rx.c 58.6 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5
 * Copyright(c) 2016 Intel Deutschland GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Portions of this file are derived from the ipw3945 project, as well
 * as portions of the ieee80211 subsystem header files.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
27
 *  Intel Linux Wireless <linuxwifi@intel.com>
28 29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
33
#include <linux/gfp.h>
34

35
#include "iwl-prph.h"
36
#include "iwl-io.h"
37
#include "internal.h"
38
#include "iwl-op-mode.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
98 99
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100
 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 102
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
103 104 105 106
 *
 *
 * Driver sequence:
 *
107 108
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109 110
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
111
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112
 *                            queue, updates firmware pointers, and updates
113 114
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
115 116
 *
 * -- enable interrupts --
117
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118 119
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
120
 *                            Posts and claims requests to the allocator.
121
 *                            Calls iwl_pcie_rxq_restock to refill any empty
122
 *                            slots.
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
135 136 137 138
 * ...
 *
 */

139 140
/*
 * iwl_rxq_space - Return number of free slots available in queue.
141
 */
142
static int iwl_rxq_space(const struct iwl_rxq *rxq)
143
{
144 145
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146

147 148 149 150 151 152
	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
153
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 155
}

156 157 158 159 160 161 162 163
/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

164 165 166
/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
167 168
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
169 170 171 172 173 174 175 176 177 178
	if (trans->cfg->mq_rx_supported) {
		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
	} else {
		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
					   1000);
	}
179 180
}

181 182
/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183
 */
184 185
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
186 187 188
{
	u32 reg;

189
	lockdep_assert_held(&rxq->lock);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 206
			rxq->need_update = true;
			return;
207 208
		}
	}
209 210

	rxq->write_actual = round_down(rxq->write, 8);
211
	if (trans->cfg->mq_rx_supported)
212 213
		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
			    rxq->write_actual);
214 215
	else
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 217 218 219 220
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221
	int i;
222

223 224
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225

226 227 228 229 230 231 232
		if (!rxq->need_update)
			continue;
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock(&rxq->lock);
	}
233 234
}

235
/*
236
 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
237
 */
238 239
static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock(&rxq->lock);
	while (rxq->free_count) {
		__le64 *bd = (__le64 *)rxq->bd;

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
S
Sara Sharon 已提交
262
		rxb->invalid = false;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		/* 12 first bits are expected to be empty */
		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
		rxq->free_count--;
	}
	spin_unlock(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock(&rxq->lock);
	}
}

283
/*
284
 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
285
 */
286 287
static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
288 289 290
{
	struct iwl_rx_mem_buffer *rxb;

291 292 293
	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
294 295 296
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
297 298
	 * So don't try to restock if the APM has been already stopped.
	 */
299
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300 301
		return;

302
	spin_lock(&rxq->lock);
303
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304
		__le32 *bd = (__le32 *)rxq->bd;
305 306 307 308 309
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
J
Johannes Berg 已提交
310 311 312
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
S
Sara Sharon 已提交
313
		rxb->invalid = false;
314 315

		/* Point to Rx buffer via next RBD in circular buffer */
316
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317 318 319 320
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
321
	spin_unlock(&rxq->lock);
322 323 324 325

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
326
		spin_lock(&rxq->lock);
327
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328
		spin_unlock(&rxq->lock);
329 330 331
	}
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	if (trans->cfg->mq_rx_supported)
347
		iwl_pcie_rxmq_restock(trans, rxq);
348
	else
349
		iwl_pcie_rxsq_restock(trans, rxq);
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
372 373 374
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
375
`		 */
376
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377
			IWL_CRIT(trans,
378
				 "Failed to alloc_pages\n");
379 380 381 382 383
		return NULL;
	}
	return page;
}

