vmalloc.c 69.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
8
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/debugobjects.h>
22
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
23
#include <linux/list.h>
24
#include <linux/notifier.h>
N
Nick Piggin 已提交
25 26 27
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
28
#include <linux/pfn.h>
29
#include <linux/kmemleak.h>
30
#include <linux/atomic.h>
31
#include <linux/compiler.h>
32
#include <linux/llist.h>
33
#include <linux/bitops.h>
34

35
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
36
#include <asm/tlbflush.h>
37
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
38

39 40
#include "internal.h"

41 42 43 44 45 46 47 48 49 50 51
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 53 54 55
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
56 57
}

N
Nick Piggin 已提交
58
/*** Page table manipulation functions ***/
59

L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
71
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
72 73 74 75 76 77 78
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
79 80
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
81 82 83 84 85 86
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

87
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
88 89 90 91
{
	pud_t *pud;
	unsigned long next;

92
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
93 94
	do {
		next = pud_addr_end(addr, end);
95 96
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
97 98 99 100 101 102
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
119
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
130
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
131 132 133 134
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
135
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
136 137 138
{
	pte_t *pte;

N
Nick Piggin 已提交
139 140 141 142 143
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

144
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
145 146 147
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
148 149 150 151 152
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
153 154
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
155
		(*nr)++;
L
Linus Torvalds 已提交
156 157 158 159
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
160 161
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
162 163 164 165 166 167 168 169 170
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
171
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
172 173 174 175 176
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

177
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
178
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
179 180 181 182
{
	pud_t *pud;
	unsigned long next;

183
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
184 185 186 187
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
188
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
189 190 191 192 193
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
211 212 213 214 215 216
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
217 218
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
219 220 221
{
	pgd_t *pgd;
	unsigned long next;
222
	unsigned long addr = start;
N
Nick Piggin 已提交
223 224
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
225 226 227 228 229

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
230
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
231
		if (err)
232
			return err;
L
Linus Torvalds 已提交
233
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
234 235

	return nr;
L
Linus Torvalds 已提交
236 237
}

238 239 240 241 242 243 244 245 246 247
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

248
int is_vmalloc_or_module_addr(const void *x)
249 250
{
	/*
251
	 * ARM, x86-64 and sparc64 put modules in a special place,
252 253 254 255 256 257 258 259 260 261 262
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

263
/*
264
 * Walk a vmap address to the struct page it maps.
265
 */
266
struct page *vmalloc_to_page(const void *vmalloc_addr)
267 268
{
	unsigned long addr = (unsigned long) vmalloc_addr;
269
	struct page *page = NULL;
270
	pgd_t *pgd = pgd_offset_k(addr);
271 272 273 274
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
275

276 277 278 279
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
280
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
281

282 283 284 285 286 287
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
288 289 290 291 292 293 294 295 296 297 298

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
299 300
		return NULL;
	pmd = pmd_offset(pud, addr);
301 302
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
303 304 305 306 307 308 309
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
310
	return page;
311
}
312
EXPORT_SYMBOL(vmalloc_to_page);
313 314

/*
315
 * Map a vmalloc()-space virtual address to the physical page frame number.
316
 */
317
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318
{
319
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320
}
321
EXPORT_SYMBOL(vmalloc_to_pfn);
322

N
Nick Piggin 已提交
323 324 325

/*** Global kva allocator ***/

326
#define VM_LAZY_FREE	0x02
N
Nick Piggin 已提交
327 328 329
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
330 331
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
332
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
333 334 335 336 337 338 339 340
static struct rb_root vmap_area_root = RB_ROOT;

/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;
static unsigned long cached_align;

341
static unsigned long vmap_area_pcpu_hole;
N
Nick Piggin 已提交
342 343

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
344
{
N
Nick Piggin 已提交
345 346 347 348 349 350 351 352
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
353
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
369
		struct vmap_area *tmp_va;
N
Nick Piggin 已提交
370 371

		parent = *p;
372 373
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
N
Nick Piggin 已提交
374
			p = &(*p)->rb_left;
375
		else if (va->va_end > tmp_va->va_start)
N
Nick Piggin 已提交
376 377 378 379 380 381 382 383
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

384
	/* address-sort this list */
N
Nick Piggin 已提交
385 386 387 388 389 390 391 392 393 394 395
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

static void purge_vmap_area_lazy(void);

396 397
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);

N
Nick Piggin 已提交
398 399 400 401 402 403 404 405 406 407 408
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
L
Linus Torvalds 已提交
409
	unsigned long addr;
N
Nick Piggin 已提交
410
	int purged = 0;
N
Nick Piggin 已提交
411
	struct vmap_area *first;
N
Nick Piggin 已提交
412

N
Nick Piggin 已提交
413
	BUG_ON(!size);
414
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
415
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
416

417
	might_sleep();
418

N
Nick Piggin 已提交
419 420 421 422 423
	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

