rx.c 58.3 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5
 * Copyright(c) 2016 Intel Deutschland GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Portions of this file are derived from the ipw3945 project, as well
 * as portions of the ieee80211 subsystem header files.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
27
 *  Intel Linux Wireless <linuxwifi@intel.com>
28 29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
33
#include <linux/gfp.h>
34

35
#include "iwl-prph.h"
36
#include "iwl-io.h"
37
#include "internal.h"
38
#include "iwl-op-mode.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
98 99
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100
 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 102
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
103 104 105 106
 *
 *
 * Driver sequence:
 *
107 108
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109 110
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
111
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112
 *                            queue, updates firmware pointers, and updates
113 114
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
115 116
 *
 * -- enable interrupts --
117
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118 119
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
120
 *                            Posts and claims requests to the allocator.
121
 *                            Calls iwl_pcie_rxq_restock to refill any empty
122
 *                            slots.
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
135 136 137 138
 * ...
 *
 */

139 140
/*
 * iwl_rxq_space - Return number of free slots available in queue.
141
 */
142
static int iwl_rxq_space(const struct iwl_rxq *rxq)
143
{
144 145
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146

147 148 149 150 151 152
	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
153
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 155
}

156 157 158 159 160 161 162 163
/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

164 165
static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans *trans, u64 ofs,
					   u64 val)
166
{
167 168
	iwl_write_prph_no_grab(trans, ofs, val & 0xffffffff);
	iwl_write_prph_no_grab(trans, ofs + 4, val >> 32);
169 170
}

171 172 173
/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
174 175
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
176 177 178 179 180 181 182 183 184 185
	if (trans->cfg->mq_rx_supported) {
		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
	} else {
		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
					   1000);
	}
186 187
}

188 189
/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
190
 */
191 192
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
193 194 195
{
	u32 reg;

196
	lockdep_assert_held(&rxq->lock);
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211
	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
212 213
			rxq->need_update = true;
			return;
214 215
		}
	}
216 217

	rxq->write_actual = round_down(rxq->write, 8);
218
	if (trans->cfg->mq_rx_supported)
219 220
		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
			    rxq->write_actual);
221 222
	else
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
223 224 225 226 227
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
228
	int i;
229

230 231
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
232

233 234 235 236 237 238 239
		if (!rxq->need_update)
			continue;
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock(&rxq->lock);
	}
240 241
}

242
/*
243
 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
244
 */
245 246
static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock(&rxq->lock);
	while (rxq->free_count) {
		__le64 *bd = (__le64 *)rxq->bd;

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);

		/* 12 first bits are expected to be empty */
		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
		rxq->free_count--;
	}
	spin_unlock(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock(&rxq->lock);
	}
}

290
/*
291
 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
292
 */
293 294
static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
295 296 297
{
	struct iwl_rx_mem_buffer *rxb;

298 299 300
	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
301 302 303
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
304 305
	 * So don't try to restock if the APM has been already stopped.
	 */
306
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
307 308
		return;

309
	spin_lock(&rxq->lock);
310
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
311
		__le32 *bd = (__le32 *)rxq->bd;
312 313 314 315 316
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
J
Johannes Berg 已提交
317 318 319
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
320 321

		/* Point to Rx buffer via next RBD in circular buffer */
322
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
323 324 325 326
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
327
	spin_unlock(&rxq->lock);
328 329 330 331

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
332
		spin_lock(&rxq->lock);
333
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
334
		spin_unlock(&rxq->lock);
335 336 337
	}
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	if (trans->cfg->mq_rx_supported)
353
		iwl_pcie_rxmq_restock(trans, rxq);
354
	else
355
		iwl_pcie_rxsq_restock(trans, rxq);
356 357
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
378 379 380
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
381
`		 */
382
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
383
			IWL_CRIT(trans,
384
				 "Failed to alloc_pages\n");
385 386 387 388 389
		return NULL;
	}
	return page;
}

390
/*
391
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
392
 *
393 394 395
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
396
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
397
 * allocated buffers.
398
 */
399 400
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
				   struct iwl_rxq *rxq)
401
{
402
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
403 404 405 406
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
407
		spin_lock(&rxq->lock);
408
		if (list_empty(&rxq->rx_used)) {
409
			spin_unlock(&rxq->lock);
410 411
			return;
		}
412
		spin_unlock(&rxq->lock);
413 414