384
/*
385
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
386
 *
387 388 389
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
390
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391
 * allocated buffers.
392
 */
393 394
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
				   struct iwl_rxq *rxq)
395
{
396
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397 398 399 400
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
401
		spin_lock(&rxq->lock);
402
		if (list_empty(&rxq->rx_used)) {
403
			spin_unlock(&rxq->lock);
404 405
			return;
		}
406
		spin_unlock(&rxq->lock);
407 408

		/* Alloc a new receive buffer */
409 410
		page = iwl_pcie_rx_alloc_page(trans, priority);
		if (!page)
411 412
			return;

413
		spin_lock(&rxq->lock);
414 415

		if (list_empty(&rxq->rx_used)) {
416
			spin_unlock(&rxq->lock);
417
			__free_pages(page, trans_pcie->rx_page_order);
418 419
			return;
		}
J
Johannes Berg 已提交
420 421 422
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
423
		spin_unlock(&rxq->lock);
424 425 426 427

		BUG_ON(rxb->page);
		rxb->page = page;
		/* Get physical address of the RB */
428 429 430 431
		rxb->page_dma =
			dma_map_page(trans->dev, page, 0,
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
432 433
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
434
			spin_lock(&rxq->lock);
435
			list_add(&rxb->list, &rxq->rx_used);
436
			spin_unlock(&rxq->lock);
437 438 439
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
440

441
		spin_lock(&rxq->lock);
442 443 444 445

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

446
		spin_unlock(&rxq->lock);
447 448 449
	}
}

450
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
451 452 453 454
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

455
	for (i = 0; i < RX_POOL_SIZE; i++) {
456
		if (!trans_pcie->rx_pool[i].page)
457
			continue;
458
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459 460
			       PAGE_SIZE << trans_pcie->rx_page_order,
			       DMA_FROM_DEVICE);
461 462 463
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
464 465 466
	}
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_xchg(&rba->req_pending, 0);

	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock(&rba->lock);

	while (pending) {
		int i;
		struct list_head local_allocated;
491 492 493 494 495
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

		INIT_LIST_HEAD(&local_allocated);

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
515
			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page, 0,
					PAGE_SIZE << trans_pcie->rx_page_order,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		pending--;
		if (!pending) {
			pending = atomic_xchg(&rba->req_pending, 0);
			IWL_DEBUG_RX(trans,
				     "Pending allocation requests = %d\n",
				     pending);
		}

		spin_lock(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_ready);
	}

	spin_lock(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
560
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
561 562 563
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
564 565
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
566
 */
567 568
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
569 570 571 572 573
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

574 575
	lockdep_assert_held(&rxq->lock);

576 577 578
	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
579
	 * function will return early, as there are no ready requests.
580 581 582 583 584
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
585
		return;
586 587 588 589

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
590 591 592 593 594
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
595 596 597
	}
	spin_unlock(&rba->lock);

598 599
	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
600 601 602
}

static void iwl_pcie_rx_allocator_work(struct work_struct *data)
603
{
604 605
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
606
	struct iwl_trans_pcie *trans_pcie =
607
		container_of(rba_p, struct iwl_trans_pcie, rba);
608

609
	iwl_pcie_rx_allocator(trans_pcie->trans);
610 611
}

612 613 614
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
615
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
616
	struct device *dev = trans->dev;
617
	int i;
618 619
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
						      sizeof(__le32);
620

621 622 623 624 625 626 627
	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	if (!trans_pcie->rxq)
		return -EINVAL;
628

629
	spin_lock_init(&rba->lock);
630

631 632
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
633

634
		spin_lock_init(&rxq->lock);
635 636 637 638 639
		if (trans->cfg->mq_rx_supported)
			rxq->queue_size = MQ_RX_TABLE_SIZE;
		else
			rxq->queue_size = RX_QUEUE_SIZE;

640 641 642 643 644
		/*
		 * Allocate the circular buffer of Read Buffer Descriptors
		 * (RBDs)
		 */
		rxq->bd = dma_zalloc_coherent(dev,
645 646
					     free_size * rxq->queue_size,
					     &rxq->bd_dma, GFP_KERNEL);
647 648
		if (!rxq->bd)
			goto err;
649