424 425 426 427 428 429
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
430 431
retry:
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the vmap_area cached in free_vmap_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_vmap_cache.
	 * Note that __free_vmap_area may update free_vmap_cache
	 * without updating cached_hole_size or cached_align.
	 */
	if (!free_vmap_cache ||
			size < cached_hole_size ||
			vstart < cached_vstart ||
			align < cached_align) {
nocache:
		cached_hole_size = 0;
		free_vmap_cache = NULL;
	}
	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;
	cached_align = align;

	/* find starting point for our search */
	if (free_vmap_cache) {
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456
		addr = ALIGN(first->va_end, align);
N
Nick Piggin 已提交
457 458
		if (addr < vstart)
			goto nocache;
459
		if (addr + size < addr)
N
Nick Piggin 已提交
460 461 462 463
			goto overflow;

	} else {
		addr = ALIGN(vstart, align);
464
		if (addr + size < addr)
N
Nick Piggin 已提交
465 466 467 468 469 470
			goto overflow;

		n = vmap_area_root.rb_node;
		first = NULL;

		while (n) {
N
Nick Piggin 已提交
471 472 473 474
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
N
Nick Piggin 已提交
475 476 477 478
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
N
Nick Piggin 已提交
479
				n = n->rb_right;
N
Nick Piggin 已提交
480
		}
N
Nick Piggin 已提交
481 482 483 484

		if (!first)
			goto found;
	}
N
Nick Piggin 已提交
485 486

	/* from the starting point, walk areas until a suitable hole is found */
487
	while (addr + size > first->va_start && addr + size <= vend) {
N
Nick Piggin 已提交
488 489
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
490
		addr = ALIGN(first->va_end, align);
491
		if (addr + size < addr)
N
Nick Piggin 已提交
492 493
			goto overflow;

494
		if (list_is_last(&first->list, &vmap_area_list))
N
Nick Piggin 已提交
495
			goto found;
496

497
		first = list_next_entry(first, list);
N
Nick Piggin 已提交
498 499
	}

N
Nick Piggin 已提交
500 501 502
found:
	if (addr + size > vend)
		goto overflow;
N
Nick Piggin 已提交
503 504 505 506 507

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
N
Nick Piggin 已提交
508
	free_vmap_cache = &va->rb_node;
N
Nick Piggin 已提交
509 510
	spin_unlock(&vmap_area_lock);

511
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
512 513 514
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
515
	return va;
N
Nick Piggin 已提交
516 517 518 519 520 521 522 523

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
524 525 526 527 528 529 530 531 532 533

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

534
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
535 536
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
N
Nick Piggin 已提交
537 538
	kfree(va);
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
539 540
}

541 542 543 544 545 546 547 548 549 550 551 552
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
553 554 555
static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	if (free_vmap_cache) {
		if (va->va_end < cached_vstart) {
			free_vmap_cache = NULL;
		} else {
			struct vmap_area *cache;
			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
			if (va->va_start <= cache->va_start) {
				free_vmap_cache = rb_prev(&va->rb_node);
				/*
				 * We don't try to update cached_hole_size or
				 * cached_align, but it won't go very wrong.
				 */
			}
		}
	}
N
Nick Piggin 已提交
572 573 574 575
	rb_erase(&va->rb_node, &vmap_area_root);
	RB_CLEAR_NODE(&va->rb_node);
	list_del_rcu(&va->list);

576 577 578 579 580 581 582 583 584
	/*
	 * Track the highest possible candidate for pcpu area
	 * allocation.  Areas outside of vmalloc area can be returned
	 * here too, consider only end addresses which fall inside
	 * vmalloc area proper.
	 */
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);

585
	kfree_rcu(va, rcu_head);
N
Nick Piggin 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);

633 634 635 636 637
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
638
static DEFINE_MUTEX(vmap_purge_lock);
639

640 641 642
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

643 644 645 646 647 648 649 650 651
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}

N
Nick Piggin 已提交
652 653 654
/*
 * Purges all lazily-freed vmap areas.
 */
655
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
656
{
657
	struct llist_node *valist;
N
Nick Piggin 已提交
658
	struct vmap_area *va;
659
	struct vmap_area *n_va;
660
	bool do_free = false;
N
Nick Piggin 已提交
661

662
	lockdep_assert_held(&vmap_purge_lock);
663

664 665
	valist = llist_del_all(&vmap_purge_list);
	llist_for_each_entry(va, valist, purge_list) {
666 667 668 669
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
670
		do_free = true;
N
Nick Piggin 已提交
671 672
	}

673
	if (!do_free)
674
		return false;
N
Nick Piggin 已提交
675

676
	flush_tlb_kernel_range(start, end);
N
Nick Piggin 已提交
677

678
	spin_lock(&vmap_area_lock);
679 680 681
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;