		/* Alloc a new receive buffer */
415 416
		page = iwl_pcie_rx_alloc_page(trans, priority);
		if (!page)
417 418
			return;

419
		spin_lock(&rxq->lock);
420 421

		if (list_empty(&rxq->rx_used)) {
422
			spin_unlock(&rxq->lock);
423
			__free_pages(page, trans_pcie->rx_page_order);
424 425
			return;
		}
J
Johannes Berg 已提交
426 427 428
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
429
		spin_unlock(&rxq->lock);
430 431 432 433

		BUG_ON(rxb->page);
		rxb->page = page;
		/* Get physical address of the RB */
434 435 436 437
		rxb->page_dma =
			dma_map_page(trans->dev, page, 0,
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
438 439
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
440
			spin_lock(&rxq->lock);
441
			list_add(&rxb->list, &rxq->rx_used);
442
			spin_unlock(&rxq->lock);
443 444 445
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
446

447
		spin_lock(&rxq->lock);
448 449 450 451

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

452
		spin_unlock(&rxq->lock);
453 454 455
	}
}

456
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
457 458 459 460
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

461
	for (i = 0; i < RX_POOL_SIZE; i++) {
462
		if (!trans_pcie->rx_pool[i].page)
463
			continue;
464
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
465 466
			       PAGE_SIZE << trans_pcie->rx_page_order,
			       DMA_FROM_DEVICE);
467 468 469
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
470 471 472
	}
}

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_xchg(&rba->req_pending, 0);

	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock(&rba->lock);

	while (pending) {
		int i;
		struct list_head local_allocated;
497 498 499 500 501
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

		INIT_LIST_HEAD(&local_allocated);

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
521
			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page, 0,
					PAGE_SIZE << trans_pcie->rx_page_order,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		pending--;
		if (!pending) {
			pending = atomic_xchg(&rba->req_pending, 0);
			IWL_DEBUG_RX(trans,
				     "Pending allocation requests = %d\n",
				     pending);
		}

		spin_lock(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_ready);
	}

	spin_lock(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
566
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
567 568 569
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
570 571
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
572
 */
573 574
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
575 576 577 578 579
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

580 581
	lockdep_assert_held(&rxq->lock);

582 583 584
	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
585
	 * function will return early, as there are no ready requests.
586 587 588 589 590
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
591
		return;
592 593 594 595

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
596 597 598 599 600
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
601 602 603
	}
	spin_unlock(&rba->lock);

604 605
	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
606 607 608
}

static void iwl_pcie_rx_allocator_work(struct work_struct *data)
609
{
610 611
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
612
	struct iwl_trans_pcie *trans_pcie =
613
		container_of(rba_p, struct iwl_trans_pcie, rba);
614

615
	iwl_pcie_rx_allocator(trans_pcie->trans);
616 617
}

618 619 620
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
621
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
622
	struct device *dev = trans->dev;
623
	int i;
624 625
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
						      sizeof(__le32);
626

627 628 629 630 631 632 633
	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	if (!trans_pcie->rxq)
		return -EINVAL;
634

635
	spin_lock_init(&rba->lock);
636

637 638
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
639

640
		spin_lock_init(&rxq->lock);
641 642 643 644 645
		if (trans->cfg->mq_rx_supported)
			rxq->queue_size = MQ_RX_TABLE_SIZE;
		else
			rxq->queue_size = RX_QUEUE_SIZE;

646 647 648 649 650
		/*
		 * Allocate the circular buffer of Read Buffer Descriptors
		 * (RBDs)
		 */
		rxq->bd = dma_zalloc_coherent(dev,
651 652
					     free_size * rxq->queue_size,
					     &rxq->bd_dma, GFP_KERNEL);
653 654
		if (!rxq->bd)
			goto err;
655

656 657 658 659 660 661 662 663 664
		if (trans->cfg->mq_rx_supported) {
			rxq->used_bd = dma_zalloc_coherent(dev,
							   sizeof(__le32) *
							   rxq->queue_size,
							   &rxq->used_bd_dma,
							   GFP_KERNEL);
			if (!rxq->used_bd)
				goto err;
		}
665

666 667 668 669 670 671 672
		/*Allocate the driver's pointer to receive buffer status */
		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
						   &rxq->rb_stts_dma,
						   GFP_KERNEL);
		if (!rxq->rb_stts)
			goto err;
	}
673 674
	return 0;