650 651 652 653 654 655 656 657 658
		if (trans->cfg->mq_rx_supported) {
			rxq->used_bd = dma_zalloc_coherent(dev,
							   sizeof(__le32) *
							   rxq->queue_size,
							   &rxq->used_bd_dma,
							   GFP_KERNEL);
			if (!rxq->used_bd)
				goto err;
		}
659

660 661 662 663 664 665 666
		/*Allocate the driver's pointer to receive buffer status */
		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
						   &rxq->rb_stts_dma,
						   GFP_KERNEL);
		if (!rxq->rb_stts)
			goto err;
	}
667 668
	return 0;

669 670 671 672 673
err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
674
			dma_free_coherent(dev, free_size * rxq->queue_size,
675 676 677 678 679 680 681 682
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
683 684 685 686 687 688

		if (rxq->used_bd)
			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
689 690
	}
	kfree(trans_pcie->rxq);
691

692
	return -ENOMEM;
693 694
}

695 696 697 698
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
699
	unsigned long flags;
700 701
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

702 703 704 705 706
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
707
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
708 709 710 711 712 713
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
714
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
715
	}
716

717 718 719
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

720
	/* Stop Rx DMA */
721
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
722
	/* reset and flush pointers */
723 724 725
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
726 727

	/* Reset driver's Rx queue write index */
728
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
729 730

	/* Tell device where to find RBD circular buffer in DRAM */
731 732
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
		    (u32)(rxq->bd_dma >> 8));
733 734

	/* Tell device where in DRAM to update its Rx status */
735 736
	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
		    rxq->rb_stts_dma >> 4);
737 738 739 740 741

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
742
	 * Rx buffer size 4 or 8k or 12k
743 744 745
	 * RB timeout 0x10
	 * 256 RBDs
	 */
746 747 748 749 750 751 752 753 754
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
		    rb_size |
		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	iwl_trans_release_nic_access(trans, &flags);
755 756 757

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
758 759 760 761

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
762 763
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
{
	/*
	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
	 * values.
	 * This costs some power, but needed for W/A 9000 integrated A-step
	 * bug where shadow registers are not in the retention list and their
	 * value is lost when NIC powers down
	 */
	if (trans->cfg->integrated) {
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
			    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
			    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
	}
}

781
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
782
{
783 784
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
785
	unsigned long flags;
786
	int i;
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}
802

803 804 805
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

806
	/* Stop Rx DMA */
807
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
808
	/* disable free amd used rx queue operation */
809
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
810

811 812
	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
813 814 815
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_FRBDCB_BA_LSB(i),
					 trans_pcie->rxq[i].bd_dma);
816
		/* Tell device where to find RBD used table in DRAM */
817 818 819
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_URBDCB_BA_LSB(i),
					 trans_pcie->rxq[i].used_bd_dma);
820
		/* Tell device where in DRAM to update its Rx status */
821 822 823
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_URBD_STTS_WPTR_LSB(i),
					 trans_pcie->rxq[i].rb_stts_dma);
824
		/* Reset device indice tables */
825 826 827
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
828 829 830

		enabled |= BIT(i) | BIT(i + 16);
	}
831

832 833 834 835
	/*
	 * Enable Rx DMA
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
836
	 * Drop frames that exceed RB size
837 838
	 * 512 RBDs
	 */
839
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
840
			       RFH_DMA_EN_ENABLE_VAL | rb_size |
841 842 843
			       RFH_RXF_DMA_MIN_RB_4_8 |
			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
			       RFH_RXF_DMA_RBDCB_SIZE_512);
844

