out_unlock;
2080 2081
	}

K
Kirill A. Shutemov 已提交
2082
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2084

2085
	/*
2086 2087 2088 2089 2090 2091
	 * Overwrite the old entry under pagetable lock and establish
	 * the new PTE. Any parallel GUP will either observe the old
	 * page blocking on the page lock, block on the page table
	 * lock or observe the new page. The SetPageUptodate on the
	 * new page and page_add_new_anon_rmap guarantee the copy is
	 * visible before the pagetable update.
2092
	 */
2093
	page_add_anon_rmap(new_page, vma, start, true);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	/*
	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
	 * has already been flushed globally.  So no TLB can be currently
	 * caching this non present pmd mapping.  There's no need to clear the
	 * pmd before doing set_pmd_at(), nor to flush the TLB after
	 * set_pmd_at().  Clearing the pmd here would introduce a race
	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
	 * pmd.
	 */
2105
	set_pmd_at(mm, start, pmd, entry);
2106
	update_mmu_cache_pmd(vma, address, &entry);
2107

2108
	page_ref_unfreeze(page, 2);
2109
	mlock_migrate_page(new_page, page);
2110
	page_remove_rmap(page, true);
2111
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2112

2113
	spin_unlock(ptl);
2114

2115 2116 2117 2118
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2119 2120 2121 2122 2123 2124 2125 2126
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2127
	mod_node_page_state(page_pgdat(page),
2128 2129 2130 2131
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2132 2133
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2134 2135
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2136
		entry = pmd_modify(entry, vma->vm_page_prot);
2137
		set_pmd_at(mm, start, pmd, entry);
2138 2139 2140
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2141

2142
out_unlock:
2143
	unlock_page(page);
2144 2145 2146
	put_page(page);
	return 0;
}
2147 2148 2149
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2150

2151
#ifdef CONFIG_DEVICE_PRIVATE
2152 2153 2154 2155 2156 2157 2158
static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2159
	for (addr = start; addr < end; addr += PAGE_SIZE) {
2160
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2161
		migrate->dst[migrate->npages] = 0;
2162
		migrate->npages++;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2176
	for (addr = start; addr < end; addr += PAGE_SIZE) {
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2192
	unsigned long addr = start, unmapped = 0;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2214
				return migrate_vma_collect_skip(start, end,
2215 2216 2217 2218 2219 2220 2221
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2222
				return migrate_vma_collect_skip(start, end,
2223 2224 2225 2226
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2227 2228 2229 2230
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2231 2232 2233 2234 2235 2236
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2237
		return migrate_vma_collect_skip(start, end, walk);
2238 2239

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2240 2241
	arch_enter_lazy_mmu_mode();

2242 2243 2244
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2245
		swp_entry_t entry;
2246 2247 2248 2249
		pte_t pte;

		pte = *ptep;

2250
		if (pte_none(pte)) {
2251 2252
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
2253 2254 2255
			goto next;
		}

2256
		if (!pte_present(pte)) {
2257
			mpfn = 0;
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
2269 2270
			mpfn = migrate_pfn(page_to_pfn(page)) |
					MIGRATE_PFN_MIGRATE;
2271 2272 2273
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2274
			pfn = pte_pfn(pte);
2275 2276 2277 2278 2279
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				goto next;
			}
2280
			page = vm_normal_page(migrate->vma, addr, pte);
2281 2282 2283 2284
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2285 2286
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
2287
			mpfn = 0;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
			goto next;
		}

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2315 2316
			entry = make_migration_entry(page, mpfn &
						     MIGRATE_PFN_WRITE);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2329 2330 2331

			if (pte_present(pte))
				unmapped++;
2332 2333
		}

2334
next:
2335
		migrate->dst[migrate->npages] = 0;
2336 2337
		migrate->src[migrate->npages++] = mpfn;
	}
2338
	arch_leave_lazy_mmu_mode();
2339 2340
	pte_unmap_unlock(ptep - 1, ptl);

2341 2342 2343 2344
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2345 2346 2347
	return 0;
}

2348 2349 2350 2351 2352
static const struct mm_walk_ops migrate_vma_walk_ops = {
	.pmd_entry		= migrate_vma_collect_pmd,
	.pte_hole		= migrate_vma_collect_hole,
};

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
2363
	struct mmu_notifier_range range;
2364

2365 2366
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
			migrate->vma->vm_mm, migrate->start, migrate->end);
2367
	mmu_notifier_invalidate_range_start(&range);
2368

2369 2370 2371 2372
	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
			&migrate_vma_walk_ops, migrate);

	mmu_notifier_invalidate_range_end(&range);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
2416
		return is_device_private_page(page);
2417 2418
	}

2419 2420 2421 2422
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2441 2442
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2443 2444 2445 2446 2447 2448
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2449
		bool remap = true;
2450 2451 2452 2453

		if (!page)
			continue;

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2471 2472
		}

2473 2474 2475 2476 2477 2478 2479
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2493
			}
2494 2495 2496

			/* Drop the reference we took in collect */
			put_page(page);
2497 2498 2499
		}

		if (!migrate_vma_check_page(page)) {
2500 2501 2502 2503
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2504