675 676 677 678 679
err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
680
			dma_free_coherent(dev, free_size * rxq->queue_size,
681 682 683 684 685 686 687 688
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
689 690 691 692 693 694

		if (rxq->used_bd)
			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
695 696
	}
	kfree(trans_pcie->rxq);
697

698
	return -ENOMEM;
699 700
}

701 702 703 704
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
705
	unsigned long flags;
706 707
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

708 709 710 711 712
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
713
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
714 715 716 717 718 719
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
720
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
721
	}
722

723 724 725
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

726
	/* Stop Rx DMA */
727
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
728
	/* reset and flush pointers */
729 730 731
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
732 733

	/* Reset driver's Rx queue write index */
734
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
735 736

	/* Tell device where to find RBD circular buffer in DRAM */
737 738
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
		    (u32)(rxq->bd_dma >> 8));
739 740

	/* Tell device where in DRAM to update its Rx status */
741 742
	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
		    rxq->rb_stts_dma >> 4);
743 744 745 746 747

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
748
	 * Rx buffer size 4 or 8k or 12k
749 750 751
	 * RB timeout 0x10
	 * 256 RBDs
	 */
752 753 754 755 756 757 758 759 760
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
		    rb_size |
		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	iwl_trans_release_nic_access(trans, &flags);
761 762 763

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
764 765 766 767

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
{
	/*
	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
	 * values.
	 * This costs some power, but needed for W/A 9000 integrated A-step
	 * bug where shadow registers are not in the retention list and their
	 * value is lost when NIC powers down
	 */
	if (trans->cfg->integrated) {
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
			    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
			    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
	}
}

787
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
788
{
789 790
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
791
	unsigned long flags;
792
	int i;
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}
808

809 810 811
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

812
	/* Stop Rx DMA */
813
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
814
	/* disable free amd used rx queue operation */
815
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
816

817 818
	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
819 820 821
		iwl_pcie_write_prph_64_no_grab(trans,
					       RFH_Q_FRBDCB_BA_LSB(i),
					       trans_pcie->rxq[i].bd_dma);
822
		/* Tell device where to find RBD used table in DRAM */
823 824 825
		iwl_pcie_write_prph_64_no_grab(trans,
					       RFH_Q_URBDCB_BA_LSB(i),
					       trans_pcie->rxq[i].used_bd_dma);
826
		/* Tell device where in DRAM to update its Rx status */
827 828 829
		iwl_pcie_write_prph_64_no_grab(trans,
					       RFH_Q_URBD_STTS_WPTR_LSB(i),
					       trans_pcie->rxq[i].rb_stts_dma);
830
		/* Reset device indice tables */
831 832 833
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
834 835 836

		enabled |= BIT(i) | BIT(i + 16);
	}
837

838 839 840 841
	/*
	 * Enable Rx DMA
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
842
	 * Drop frames that exceed RB size
843 844
	 * 512 RBDs
	 */
845
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
846
			       RFH_DMA_EN_ENABLE_VAL | rb_size |
847 848 849
			       RFH_RXF_DMA_MIN_RB_4_8 |
			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
			       RFH_RXF_DMA_RBDCB_SIZE_512);
850

851 852
	/*
	 * Activate DMA snooping.
853
	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
854 855
	 * Default queue is 0
	 */
856 857 858
	iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
			       (DEFAULT_RXQ_NUM <<
				RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
859 860 861 862 863
			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
			       (trans->cfg->integrated ?
				RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
				RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
			       RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
864
	/* Enable the relevant rx queues */
865 866 867
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);

	iwl_trans_release_nic_access(trans, &flags);
868

869 870
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
871 872

	iwl_pcie_enable_rx_wake(trans, true);
873 874
}

875
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
876
{
877
	lockdep_assert_held(&rxq->lock);
878

879 880 881 882
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
883 884
}

885 886 887 888 889 890
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
{
	WARN_ON(1);
	return 0;
}

891 892 893
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
894
	struct iwl_rxq *def_rxq;
895
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
896
	int i, err, queue_size, allocator_pool_size, num_alloc;
897

898
	if (!trans_pcie->rxq) {
899 900 901 902
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
903
	def_rxq = trans_pcie->rxq;
904 905 906 907 908 909 910 911
	if (!rba->alloc_wq)
		rba->alloc_wq = alloc_workqueue("rb_allocator",
						WQ_HIGHPRI | WQ_UNBOUND, 1);
	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);

	spin_lock(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
912 913
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
914
	spin_unlock(&rba->lock);
915