845 846
	/*
	 * Activate DMA snooping.
847
	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
848 849
	 * Default queue is 0
	 */
850 851 852
	iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
			       (DEFAULT_RXQ_NUM <<
				RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
853 854 855 856 857
			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
			       (trans->cfg->integrated ?
				RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
				RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
			       RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
858
	/* Enable the relevant rx queues */
859 860 861
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);

	iwl_trans_release_nic_access(trans, &flags);
862

863 864
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
865 866

	iwl_pcie_enable_rx_wake(trans, true);
867 868
}

869
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
870
{
871
	lockdep_assert_held(&rxq->lock);
872

873 874 875 876
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
877 878
}

879 880 881 882 883 884
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
{
	WARN_ON(1);
	return 0;
}

885 886 887
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
888
	struct iwl_rxq *def_rxq;
889
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
890
	int i, err, queue_size, allocator_pool_size, num_alloc;
891

892
	if (!trans_pcie->rxq) {
893 894 895 896
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
897
	def_rxq = trans_pcie->rxq;
898 899 900 901 902 903 904 905
	if (!rba->alloc_wq)
		rba->alloc_wq = alloc_workqueue("rb_allocator",
						WQ_HIGHPRI | WQ_UNBOUND, 1);
	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);

	spin_lock(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
906 907
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
908
	spin_unlock(&rba->lock);
909

910
	/* free all first - we might be reconfigured for a different size */
911
	iwl_pcie_free_rbs_pool(trans);
912 913

	for (i = 0; i < RX_QUEUE_SIZE; i++)
914
		def_rxq->queue[i] = NULL;
915

916 917 918
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

919 920
		rxq->id = i;

921 922 923 924 925 926 927 928 929 930
		spin_lock(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
931

932 933
		iwl_pcie_rx_init_rxb_lists(rxq);

934 935 936 937
		if (!rxq->napi.poll)
			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       iwl_pcie_dummy_napi_poll, 64);

938 939
		spin_unlock(&rxq->lock);
	}
940

941
	/* move the pool to the default queue and allocator ownerships */
942 943
	queue_size = trans->cfg->mq_rx_supported ?
		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
944 945
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
946
	num_alloc = queue_size + allocator_pool_size;
947 948
	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
		     ARRAY_SIZE(trans_pcie->rx_pool));
949
	for (i = 0; i < num_alloc; i++) {
950 951 952 953 954 955 956
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
S
Sara Sharon 已提交
957
		rxb->vid = (u16)(i + 1);
S
Sara Sharon 已提交
958
		rxb->invalid = true;
959
	}
960

961
	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
962 963

	if (trans->cfg->mq_rx_supported)
964
		iwl_pcie_rx_mq_hw_init(trans);
965
	else
966
		iwl_pcie_rx_hw_init(trans, def_rxq);
967 968

	iwl_pcie_rxq_restock(trans, def_rxq);
969 970 971 972

	spin_lock(&def_rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
	spin_unlock(&def_rxq->lock);
973 974 975 976 977 978 979

	return 0;
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
980
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
981 982
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
					      sizeof(__le32);
983
	int i;
984

985 986 987 988 989
	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
990 991 992 993
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

994 995 996 997 998 999
	cancel_work_sync(&rba->rx_alloc);
	if (rba->alloc_wq) {
		destroy_workqueue(rba->alloc_wq);
		rba->alloc_wq = NULL;
	}

1000 1001 1002 1003 1004 1005 1006
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
			dma_free_coherent(trans->dev,
1007
					  free_size * rxq->queue_size,
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
		else
			IWL_DEBUG_INFO(trans,
				       "Free rxq->rb_stts which is NULL\n");
1019

1020 1021 1022 1023 1024 1025
		if (rxq->used_bd)
			dma_free_coherent(trans->dev,
					  sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
1026 1027 1028

		if (rxq->napi.poll)
			netif_napi_del(&rxq->napi);
1029
	}
1030
	kfree(trans_pcie->rxq);
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		spin_lock(&rba->lock);
		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