682
		__free_vmap_area(va);
683 684 685
		atomic_sub(nr, &vmap_lazy_nr);
		cond_resched_lock(&vmap_area_lock);
	}
686 687
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
688 689
}

690 691 692 693 694 695
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
696
	if (mutex_trylock(&vmap_purge_lock)) {
697
		__purge_vmap_area_lazy(ULONG_MAX, 0);
698
		mutex_unlock(&vmap_purge_lock);
699
	}
700 701
}

N
Nick Piggin 已提交
702 703 704 705 706
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
707
	mutex_lock(&vmap_purge_lock);
708 709
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
710
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
711 712 713
}

/*
714 715 716
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
717
 */
718
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
719
{
720 721 722 723 724 725 726 727 728
	int nr_lazy;

	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
				    &vmap_lazy_nr);

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
729
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
730 731
}

732 733 734 735 736 737
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
738
	unmap_vmap_area(va);
739 740 741
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

742
	free_vmap_area_noflush(va);
743 744
}

N
Nick Piggin 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
779 780 781 782
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
783 784 785

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

786 787
static bool vmap_initialized __read_mostly = false;

N
Nick Piggin 已提交
788 789 790 791 792 793 794 795 796
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
797
	unsigned long dirty_min, dirty_max; /*< dirty range */
798 799
	struct list_head free_list;
	struct rcu_head rcu_head;
800
	struct list_head purge;
N
Nick Piggin 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
846 847 848 849 850 851
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
852
	void *vaddr;
N
Nick Piggin 已提交
853 854 855 856 857 858 859 860 861 862 863

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
864
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
865
		kfree(vb);
J
Julia Lawall 已提交
866
		return ERR_CAST(va);
N
Nick Piggin 已提交
867 868 869 870 871 872 873 874 875
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

876
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
877 878
	spin_lock_init(&vb->lock);
	vb->va = va;
879 880 881
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
882
	vb->dirty = 0;
883 884
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
885 886 887 888 889 890 891 892 893 894 895
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
896
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
897
	spin_unlock(&vbq->lock);
898
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
899

900
	return vaddr;
N
Nick Piggin 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

914
	free_vmap_area_noflush(vb->va);
915
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
916 917
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
935 936
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
961 962 963 964
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
965
	void *vaddr = NULL;
N
Nick Piggin 已提交
966 967
	unsigned int order;

968
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
969
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
970 971 972 973 974 975 976 977
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
978 979 980 981 982
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
983
		unsigned long pages_off;
N
Nick Piggin 已提交
984 985

		spin_lock(&vb->lock);
986 987 988 989
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
990

991 992
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
993 994 995 996 997 998
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
999

1000 1001
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1002
	}
1003

1004
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1005 1006
	rcu_read_unlock();

1007 1008 1009
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1010

1011
	return vaddr;
N
Nick Piggin 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1021
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1022
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1023 1024 1025

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1026 1027 1028
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1029
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1030 1031 1032 1033 1034 1035 1036

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1037 1038
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1039 1040 1041 1042
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1043
	spin_lock(&vb->lock);
1044 1045 1046 1047

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1048

N
Nick Piggin 已提交
1049 1050
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1051
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int cpu;
	int flush = 0;

1077 1078 1079
	if (unlikely(!vmap_initialized))
		return;

1080 1081
	might_sleep();

N
Nick Piggin 已提交
1082 1083 1084 1085 1086 1087 1088
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1089 1090
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1091
				unsigned long s, e;
1092

1093 1094
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1095

1096 1097
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1098

1099
				flush = 1;
N
Nick Piggin 已提交
1100 1101 1102 1103 1104 1105
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1106
	mutex_lock(&vmap_purge_lock);
1107 1108 1109
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1110
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1121
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1122
	unsigned long addr = (unsigned long)mem;
1123
	struct vmap_area *va;
N
Nick Piggin 已提交
1124

1125
	might_sleep();
N
Nick Piggin 已提交
1126 1127 1128
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1129
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1130

1131
	if (likely(count <= VMAP_MAX_ALLOC)) {
1132
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1133
		vb_free(mem, size);
1134 1135 1136 1137 1138
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1139 1140
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1141
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1151
 *
1152 1153 1154 1155 1156 1157
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1158
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1159 1160 1161
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1162
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1189
static struct vm_struct *vmlist __initdata;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1216 1217 1218
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1219
 * @align: requested alignment
1220 1221 1222 1223 1224 1225 1226 1227
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1228
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1229 1230
{
	static size_t vm_init_off __initdata;
1231 1232 1233 1234
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1235

1236
	vm->addr = (void *)addr;
1237

1238
	vm_area_add_early(vm);
1239 1240
}

N
Nick Piggin 已提交
1241 1242
void __init vmalloc_init(void)
{
1243 1244
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1245 1246 1247 1248
	int i;

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1249
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1250 1251 1252 1253

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1254 1255 1256
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1257
	}
1258