916
	/* free all first - we might be reconfigured for a different size */
917
	iwl_pcie_free_rbs_pool(trans);
918 919

	for (i = 0; i < RX_QUEUE_SIZE; i++)
920
		def_rxq->queue[i] = NULL;
921

922 923 924
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

925 926
		rxq->id = i;

927 928 929 930 931 932 933 934 935 936
		spin_lock(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
937

938 939
		iwl_pcie_rx_init_rxb_lists(rxq);

940 941 942 943
		if (!rxq->napi.poll)
			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       iwl_pcie_dummy_napi_poll, 64);

944 945
		spin_unlock(&rxq->lock);
	}
946

947
	/* move the pool to the default queue and allocator ownerships */
948 949
	queue_size = trans->cfg->mq_rx_supported ?
		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
950 951
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
952
	num_alloc = queue_size + allocator_pool_size;
953 954
	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
		     ARRAY_SIZE(trans_pcie->rx_pool));
955
	for (i = 0; i < num_alloc; i++) {
956 957 958 959 960 961 962
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
S
Sara Sharon 已提交
963
		rxb->vid = (u16)(i + 1);
964
	}
965

966
	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
967 968

	if (trans->cfg->mq_rx_supported)
969
		iwl_pcie_rx_mq_hw_init(trans);
970
	else
971
		iwl_pcie_rx_hw_init(trans, def_rxq);
972 973

	iwl_pcie_rxq_restock(trans, def_rxq);
974 975 976 977

	spin_lock(&def_rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
	spin_unlock(&def_rxq->lock);
978 979 980 981 982 983 984

	return 0;
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
985
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
986 987
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
					      sizeof(__le32);
988
	int i;
989

990 991 992 993 994
	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
995 996 997 998
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

999 1000 1001 1002 1003 1004
	cancel_work_sync(&rba->rx_alloc);
	if (rba->alloc_wq) {
		destroy_workqueue(rba->alloc_wq);
		rba->alloc_wq = NULL;
	}

1005 1006 1007 1008 1009 1010 1011
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
			dma_free_coherent(trans->dev,
1012
					  free_size * rxq->queue_size,
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
		else
			IWL_DEBUG_INFO(trans,
				       "Free rxq->rb_stts which is NULL\n");
1024

1025 1026 1027 1028 1029 1030
		if (rxq->used_bd)
			dma_free_coherent(trans->dev,
					  sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
1031 1032 1033

		if (rxq->napi.poll)
			netif_napi_del(&rxq->napi);
1034
	}
1035
	kfree(trans_pcie->rxq);
1036 1037
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		spin_lock(&rba->lock);
		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

1078
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1079
				struct iwl_rxq *rxq,
1080 1081
				struct iwl_rx_mem_buffer *rxb,
				bool emergency)
J
Johannes Berg 已提交
1082 1083
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1084
	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1085
	bool page_stolen = false;
1086
	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1087
	u32 offset = 0;
J
Johannes Berg 已提交
1088 1089 1090 1091

	if (WARN_ON(!rxb))
		return;

1092 1093 1094 1095 1096 1097
	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		u16 sequence;
		bool reclaim;
1098
		int index, cmd_index, len;
1099 1100
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = offset,
1101
			._rx_page_order = trans_pcie->rx_page_order,
1102 1103
			._page = rxb->page,
			._page_stolen = false,
1104
			.truesize = max_len,
1105 1106 1107 1108 1109 1110 1111
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
			break;

1112 1113 1114
		WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
			FH_RSCSR_RXQ_POS != rxq->id);

1115 1116 1117
		IWL_DEBUG_RX(trans,
			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
			     rxcb._offset,
1118 1119 1120 1121
			     iwl_get_cmd_string(trans,
						iwl_cmd_id(pkt->hdr.cmd,
							   pkt->hdr.group_id,
							   0)),
1122
			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1123

1124
		len = iwl_rx_packet_len(pkt);
1125
		len += sizeof(u32); /* account for status word */
1126 1127
		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
1145 1146
			}
		}
J
Johannes Berg 已提交
1147

1148 1149 1150 1151
		sequence = le16_to_cpu(pkt->hdr.sequence);
		index = SEQ_TO_INDEX(sequence);
		cmd_index = get_cmd_index(&txq->q, index);