1073
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1074
				struct iwl_rxq *rxq,
1075 1076
				struct iwl_rx_mem_buffer *rxb,
				bool emergency)
J
Johannes Berg 已提交
1077 1078
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1079
	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1080
	bool page_stolen = false;
1081
	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1082
	u32 offset = 0;
J
Johannes Berg 已提交
1083 1084 1085 1086

	if (WARN_ON(!rxb))
		return;

1087 1088 1089 1090 1091 1092
	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		u16 sequence;
		bool reclaim;
1093
		int index, cmd_index, len;
1094 1095
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = offset,
1096
			._rx_page_order = trans_pcie->rx_page_order,
1097 1098
			._page = rxb->page,
			._page_stolen = false,
1099
			.truesize = max_len,
1100 1101 1102 1103 1104 1105 1106
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
			break;

1107 1108 1109
		WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
			FH_RSCSR_RXQ_POS != rxq->id);

1110 1111 1112
		IWL_DEBUG_RX(trans,
			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
			     rxcb._offset,
1113 1114 1115 1116
			     iwl_get_cmd_string(trans,
						iwl_cmd_id(pkt->hdr.cmd,
							   pkt->hdr.group_id,
							   0)),
1117
			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1118

1119
		len = iwl_rx_packet_len(pkt);
1120
		len += sizeof(u32); /* account for status word */
1121 1122
		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
1140 1141
			}
		}
J
Johannes Berg 已提交
1142

1143 1144
		sequence = le16_to_cpu(pkt->hdr.sequence);
		index = SEQ_TO_INDEX(sequence);
1145
		cmd_index = get_cmd_index(txq, index);
1146

1147 1148 1149 1150 1151 1152
		if (rxq->id == 0)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);
1153

1154
		if (reclaim) {
1155
			kzfree(txq->entries[cmd_index].free_buf);
1156
			txq->entries[cmd_index].free_buf = NULL;
1157 1158
		}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim) {
			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
1170
				iwl_pcie_hcmd_complete(trans, &rxcb);
1171 1172 1173 1174 1175 1176
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
J
Johannes Berg 已提交
1177 1178
	}

1179 1180
	/* page was stolen from us -- free our reference */
	if (page_stolen) {
1181
		__free_pages(rxb->page, trans_pcie->rx_page_order);
J
Johannes Berg 已提交
1182
		rxb->page = NULL;
1183
	}
J
Johannes Berg 已提交
1184 1185 1186 1187 1188 1189 1190

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, 0,
1191 1192
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
1193 1194 1195 1196 1197 1198 1199 1200
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
1201
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1202 1203 1204 1205
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
J
Johannes Berg 已提交
1206
	} else
1207
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
J
Johannes Berg 已提交
1208 1209
}

1210 1211
/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1212
 */
1213
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1214
{
J
Johannes Berg 已提交
1215
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1216
	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1217
	u32 r, i, count = 0;
1218
	bool emergency = false;
1219

1220 1221
restart:
	spin_lock(&rxq->lock);
1222 1223
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
1224
	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1225 1226
	i = rxq->read;

1227 1228 1229
	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

1230 1231
	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
1232
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1233 1234

	while (i != r) {
1235
		struct iwl_rx_mem_buffer *rxb;
1236

1237
		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1238 1239
			emergency = true;

1240 1241 1242 1243 1244
		if (trans->cfg->mq_rx_supported) {
			/*
			 * used_bd is a 32 bit but only 12 are used to retrieve
			 * the vid
			 */
1245
			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1246

S
Sara Sharon 已提交
1247 1248 1249 1250
			if (WARN(!vid ||
				 vid > ARRAY_SIZE(trans_pcie->global_table),
				 "Invalid rxb index from HW %u\n", (u32)vid)) {
				iwl_force_nmi(trans);
1251
				goto out;
S
Sara Sharon 已提交
1252 1253
			}
			rxb = trans_pcie->global_table[vid - 1];
S
Sara Sharon 已提交
1254 1255 1256 1257 1258 1259
			if (WARN(rxb->invalid,
				 "Invalid rxb from HW %u\n", (u32)vid)) {
				iwl_force_nmi(trans);
				goto out;
			}
			rxb->invalid = true;
1260 1261 1262 1263
		} else {
			rxb = rxq->queue[i];
			rxq->queue[i] = NULL;
		}
1264