1259 1260
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1261
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1262
		va->flags = VM_VM_AREA;
1263 1264
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1265
		va->vm = tmp;
1266 1267
		__insert_vmap_area(va);
	}
1268 1269 1270

	vmap_area_pcpu_hole = VMALLOC_END;

1271
	vmap_initialized = true;
N
Nick Piggin 已提交
1272 1273
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1317
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1318 1319 1320 1321 1322 1323 1324 1325 1326

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1327 1328 1329
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1330 1331

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1332 1333 1334
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
1335
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
1336

1337
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
1338 1339
{
	unsigned long addr = (unsigned long)area->addr;
1340
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1341 1342
	int err;

1343
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
1344

1345
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
1346 1347 1348
}
EXPORT_SYMBOL_GPL(map_vm_area);

1349
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1350
			      unsigned long flags, const void *caller)
1351
{
1352
	spin_lock(&vmap_area_lock);
1353 1354 1355 1356
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
1357
	va->vm = vm;
1358
	va->flags |= VM_VM_AREA;
1359
	spin_unlock(&vmap_area_lock);
1360
}
1361

1362
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1363
{
1364
	/*
1365
	 * Before removing VM_UNINITIALIZED,
1366 1367 1368 1369
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
1370
	vm->flags &= ~VM_UNINITIALIZED;
1371 1372
}

N
Nick Piggin 已提交
1373
static struct vm_struct *__get_vm_area_node(unsigned long size,
1374
		unsigned long align, unsigned long flags, unsigned long start,
1375
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
1376
{
1377
	struct vmap_area *va;
N
Nick Piggin 已提交
1378
	struct vm_struct *area;
L
Linus Torvalds 已提交
1379

1380
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
1381
	size = PAGE_ALIGN(size);
1382 1383
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1384

1385 1386 1387 1388
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

1389
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
1390 1391 1392
	if (unlikely(!area))
		return NULL;

1393 1394
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
1395

N
Nick Piggin 已提交
1396 1397 1398 1399
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
1400 1401
	}

1402
	setup_vmalloc_vm(area, va, flags, caller);
1403

L
Linus Torvalds 已提交
1404 1405 1406
	return area;
}

C
Christoph Lameter 已提交
1407 1408 1409
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
1410 1411
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
1412
}
1413
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
1414

1415 1416
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
1417
				       const void *caller)
1418
{
D
David Rientjes 已提交
1419 1420
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
1421 1422
}

L
Linus Torvalds 已提交
1423
/**
S
Simon Arlott 已提交
1424
 *	get_vm_area  -  reserve a contiguous kernel virtual area
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
1434
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1435 1436
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
1437 1438 1439
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1440
				const void *caller)
1441
{
1442
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1443
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 *	find_vm_area  -  find a continuous kernel virtual area
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and return it.
 *	It is up to the caller to do all required locking to keep the returned
 *	pointer valid.
 */
struct vm_struct *find_vm_area(const void *addr)
1455
{
N
Nick Piggin 已提交
1456
	struct vmap_area *va;
1457

N
Nick Piggin 已提交
1458 1459
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
1460
		return va->vm;
L
Linus Torvalds 已提交
1461 1462 1463 1464

	return NULL;
}

1465
/**
S
Simon Arlott 已提交
1466
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1467 1468 1469 1470 1471 1472
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
1473
struct vm_struct *remove_vm_area(const void *addr)
1474
{
N
Nick Piggin 已提交
1475 1476
	struct vmap_area *va;

1477 1478
	might_sleep();

N
Nick Piggin 已提交
1479 1480
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
1481
		struct vm_struct *vm = va->vm;
1482

1483 1484 1485
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
1486
		va->flags |= VM_LAZY_FREE;
1487 1488
		spin_unlock(&vmap_area_lock);

1489
		kasan_free_shadow(vm);
1490 1491
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
1492 1493 1494
		return vm;
	}
	return NULL;
1495 1496
}

1497
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503
{
	struct vm_struct *area;

	if (!addr)
		return;

1504
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1505
			addr))
L
Linus Torvalds 已提交
1506 1507
		return;

1508
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
1509
	if (unlikely(!area)) {
1510
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
1511 1512 1513 1514
				addr);
		return;
	}

1515 1516
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1517

1518
	remove_vm_area(addr);
L
Linus Torvalds 已提交
1519 1520 1521 1522
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
1523 1524 1525
			struct page *page = area->pages[i];

			BUG_ON(!page);
1526
			__free_pages(page, 0);
L
Linus Torvalds 已提交
1527 1528
		}

1529
		kvfree(area->pages);
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534
	}

	kfree(area);
	return;
}
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
 *	vfree_atomic  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
 *	This one is just like vfree() but can be called in any atomic context
 *	except NMIs.
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