2505 2506 2507 2508
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2509 2510 2511 2512 2513
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2514 2515 2516 2517
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2518
			}
2519 2520
		}
	}
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2561 2562 2563 2564
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2565
		}
2566 2567 2568 2569 2570 2571 2572 2573

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2588 2589 2590 2591
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2592 2593 2594
	}
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/**
 * migrate_vma_setup() - prepare to migrate a range of memory
 * @args: contains the vma, start, and and pfns arrays for the migration
 *
 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
 * without an error.
 *
 * Prepare to migrate a range of memory virtual address range by collecting all
 * the pages backing each virtual address in the range, saving them inside the
 * src array.  Then lock those pages and unmap them. Once the pages are locked
 * and unmapped, check whether each page is pinned or not.  Pages that aren't
 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
 * corresponding src array entry.  Then restores any pages that are pinned, by
 * remapping and unlocking those pages.
 *
 * The caller should then allocate destination memory and copy source memory to
 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
 * flag set).  Once these are allocated and copied, the caller must update each
 * corresponding entry in the dst array with the pfn value of the destination
 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
 * (destination pages must have their struct pages locked, via lock_page()).
 *
 * Note that the caller does not have to migrate all the pages that are marked
 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
 * device memory to system memory.  If the caller cannot migrate a device page
 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
 * consequences for the userspace process, so it must be avoided if at all
 * possible.
 *
 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
 * allowing the caller to allocate device memory for those unback virtual
 * address.  For this the caller simply has to allocate device memory and
 * properly set the destination entry like for regular migration.  Note that
 * this can still fails and thus inside the device driver must check if the
 * migration was successful for those entries after calling migrate_vma_pages()
 * just like for regular migration.
 *
 * After that, the callers must call migrate_vma_pages() to go over each entry
 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then migrate_vma_pages() to migrate struct page information from the source
 * struct page to the destination struct page.  If it fails to migrate the
 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
 * src array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * Once migrate_vma_pages() returns the caller may inspect which pages were
 * successfully migrated, and which were not.  Successfully migrated pages will
 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
 *
 * It is safe to update device page table after migrate_vma_pages() because
 * both destination and source page are still locked, and the mmap_sem is held
 * in read mode (hence no one can unmap the range being migrated).
 *
 * Once the caller is done cleaning up things and updating its page table (if it
 * chose to do so, this is not an obligation) it finally calls
 * migrate_vma_finalize() to update the CPU page table to point to new pages
 * for successfully migrated pages or otherwise restore the CPU page table to
 * point to the original source pages.
 */
int migrate_vma_setup(struct migrate_vma *args)
{
	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;

	args->start &= PAGE_MASK;
	args->end &= PAGE_MASK;
	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
		return -EINVAL;
	if (nr_pages <= 0)
		return -EINVAL;
	if (args->start < args->vma->vm_start ||
	    args->start >= args->vma->vm_end)
		return -EINVAL;
	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
		return -EINVAL;
	if (!args->src || !args->dst)
		return -EINVAL;

	memset(args->src, 0, sizeof(*args->src) * nr_pages);
	args->cpages = 0;
	args->npages = 0;

	migrate_vma_collect(args);

	if (args->cpages)
		migrate_vma_prepare(args);
	if (args->cpages)
		migrate_vma_unmap(args);

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the drivers.
	 */
	return 0;

}
EXPORT_SYMBOL(migrate_vma_setup);

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
2745
	if (pte_alloc(mm, pmdp))
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2764 2765 2766 2767 2768 2769 2770
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		}
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2830
/**
2831 2832 2833 2834 2835 2836 2837
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
2838
void migrate_vma_pages(struct migrate_vma *migrate)
2839 2840 2841
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2842 2843
	struct mmu_notifier_range range;
	unsigned long addr, i;
2844
	bool notified = false;
2845 2846 2847 2848 2849 2850 2851

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2852 2853
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2854
			continue;
2855 2856 2857 2858 2859 2860 2861 2862
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				notified = true;
2863 2864

				mmu_notifier_range_init(&range,
2865
							MMU_NOTIFY_CLEAR, 0,
2866
							NULL,
2867 2868 2869
							migrate->vma->vm_mm,
							addr, migrate->end);
				mmu_notifier_invalidate_range_start(&range);
2870 2871 2872 2873
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2874
			continue;
2875
		}
2876 2877 2878

		mapping = page_mapping(page);

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2889
			} else {
2890 2891 2892 2893 2894 2895 2896 2897 2898
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2899 2900 2901 2902
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2903

2904 2905 2906 2907 2908
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
2909
	if (notified)
2910
		mmu_notifier_invalidate_range_only_end(&range);
2911
}
2912
EXPORT_SYMBOL(migrate_vma_pages);
2913

2914
/**
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
2925
void migrate_vma_finalize(struct migrate_vma *migrate)
2926 2927 2928 2929 2930 2931 2932 2933
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2934 2935 2936 2937 2938
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2939
			continue;
2940 2941
		}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2954 2955 2956 2957
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2958 2959 2960

		if (newpage != page) {
			unlock_page(newpage);
2961 2962 2963 2964
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2965 2966 2967
		}
	}
}
2968
EXPORT_SYMBOL(migrate_vma_finalize);
2969
#endif /* CONFIG_DEVICE_PRIVATE */