1265
		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1266
		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1267

1268
		i = (i + 1) & (rxq->queue_size - 1);
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1281 1282
			struct iwl_rb_allocator *rba = &trans_pcie->rba;

1283 1284 1285 1286 1287
			/* Add the remaining empty RBDs for allocator use */
			spin_lock(&rba->lock);
			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
			spin_unlock(&rba->lock);
		} else if (emergency) {
1288
			count++;
1289
			if (count == 8) {
1290
				count = 0;
1291
				if (rxq->used_count < rxq->queue_size / 3)
1292
					emergency = false;
1293 1294

				rxq->read = i;
1295
				spin_unlock(&rxq->lock);
1296
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1297
				iwl_pcie_rxq_restock(trans, rxq);
1298 1299
				goto restart;
			}
1300
		}
1301
	}
1302
out:
1303 1304
	/* Backtrack one entry */
	rxq->read = i;
1305 1306
	spin_unlock(&rxq->lock);

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
1320
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1321

1322 1323
	if (rxq->napi.poll)
		napi_gro_flush(&rxq->napi, false);
1324 1325

	iwl_pcie_rxq_restock(trans, rxq);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
				      struct msix_entry *entry)
{
	/*
	 * Before sending the interrupt the HW disables it to prevent
	 * a nested interrupt. This is done by writing 1 to the corresponding
	 * bit in the mask register. After handling the interrupt, it should be
	 * re-enabled by clearing this bit. This register is defined as
	 * write 1 clear (W1C) register, meaning that it's being clear
	 * by writing 1 to the bit.
	 */
1347
	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;

1360 1361 1362
	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	local_bh_disable();
	iwl_pcie_rx_handle(trans, entry->entry);
	local_bh_enable();

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

1376 1377
/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1378
 */
1379
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1380
{
1381
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1382
	int i;
1383

1384
	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1385
	if (trans->cfg->internal_wimax_coex &&
1386
	    !trans->cfg->apmg_not_supported &&
1387
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1388
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1389
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1390
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1391
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1392
		iwl_op_mode_wimax_active(trans->op_mode);
1393
		wake_up(&trans_pcie->wait_command_queue);
1394 1395 1396
		return;
	}

1397
	iwl_pcie_dump_csr(trans);
1398
	iwl_dump_fh(trans, NULL);
1399

1400
	local_bh_disable();
1401 1402 1403
	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans);
1404
	local_bh_enable();
1405

1406 1407 1408
	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
		del_timer(&trans_pcie->txq[i].stuck_timer);

1409 1410
	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans_pcie->wait_command_queue);
1411 1412
}

1413
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1414 1415 1416
{
	u32 inta;

1417
	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1418 1419 1420 1421 1422 1423 1424

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
1425
	return inta;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
1441
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1455 1456
	if (!read)
		return 0;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
1468
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
1490
	return inta;
1491 1492
}

1493
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1494
{
1495
	struct iwl_trans *trans = dev_id;
1496 1497
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1498 1499 1500
	u32 inta = 0;
	u32 handled = 0;

1501 1502
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

1503
	spin_lock(&trans_pcie->irq_lock);
1504

1505 1506 1507 1508
	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
1509
		inta = iwl_pcie_int_cause_ict(trans);
1510
	else
1511
		inta = iwl_pcie_int_cause_non_ict(trans);
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
1532
	if (unlikely(!inta)) {
1533 1534 1535 1536 1537 1538
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1539
			_iwl_enable_interrupts(trans);
1540
		spin_unlock(&trans_pcie->irq_lock);
1541 1542 1543 1544
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