L
Linus Torvalds 已提交
1568 1569 1570 1571
/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
S
Simon Arlott 已提交
1572
 *	Free the virtually continuous memory area starting at @addr, as
1573 1574
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
L
Linus Torvalds 已提交
1575
 *
1576 1577 1578
 *	Must not be called in NMI context (strictly speaking, only if we don't
 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 *	conventions for vfree() arch-depenedent would be a really bad idea)
1579
 *
1580 1581
 *	May sleep if called *not* from interrupt context.
 *
1582
 *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
1583
 */
1584
void vfree(const void *addr)
L
Linus Torvalds 已提交
1585
{
1586
	BUG_ON(in_nmi());
1587 1588 1589

	kmemleak_free(addr);

1590 1591
	might_sleep_if(!in_interrupt());

1592 1593
	if (!addr)
		return;
1594 1595 1596
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
1597
		__vunmap(addr, 1);
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
1608
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1609
 */
1610
void vunmap(const void *addr)
L
Linus Torvalds 已提交
1611 1612
{
	BUG_ON(in_interrupt());
1613
	might_sleep();
1614 1615
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;
1633
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
1634

1635 1636
	might_sleep();

1637
	if (count > totalram_pages())
L
Linus Torvalds 已提交
1638 1639
		return NULL;

1640 1641
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
1642 1643
	if (!area)
		return NULL;
1644

1645
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651 1652 1653
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

1654 1655 1656
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
1657
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1658
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
1659 1660 1661
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
1662
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1663 1664 1665 1666
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
1667

1668
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1669 1670 1671 1672
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
1673
	if (array_size > PAGE_SIZE) {
1674
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1675
				PAGE_KERNEL, node, area->caller);
1676
	} else {
1677
		pages = kmalloc_node(array_size, nested_gfp, node);
1678
	}
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
1687 1688
		struct page *page;

J
Jianguo Wu 已提交
1689
		if (node == NUMA_NO_NODE)
1690
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
1691
		else
1692
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1693 1694

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
1695 1696 1697 1698
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
1699
		area->pages[i] = page;
1700
		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1701
			cond_resched();
L
Linus Torvalds 已提交
1702 1703
	}

1704
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
1705 1706 1707 1708
		goto fail;
	return area->addr;

fail:
1709
	warn_alloc(gfp_mask, NULL,
1710
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1711
			  (area->nr_pages*PAGE_SIZE), area->size);
L
Linus Torvalds 已提交
1712 1713 1714 1715 1716
	vfree(area->addr);
	return NULL;
}

/**
1717
 *	__vmalloc_node_range  -  allocate virtually contiguous memory
L
Linus Torvalds 已提交
1718
 *	@size:		allocation size
1719
 *	@align:		desired alignment
1720 1721
 *	@start:		vm area range start
 *	@end:		vm area range end
L
Linus Torvalds 已提交
1722 1723
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
1724
 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
D
David Rientjes 已提交
1725
 *	@node:		node to use for allocation or NUMA_NO_NODE
1726
 *	@caller:	caller's return address
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
1732 1733
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
1734 1735
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
1736 1737
{
	struct vm_struct *area;
1738 1739
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
1740 1741

	size = PAGE_ALIGN(size);
1742
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
1743
		goto fail;
L
Linus Torvalds 已提交
1744

1745 1746
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
1747
	if (!area)
1748
		goto fail;
L
Linus Torvalds 已提交
1749

1750
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1751
	if (!addr)
1752
		return NULL;
1753

1754
	/*
1755 1756
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
1757
	 * Now, it is fully initialized, so remove this flag here.
1758
	 */
1759
	clear_vm_uninitialized_flag(area);
1760

1761
	kmemleak_vmalloc(area, size, gfp_mask);
1762 1763

	return addr;
1764 1765

fail:
1766
	warn_alloc(gfp_mask, NULL,
1767
			  "vmalloc: allocation failure: %lu bytes", real_size);
1768
	return NULL;
L
Linus Torvalds 已提交
1769 1770
}

1771 1772 1773 1774 1775 1776
/**
 *	__vmalloc_node  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	@align:		desired alignment
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1777
 *	@node:		node to use for allocation or NUMA_NO_NODE
1778 1779 1780 1781 1782
 *	@caller:	caller's return address
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
1783
 *
1784
 *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1785 1786 1787 1788 1789
 *	and __GFP_NOFAIL are not supported
 *
 *	Any use of gfp flags outside of GFP_KERNEL should be consulted
 *	with mm people.
 *
1790
 */
1791
static void *__vmalloc_node(unsigned long size, unsigned long align,
1792
			    gfp_t gfp_mask, pgprot_t prot,
1793
			    int node, const void *caller)
1794 1795
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1796
				gfp_mask, prot, 0, node, caller);
1797 1798
}

C
Christoph Lameter 已提交
1799 1800
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
1801
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1802
				__builtin_return_address(0));
C
Christoph Lameter 已提交
1803
}
L
Linus Torvalds 已提交
1804 1805
EXPORT_SYMBOL(__vmalloc);