1152 1153 1154 1155 1156 1157
		if (rxq->id == 0)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);
1158

1159
		if (reclaim) {
1160
			kzfree(txq->entries[cmd_index].free_buf);
1161
			txq->entries[cmd_index].free_buf = NULL;
1162 1163
		}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim) {
			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
1175
				iwl_pcie_hcmd_complete(trans, &rxcb);
1176 1177 1178 1179 1180 1181
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
J
Johannes Berg 已提交
1182 1183
	}

1184 1185
	/* page was stolen from us -- free our reference */
	if (page_stolen) {
1186
		__free_pages(rxb->page, trans_pcie->rx_page_order);
J
Johannes Berg 已提交
1187
		rxb->page = NULL;
1188
	}
J
Johannes Berg 已提交
1189 1190 1191 1192 1193 1194 1195

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, 0,
1196 1197
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
1198 1199 1200 1201 1202 1203 1204 1205
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
1206
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1207 1208 1209 1210
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
J
Johannes Berg 已提交
1211
	} else
1212
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
J
Johannes Berg 已提交
1213 1214
}

1215 1216
/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1217
 */
1218
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1219
{
J
Johannes Berg 已提交
1220
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1221
	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1222
	u32 r, i, count = 0;
1223
	bool emergency = false;
1224

1225 1226
restart:
	spin_lock(&rxq->lock);
1227 1228
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
1229
	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1230 1231
	i = rxq->read;

1232 1233 1234
	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

1235 1236
	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
1237
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1238 1239

	while (i != r) {
1240
		struct iwl_rx_mem_buffer *rxb;
1241

1242
		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1243 1244
			emergency = true;

1245 1246 1247 1248 1249
		if (trans->cfg->mq_rx_supported) {
			/*
			 * used_bd is a 32 bit but only 12 are used to retrieve
			 * the vid
			 */
1250
			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1251

S
Sara Sharon 已提交
1252 1253 1254 1255
			if (WARN(!vid ||
				 vid > ARRAY_SIZE(trans_pcie->global_table),
				 "Invalid rxb index from HW %u\n", (u32)vid)) {
				iwl_force_nmi(trans);
1256
				goto out;
S
Sara Sharon 已提交
1257 1258
			}
			rxb = trans_pcie->global_table[vid - 1];
1259 1260 1261 1262
		} else {
			rxb = rxq->queue[i];
			rxq->queue[i] = NULL;
		}
1263

1264
		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1265
		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1266

1267
		i = (i + 1) & (rxq->queue_size - 1);
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1280 1281
			struct iwl_rb_allocator *rba = &trans_pcie->rba;

1282 1283 1284 1285 1286
			/* Add the remaining empty RBDs for allocator use */
			spin_lock(&rba->lock);
			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
			spin_unlock(&rba->lock);
		} else if (emergency) {
1287
			count++;
1288
			if (count == 8) {
1289
				count = 0;
1290
				if (rxq->used_count < rxq->queue_size / 3)
1291
					emergency = false;
1292 1293

				rxq->read = i;
1294
				spin_unlock(&rxq->lock);
1295
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1296
				iwl_pcie_rxq_restock(trans, rxq);
1297 1298
				goto restart;
			}
1299
		}
1300
	}
1301
out:
1302 1303
	/* Backtrack one entry */
	rxq->read = i;
1304 1305
	spin_unlock(&rxq->lock);

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
1319
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1320

1321 1322
	if (rxq->napi.poll)
		napi_gro_flush(&rxq->napi, false);
1323 1324

	iwl_pcie_rxq_restock(trans, rxq);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
				      struct msix_entry *entry)
{
	/*
	 * Before sending the interrupt the HW disables it to prevent
	 * a nested interrupt. This is done by writing 1 to the corresponding
	 * bit in the mask register. After handling the interrupt, it should be
	 * re-enabled by clearing this bit. This register is defined as
	 * write 1 clear (W1C) register, meaning that it's being clear
	 * by writing 1 to the bit.
	 */
1346
	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;

1359 1360 1361
	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	local_bh_disable();
	iwl_pcie_rx_handle(trans, entry->entry);
	local_bh_enable();

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

1375 1376
/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1377
 */
1378
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1379
{
1380
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1381
	int i;
1382

1383
	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1384
	if (trans->cfg->internal_wimax_coex &&
1385
	    !trans->cfg->apmg_not_supported &&
1386
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1387
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1388
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1389
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1390
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1391
		iwl_op_mode_wimax_active(trans->op_mode);
1392
		wake_up(&trans_pcie->wait_command_queue);
1393 1394 1395
		return;
	}