1545 1546 1547 1548 1549 1550
	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1551
		spin_unlock(&trans_pcie->irq_lock);
1552
		goto out;
1553 1554
	}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
1566
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1567

1568
	if (iwl_have_debug_level(IWL_DL_ISR))
1569
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1570
			      inta, iwl_read32(trans, CSR_INT_MASK));
1571

1572
	spin_unlock(&trans_pcie->irq_lock);
1573

1574 1575
	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
1576
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1577 1578

		/* Tell the device to stop sending interrupts */
1579
		iwl_disable_interrupts(trans);
1580

1581
		isr_stats->hw++;
1582
		iwl_pcie_irq_handle_error(trans);
1583 1584 1585

		handled |= CSR_INT_BIT_HW_ERR;

1586
		goto out;
1587 1588
	}

1589
	if (iwl_have_debug_level(IWL_DL_ISR)) {
1590 1591
		/* NIC fires this, but we don't use it, redundant with WAKEUP */
		if (inta & CSR_INT_BIT_SCD) {
1592 1593
			IWL_DEBUG_ISR(trans,
				      "Scheduler finished to transmit the frame/frames.\n");
1594
			isr_stats->sch++;
1595 1596 1597 1598
		}

		/* Alive notification via Rx interrupt will do the real work */
		if (inta & CSR_INT_BIT_ALIVE) {
1599
			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1600
			isr_stats->alive++;
1601 1602
		}
	}
1603

1604 1605 1606 1607 1608
	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
1609
		bool hw_rfkill;
1610

1611
		hw_rfkill = iwl_is_rfkill_set(trans);
1612
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1613
			 hw_rfkill ? "disable radio" : "enable radio");
1614

1615
		isr_stats->rfkill++;
1616

1617
		mutex_lock(&trans_pcie->mutex);
1618
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1619
		mutex_unlock(&trans_pcie->mutex);
1620
		if (hw_rfkill) {
1621 1622 1623
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
1624 1625 1626 1627
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
1628
			clear_bit(STATUS_RFKILL, &trans->status);
1629
		}
1630 1631 1632 1633 1634 1635

		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
1636
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1637
		isr_stats->ctkill++;
1638 1639 1640 1641 1642
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
1643
		IWL_ERR(trans, "Microcode SW error detected. "
1644
			" Restarting 0x%X.\n", inta);
1645
		isr_stats->sw++;
1646
		iwl_pcie_irq_handle_error(trans);
1647 1648 1649 1650 1651
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
1652
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1653
		iwl_pcie_rxq_check_wrptr(trans);
1654
		iwl_pcie_txq_check_wrptrs(trans);
1655

1656
		isr_stats->wakeup++;
1657 1658 1659 1660 1661 1662 1663 1664

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1665
		    CSR_INT_BIT_RX_PERIODIC)) {
1666
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1667 1668
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1669
			iwl_write32(trans, CSR_FH_INT_STATUS,
1670 1671 1672 1673
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
1674
			iwl_write32(trans,
1675
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		}
		/* Sending RX interrupt require many steps to be done in the
		 * the device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
1689
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1690
			    CSR_INT_PERIODIC_DIS);
1691

1692 1693 1694 1695 1696 1697 1698 1699
		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1700
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1701
				   CSR_INT_PERIODIC_ENA);
1702

1703
		isr_stats->rx++;
1704 1705

		local_bh_disable();
1706
		iwl_pcie_rx_handle(trans, 0);
1707
		local_bh_enable();
1708 1709 1710 1711
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
1712
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1713
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1714
		isr_stats->tx++;
1715 1716
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
1717 1718
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
1719 1720 1721
	}

	if (inta & ~handled) {
1722
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1723
		isr_stats->unhandled++;
1724 1725
	}

1726 1727 1728
	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
1729 1730
	}