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825
/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1826
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1827 1828 1829 1830
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
1831
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1832
				    GFP_KERNEL);
L
Linus Torvalds 已提交
1833 1834 1835
}
EXPORT_SYMBOL(vmalloc);

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/**
 *	vzalloc - allocate virtually contiguous memory with zero fill
 *	@size:	allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *	The memory allocated is set to zero.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
1848
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1849
				GFP_KERNEL | __GFP_ZERO);
1850 1851 1852
}
EXPORT_SYMBOL(vzalloc);

1853
/**
1854 1855
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
1856
 *
1857 1858
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
1859 1860 1861 1862 1863 1864
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1865
	ret = __vmalloc_node(size, SHMLBA,
1866
			     GFP_KERNEL | __GFP_ZERO,
D
David Rientjes 已提交
1867 1868
			     PAGE_KERNEL, NUMA_NO_NODE,
			     __builtin_return_address(0));
1869
	if (ret) {
N
Nick Piggin 已提交
1870
		area = find_vm_area(ret);
1871 1872
		area->flags |= VM_USERMAP;
	}
1873 1874 1875 1876
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
1877 1878 1879
/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
1880
 *	@node:		numa node
C
Christoph Lameter 已提交
1881 1882 1883 1884
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1885
 *	For tight control over page level allocator and protection flags
C
Christoph Lameter 已提交
1886 1887 1888 1889
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
1890
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1891
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1892 1893 1894
}
EXPORT_SYMBOL(vmalloc_node);

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
1910
			 GFP_KERNEL | __GFP_ZERO);
1911 1912 1913
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919 1920 1921
/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
1922
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
1928
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
D
David Rientjes 已提交
1929
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1930 1931
}

1932
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1933
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1934
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1935
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1936
#else
1937 1938 1939 1940 1941
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1942 1943
#endif

L
Linus Torvalds 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952
/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
1953
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
1954
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1955 1956 1957
}
EXPORT_SYMBOL(vmalloc_32);

1958
/**
1959
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1960
 *	@size:		allocation size
1961 1962 1963
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
1964 1965 1966 1967 1968 1969
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1970
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
D
David Rientjes 已提交
1971
			     NUMA_NO_NODE, __builtin_return_address(0));
1972
	if (ret) {
N
Nick Piggin 已提交
1973
		area = find_vm_area(ret);
1974 1975
		area->flags |= VM_USERMAP;
	}
1976 1977 1978 1979
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

1993
		offset = offset_in_page(addr);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2010
			void *map = kmap_atomic(p);
2011
			memcpy(buf, map + offset, length);
2012
			kunmap_atomic(map);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2032
		offset = offset_in_page(addr);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2049
			void *map = kmap_atomic(p);
2050
			memcpy(map + offset, buf, length);
2051
			kunmap_atomic(map);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
 *	vread() -  read vmalloc area in a safe way.
 *	@buf:		buffer for reading data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be increased.
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 *	includes any intersect with alive vmalloc area.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from that area to a given buffer. If the given memory range
 *	of [addr...addr+count) includes some valid address, data is copied to
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
2078
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2079 2080 2081 2082 2083 2084 2085 2086
 *
 *	Note: In usual ops, vread() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 */

L
Linus Torvalds 已提交
2087 2088
long vread(char *buf, char *addr, unsigned long count)
{
2089 2090
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2091
	char *vaddr, *buf_start = buf;
2092
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2109
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2119
		n = vaddr + get_vm_area_size(vm) - addr;
2120 2121
		if (n > count)
			n = count;
2122
		if (!(vm->flags & VM_IOREMAP))
2123 2124 2125 2126 2127 2128
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2129 2130
	}
finished:
2131
	spin_unlock(&vmap_area_lock);
2132 2133 2134 2135 2136 2137 2138 2139

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2140 2141
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/**
 *	vwrite() -  write vmalloc area in a safe way.
 *	@buf:		buffer for source data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be incresed.
 *	(same number to @count).
 *	If [addr...addr+count) doesn't includes any intersect with valid
 *	vmalloc area, returns 0.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from a buffer to the given addr. If specified range of
 *	[addr...addr+count) includes some valid address, data is copied from
 *	proper area of @buf. If there are memory holes, no copy to hole.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
2160
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2161 2162 2163 2164 2165 2166 2167
 *
 *	Note: In usual ops, vwrite() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 */

L
Linus Torvalds 已提交
2168 2169
long vwrite(char *buf, char *addr, unsigned long count)
{
2170 2171
	struct vmap_area *va;
	struct vm_struct *vm;
2172 2173 2174
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2175 2176 2177 2178

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2179
	buflen = count;
L
Linus Torvalds 已提交
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2191
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197 2198 2199
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2200
		n = vaddr + get_vm_area_size(vm) - addr;
2201 2202
		if (n > count)
			n = count;
2203
		if (!(vm->flags & VM_IOREMAP)) {
2204 2205 2206 2207 2208 2209
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2210 2211
	}
finished:
2212
	spin_unlock(&vmap_area_lock);
2213 2214 2215
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2216
}
2217 2218