1396
	iwl_pcie_dump_csr(trans);
1397
	iwl_dump_fh(trans, NULL);
1398

1399
	local_bh_disable();
1400 1401 1402
	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans);
1403
	local_bh_enable();
1404

1405 1406 1407
	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
		del_timer(&trans_pcie->txq[i].stuck_timer);

1408 1409
	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans_pcie->wait_command_queue);
1410 1411
}

1412
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1413 1414 1415
{
	u32 inta;

1416
	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1417 1418 1419 1420 1421 1422 1423

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
1424
	return inta;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
1440
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1454 1455
	if (!read)
		return 0;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
1467
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
1489
	return inta;
1490 1491
}

1492
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1493
{
1494
	struct iwl_trans *trans = dev_id;
1495 1496
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1497 1498 1499
	u32 inta = 0;
	u32 handled = 0;

1500 1501
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

1502
	spin_lock(&trans_pcie->irq_lock);
1503

1504 1505 1506 1507
	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
1508
		inta = iwl_pcie_int_cause_ict(trans);
1509
	else
1510
		inta = iwl_pcie_int_cause_non_ict(trans);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
1531
	if (unlikely(!inta)) {
1532 1533 1534 1535 1536 1537 1538
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			iwl_enable_interrupts(trans);
1539
		spin_unlock(&trans_pcie->irq_lock);
1540 1541 1542 1543
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

1544 1545 1546 1547 1548 1549
	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1550
		spin_unlock(&trans_pcie->irq_lock);
1551
		goto out;
1552 1553
	}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
1565
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1566

1567
	if (iwl_have_debug_level(IWL_DL_ISR))
1568
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1569
			      inta, iwl_read32(trans, CSR_INT_MASK));
1570

1571
	spin_unlock(&trans_pcie->irq_lock);
1572

1573 1574
	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
1575
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1576 1577

		/* Tell the device to stop sending interrupts */
1578
		iwl_disable_interrupts(trans);
1579

1580
		isr_stats->hw++;
1581
		iwl_pcie_irq_handle_error(trans);
1582 1583 1584

		handled |= CSR_INT_BIT_HW_ERR;

1585
		goto out;
1586 1587
	}

1588
	if (iwl_have_debug_level(IWL_DL_ISR)) {
1589 1590
		/* NIC fires this, but we don't use it, redundant with WAKEUP */
		if (inta & CSR_INT_BIT_SCD) {
1591 1592
			IWL_DEBUG_ISR(trans,
				      "Scheduler finished to transmit the frame/frames.\n");
1593
			isr_stats->sch++;
1594 1595 1596 1597
		}

		/* Alive notification via Rx interrupt will do the real work */
		if (inta & CSR_INT_BIT_ALIVE) {
1598
			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1599
			isr_stats->alive++;
1600 1601
		}
	}
1602

1603 1604 1605 1606 1607
	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
1608
		bool hw_rfkill;
1609

1610
		hw_rfkill = iwl_is_rfkill_set(trans);
1611
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1612
			 hw_rfkill ? "disable radio" : "enable radio");
1613

1614
		isr_stats->rfkill++;
1615

1616
		mutex_lock(&trans_pcie->mutex);
1617
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1618
		mutex_unlock(&trans_pcie->mutex);
1619
		if (hw_rfkill) {
1620 1621 1622
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
1623 1624 1625 1626
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
1627
			clear_bit(STATUS_RFKILL, &trans->status);
1628
		}
1629 1630 1631 1632 1633 1634

		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
1635
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1636
		isr_stats->ctkill++;
1637 1638 1639 1640 1641
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
1642
		IWL_ERR(trans, "Microcode SW error detected. "
1643
			" Restarting 0x%X.\n", inta);
1644
		isr_stats->sw++;
1645
		iwl_pcie_irq_handle_error(trans);
1646 1647 1648 1649 1650
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
1651
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1652
		iwl_pcie_rxq_check_wrptr(trans);
1653
		iwl_pcie_txq_check_wrptrs(trans);
1654