1731 1732 1733 1734
	spin_lock(&trans_pcie->irq_lock);
	/* only Re-enable all interrupt if disabled by irq */
	if (test_bit(STATUS_INT_ENABLED, &trans->status))
		_iwl_enable_interrupts(trans);
1735
	/* we are loading the firmware, enable FH_TX interrupt only */
1736
	else if (handled & CSR_INT_BIT_FH_TX)
1737
		iwl_enable_fw_load_int(trans);
1738
	/* Re-enable RF_KILL if it occurred */
1739 1740
	else if (handled & CSR_INT_BIT_RF_KILL)
		iwl_enable_rfkill_int(trans);
1741
	spin_unlock(&trans_pcie->irq_lock);
1742 1743 1744 1745

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
1746 1747
}

1748 1749 1750 1751 1752
/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/
1753

1754
/* Free dram table */
1755
void iwl_pcie_free_ict(struct iwl_trans *trans)
1756
{
1757
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1758

1759
	if (trans_pcie->ict_tbl) {
1760
		dma_free_coherent(trans->dev, ICT_SIZE,
1761
				  trans_pcie->ict_tbl,
1762
				  trans_pcie->ict_tbl_dma);
1763 1764
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
1765 1766 1767
	}
}

1768 1769 1770
/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
1771 1772
 * also reset all data related to ICT table interrupt.
 */
1773
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1774
{
1775
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1776

1777
	trans_pcie->ict_tbl =
1778
		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1779 1780 1781
				   &trans_pcie->ict_tbl_dma,
				   GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
1782 1783
		return -ENOMEM;

1784 1785
	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1786
		iwl_pcie_free_ict(trans);
1787 1788
		return -EINVAL;
	}
1789 1790 1791 1792 1793 1794 1795

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
1796
void iwl_pcie_reset_ict(struct iwl_trans *trans)
1797
{
1798
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1799 1800
	u32 val;

1801
	if (!trans_pcie->ict_tbl)
1802
		return;
1803

1804
	spin_lock(&trans_pcie->irq_lock);
1805
	_iwl_disable_interrupts(trans);
1806

1807
	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1808

1809
	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1810

1811 1812 1813
	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1814

1815
	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1816

1817
	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1818 1819
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
1820
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1821
	_iwl_enable_interrupts(trans);
1822
	spin_unlock(&trans_pcie->irq_lock);
1823 1824 1825
}

/* Device is going down disable ict interrupt usage */
1826
void iwl_pcie_disable_ict(struct iwl_trans *trans)
1827
{
1828
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1829

1830
	spin_lock(&trans_pcie->irq_lock);
1831
	trans_pcie->use_ict = false;
1832
	spin_unlock(&trans_pcie->irq_lock);
1833 1834
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

1849
	return IRQ_WAKE_THREAD;
1850
}
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
1862
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1863 1864 1865 1866 1867
	u32 inta_fh, inta_hw;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock(&trans_pcie->irq_lock);
1868 1869
	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1870 1871 1872
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
1873 1874
	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	spin_unlock(&trans_pcie->irq_lock);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
			      inta_fh,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
		local_bh_disable();
		iwl_pcie_rx_handle(trans, 0);
		local_bh_enable();
	}

	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
		local_bh_disable();
		iwl_pcie_rx_handle(trans, 1);
		local_bh_enable();
	}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
	}

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans,
			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
			      inta_hw,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
	}

	/* uCode wakes up after power-down sleep */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
		bool hw_rfkill;

		hw_rfkill = iwl_is_rfkill_set(trans);
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
			 hw_rfkill ? "disable radio" : "enable radio");

		isr_stats->rfkill++;

		mutex_lock(&trans_pcie->mutex);
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
		mutex_unlock(&trans_pcie->mutex);
		if (hw_rfkill) {
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
			clear_bit(STATUS_RFKILL, &trans->status);
		}
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);
	}

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}