/**
2219 2220 2221 2222 2223
 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
 *	@vma:		vma to cover
 *	@uaddr:		target user address to start at
 *	@kaddr:		virtual address of vmalloc kernel memory
 *	@size:		size of map area
2224 2225
 *
 *	Returns:	0 for success, -Exxx on failure
2226
 *
2227 2228 2229 2230
 *	This function checks that @kaddr is a valid vmalloc'ed area,
 *	and that it is big enough to cover the range starting at
 *	@uaddr in @vma. Will return failure if that criteria isn't
 *	met.
2231
 *
2232
 *	Similar to remap_pfn_range() (see mm/memory.c)
2233
 */
2234 2235
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2236 2237 2238
{
	struct vm_struct *area;

2239 2240 2241
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2242 2243
		return -EINVAL;

2244
	area = find_vm_area(kaddr);
2245
	if (!area)
N
Nick Piggin 已提交
2246
		return -EINVAL;
2247 2248

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2249
		return -EINVAL;
2250

2251
	if (kaddr + size > area->addr + area->size)
N
Nick Piggin 已提交
2252
		return -EINVAL;
2253 2254

	do {
2255
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2256 2257
		int ret;

2258 2259 2260 2261 2262
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2263 2264 2265
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2266

2267
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2268

N
Nick Piggin 已提交
2269
	return 0;
2270
}
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
 *
 *	Returns:	0 for success, -Exxx on failure
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
 *	Similar to remap_pfn_range() (see mm/memory.c)
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
2294 2295
EXPORT_SYMBOL(remap_vmalloc_range);

2296 2297 2298 2299
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
2300
void __weak vmalloc_sync_all(void)
2301 2302
{
}
2303 2304


2305
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2306
{
2307 2308 2309 2310 2311 2312
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
2313 2314 2315 2316 2317 2318
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
2319
 *	@ptes:		returns the PTEs for the address space
2320 2321
 *
 *	Returns:	NULL on failure, vm_struct on success
2322 2323 2324
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
2325 2326 2327 2328
 *	are created.
 *
 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 *	allocated for the VM area are returned.
2329
 */
2330
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2331 2332 2333
{
	struct vm_struct *area;

2334 2335
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
2336 2337 2338 2339 2340 2341 2342 2343
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2344
				size, f, ptes ? &ptes : NULL)) {
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2361

2362
#ifdef CONFIG_SMP
2363 2364
static struct vmap_area *node_to_va(struct rb_node *n)
{
2365
	return rb_entry_safe(n, struct vmap_area, rb_node);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
}

/**
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 * @end: target address
 * @pnext: out arg for the next vmap_area
 * @pprev: out arg for the previous vmap_area
 *
 * Returns: %true if either or both of next and prev are found,
 *	    %false if no vmap_area exists
 *
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 */
static bool pvm_find_next_prev(unsigned long end,
			       struct vmap_area **pnext,
			       struct vmap_area **pprev)
{
	struct rb_node *n = vmap_area_root.rb_node;
	struct vmap_area *va = NULL;

	while (n) {
		va = rb_entry(n, struct vmap_area, rb_node);
		if (end < va->va_end)
			n = n->rb_left;
		else if (end > va->va_end)
			n = n->rb_right;
		else
			break;
	}

	if (!va)
		return false;

	if (va->va_end > end) {
		*pnext = va;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	} else {
		*pprev = va;
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
	}
	return true;
}

/**
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 * @pnext: in/out arg for the next vmap_area
 * @pprev: in/out arg for the previous vmap_area
 * @align: alignment
 *
 * Returns: determined end address
 *
 * Find the highest aligned address between *@pnext and *@pprev below
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 * down address is between the end addresses of the two vmap_areas.
 *
 * Please note that the address returned by this function may fall
 * inside *@pnext vmap_area.  The caller is responsible for checking
 * that.
 */
static unsigned long pvm_determine_end(struct vmap_area **pnext,
				       struct vmap_area **pprev,
				       unsigned long align)
{
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	unsigned long addr;

	if (*pnext)
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
	else
		addr = vmalloc_end;

	while (*pprev && (*pprev)->va_end > addr) {
		*pnext = *pprev;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	}

	return addr;
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
2458 2459 2460 2461
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
2462 2463 2464 2465 2466 2467
 *
 * Despite its complicated look, this allocator is rather simple.  It
 * does everything top-down and scans areas from the end looking for
 * matching slot.  While scanning, if any of the areas overlaps with
 * existing vmap_area, the base address is pulled down to fit the
 * area.  Scanning is repeated till all the areas fit and then all
2468
 * necessary data structures are inserted and the result is returned.
2469 2470 2471
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
2472
				     size_t align)
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	struct vmap_area **vas, *prev, *next;
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
	unsigned long base, start, end, last_end;
	bool purged = false;