1655
		isr_stats->wakeup++;
1656 1657 1658 1659 1660 1661 1662 1663

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1664
		    CSR_INT_BIT_RX_PERIODIC)) {
1665
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1666 1667
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1668
			iwl_write32(trans, CSR_FH_INT_STATUS,
1669 1670 1671 1672
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
1673
			iwl_write32(trans,
1674
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		}
		/* Sending RX interrupt require many steps to be done in the
		 * the device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
1688
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1689
			    CSR_INT_PERIODIC_DIS);
1690

1691 1692 1693 1694 1695 1696 1697 1698
		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1699
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1700
				   CSR_INT_PERIODIC_ENA);
1701

1702
		isr_stats->rx++;
1703 1704

		local_bh_disable();
1705
		iwl_pcie_rx_handle(trans, 0);
1706
		local_bh_enable();
1707 1708 1709 1710
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
1711
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1712
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1713
		isr_stats->tx++;
1714 1715
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
1716 1717
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
1718 1719 1720
	}

	if (inta & ~handled) {
1721
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1722
		isr_stats->unhandled++;
1723 1724
	}

1725 1726 1727
	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
1728 1729
	}

1730 1731 1732 1733 1734
	/* we are loading the firmware, enable FH_TX interrupt only */
	if (handled & CSR_INT_BIT_FH_TX)
		iwl_enable_fw_load_int(trans);
	/* only Re-enable all interrupt if disabled by irq */
	else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1735
		iwl_enable_interrupts(trans);
1736
	/* Re-enable RF_KILL if it occurred */
1737 1738
	else if (handled & CSR_INT_BIT_RF_KILL)
		iwl_enable_rfkill_int(trans);
1739 1740 1741 1742

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
1743 1744
}

1745 1746 1747 1748 1749
/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/
1750

1751
/* Free dram table */
1752
void iwl_pcie_free_ict(struct iwl_trans *trans)
1753
{
1754
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1755

1756
	if (trans_pcie->ict_tbl) {
1757
		dma_free_coherent(trans->dev, ICT_SIZE,
1758
				  trans_pcie->ict_tbl,
1759
				  trans_pcie->ict_tbl_dma);
1760 1761
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
1762 1763 1764
	}
}

1765 1766 1767
/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
1768 1769
 * also reset all data related to ICT table interrupt.
 */
1770
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1771
{
1772
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1773

1774
	trans_pcie->ict_tbl =
1775
		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1776 1777 1778
				   &trans_pcie->ict_tbl_dma,
				   GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
1779 1780
		return -ENOMEM;

1781 1782
	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1783
		iwl_pcie_free_ict(trans);
1784 1785
		return -EINVAL;
	}
1786 1787 1788 1789 1790 1791 1792

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
1793
void iwl_pcie_reset_ict(struct iwl_trans *trans)
1794
{
1795
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1796 1797
	u32 val;

1798
	if (!trans_pcie->ict_tbl)
1799
		return;
1800

1801
	spin_lock(&trans_pcie->irq_lock);
1802
	iwl_disable_interrupts(trans);
1803

1804
	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1805

1806
	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1807

1808 1809 1810
	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1811

1812
	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1813

1814
	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1815 1816
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
1817
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1818
	iwl_enable_interrupts(trans);
1819
	spin_unlock(&trans_pcie->irq_lock);
1820 1821 1822
}

/* Device is going down disable ict interrupt usage */
1823
void iwl_pcie_disable_ict(struct iwl_trans *trans)
1824
{
1825
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1826

1827
	spin_lock(&trans_pcie->irq_lock);
1828
	trans_pcie->use_ict = false;
1829
	spin_unlock(&trans_pcie->irq_lock);
1830 1831
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

1846
	return IRQ_WAKE_THREAD;
1847
}
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
1859
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1860 1861 1862 1863 1864
	u32 inta_fh, inta_hw;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock(&trans_pcie->irq_lock);
1865 1866
	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1867 1868 1869
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
1870 1871
	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	spin_unlock(&trans_pcie->irq_lock);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
			      inta_fh,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
	}

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans,
			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
			      inta_hw,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
	}

	/* uCode wakes up after power-down sleep */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
		bool hw_rfkill;

		hw_rfkill = iwl_is_rfkill_set(trans);
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
			 hw_rfkill ? "disable radio" : "enable radio");

		isr_stats->rfkill++;

		mutex_lock(&trans_pcie->mutex);
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
		mutex_unlock(&trans_pcie->mutex);
		if (hw_rfkill) {
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
			clear_bit(STATUS_RFKILL, &trans->status);
		}
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);
	}

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}