	/* verify parameters and allocate data structures */
2483
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

2496
		for (area2 = area + 1; area2 < nr_vms; area2++) {
2497 2498 2499
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

2500
			BUG_ON(start2 < end && start < end2);
2501 2502 2503 2504 2505 2506 2507 2508 2509
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

2510 2511
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2512
	if (!vas || !vms)
2513
		goto err_free2;
2514 2515

	for (area = 0; area < nr_vms; area++) {
2516 2517
		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
		base = vmalloc_end - last_end;
		goto found;
	}
	base = pvm_determine_end(&next, &prev, align) - end;

	while (true) {
		BUG_ON(next && next->va_end <= base + end);
		BUG_ON(prev && prev->va_end > base + end);

		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
		if (base + last_end < vmalloc_start + last_end) {
			spin_unlock(&vmap_area_lock);
			if (!purged) {
				purge_vmap_area_lazy();
				purged = true;
				goto retry;
			}
			goto err_free;
		}

		/*
		 * If next overlaps, move base downwards so that it's
		 * right below next and then recheck.
		 */
		if (next && next->va_start < base + end) {
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * If prev overlaps, shift down next and prev and move
		 * base so that it's right below new next and then
		 * recheck.
		 */
		if (prev && prev->va_end > base + start)  {
			next = prev;
			prev = node_to_va(rb_prev(&next->rb_node));
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
		start = offsets[area];
		end = start + sizes[area];
		pvm_find_next_prev(base + end, &next, &prev);
	}
found:
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
		struct vmap_area *va = vas[area];

		va->va_start = base + offsets[area];
		va->va_end = va->va_start + sizes[area];
		__insert_vmap_area(va);
	}

	vmap_area_pcpu_hole = base + offsets[last_area];

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
2603 2604
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
2605 2606 2607 2608 2609 2610

	kfree(vas);
	return vms;

err_free:
	for (area = 0; area < nr_vms; area++) {
2611 2612
		kfree(vas[area]);
		kfree(vms[area]);
2613
	}
2614
err_free2:
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
2635
#endif	/* CONFIG_SMP */
2636 2637 2638

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2639
	__acquires(&vmap_area_lock)
2640
{
2641
	spin_lock(&vmap_area_lock);
2642
	return seq_list_start(&vmap_area_list, *pos);
2643 2644 2645 2646
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
2647
	return seq_list_next(p, &vmap_area_list, pos);
2648 2649 2650
}

static void s_stop(struct seq_file *m, void *p)
2651
	__releases(&vmap_area_lock)
2652
{
2653
	spin_unlock(&vmap_area_lock);
2654 2655
}

2656 2657
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
2658
	if (IS_ENABLED(CONFIG_NUMA)) {
2659 2660 2661 2662 2663
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

2664 2665
		if (v->flags & VM_UNINITIALIZED)
			return;
2666 2667
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

2680 2681
static int s_show(struct seq_file *m, void *p)
{
2682
	struct vmap_area *va;
2683 2684
	struct vm_struct *v;

2685 2686
	va = list_entry(p, struct vmap_area, list);

2687 2688 2689 2690
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
2691 2692 2693 2694 2695 2696
	if (!(va->flags & VM_VM_AREA)) {
		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start,
			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");

2697
		return 0;
2698
	}
2699 2700

	v = va->vm;
2701

2702
	seq_printf(m, "0x%pK-0x%pK %7ld",
2703 2704
		v->addr, v->addr + v->size, v->size);

2705 2706
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
2707

2708 2709 2710 2711
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
2712
		seq_printf(m, " phys=%pa", &v->phys_addr);
2713 2714

	if (v->flags & VM_IOREMAP)
2715
		seq_puts(m, " ioremap");
2716 2717

	if (v->flags & VM_ALLOC)
2718
		seq_puts(m, " vmalloc");
2719 2720

	if (v->flags & VM_MAP)
2721
		seq_puts(m, " vmap");
2722 2723

	if (v->flags & VM_USERMAP)
2724
		seq_puts(m, " user");
2725

2726
	if (is_vmalloc_addr(v->pages))
2727
		seq_puts(m, " vpages");
2728

2729
	show_numa_info(m, v);
2730 2731 2732 2733
	seq_putc(m, '\n');
	return 0;
}

2734
static const struct seq_operations vmalloc_op = {
2735 2736 2737 2738 2739
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
2740 2741 2742

static int __init proc_vmalloc_init(void)
{
2743
	if (IS_ENABLED(CONFIG_NUMA))
2744
		proc_create_seq_private("vmallocinfo", 0400, NULL,
2745 2746
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
2747
	else
2748
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2749 2750 2751
	return 0;
}
module_init(proc_vmalloc_init);
2752

2753 2754
#endif
新手
引导
客服 返回
顶部