mcp251x.c 37.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 */

22
#include <linux/bitfield.h>
23 24
#include <linux/can/core.h>
#include <linux/can/dev.h>
25
#include <linux/can/led.h>
26
#include <linux/clk.h>
27 28 29 30
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/freezer.h>
31 32
#include <linux/gpio.h>
#include <linux/gpio/driver.h>
33 34
#include <linux/interrupt.h>
#include <linux/io.h>
35
#include <linux/iopoll.h>
36 37 38 39
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
40 41
#include <linux/property.h>
#include <linux/regulator/consumer.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49 50 51 52
#include <linux/spi/spi.h>
#include <linux/uaccess.h>

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
53 54 55 56 57
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))

58
/* MPC251x registers */
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#define BFPCTRL			0x0c
#  define BFPCTRL_B0BFM		BIT(0)
#  define BFPCTRL_B1BFM		BIT(1)
#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
#  define BFPCTRL_B0BFE		BIT(2)
#  define BFPCTRL_B1BFE		BIT(3)
#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
#  define BFPCTRL_B0BFS		BIT(4)
#  define BFPCTRL_B1BFS		BIT(5)
#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
#define TXRTSCTRL		0x0d
#  define TXRTSCTRL_B0RTSM	BIT(0)
#  define TXRTSCTRL_B1RTSM	BIT(1)
#  define TXRTSCTRL_B2RTSM	BIT(2)
#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
#  define TXRTSCTRL_B0RTS	BIT(3)
#  define TXRTSCTRL_B1RTS	BIT(4)
#  define TXRTSCTRL_B2RTS	BIT(5)
#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
123 124 125
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
167
#  define RXBSIDL_SRR   0x10
168 169 170 171 172 173 174 175 176 177 178 179 180 181
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
182 183 184 185 186
#define RXFSID(n) ((n < 3) ? 0 : 4)
#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187 188 189 190
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
191 192 193 194 195 196

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

197
/* Buffer size required for the largest SPI transfer (i.e., reading a
198 199 200 201 202 203 204 205
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

206 207
#define MCP251X_OST_DELAY_MS	(5)

208 209
#define DEVICE_NAME "mcp251x"

210
static const struct can_bittiming_const mcp251x_bittiming_const = {
211 212 213 214 215 216 217 218 219 220 221
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

222 223 224
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
225
	CAN_MCP251X_MCP25625	= 0x25625,
226 227
};

228 229 230 231
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
232
	enum mcp251x_model model;
233

234 235
	struct mutex mcp_lock; /* SPI device lock */

236 237 238 239 240
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;

	struct sk_buff *tx_skb;
	int tx_len;
241

242 243
	struct workqueue_struct *wq;
	struct work_struct tx_work;
244 245
	struct work_struct restart_work;

246 247 248 249 250 251 252
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
253 254
	struct regulator *power;
	struct regulator *transceiver;
255
	struct clk *clk;
256 257 258 259
#ifdef CONFIG_GPIOLIB
	struct gpio_chip gpio;
	u8 reg_bfpctrl;
#endif
260 261
};

262 263 264
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
265
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 267 268 269 270
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);

271 272 273 274
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

275 276
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
277
	dev_kfree_skb(priv->tx_skb);
278 279 280 281 282 283
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

284
/* Note about handling of error return of mcp251x_spi_trans: accessing
285 286 287 288 289 290 291 292 293 294 295 296 297
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
298
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);
	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

317
static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
318
{
319
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
320 321 322 323 324
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

325 326 327 328 329 330
	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
	} else {
		mcp251x_spi_trans(spi, 3);
		val = priv->spi_rx_buf[2];
	}
331 332 333 334

	return val;
}

335
static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
336
{
337
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
338 339 340 341

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

342 343
	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
		u8 val[2] = { 0 };
344

345 346 347 348 349 350 351 352 353
		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
		*v1 = val[0];
		*v2 = val[1];
	} else {
		mcp251x_spi_trans(spi, 4);

		*v1 = priv->spi_rx_buf[2];
		*v2 = priv->spi_rx_buf[3];
	}
354 355
}

356
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
357
{
358
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
359 360 361 362 363 364 365 366

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

367 368 369 370 371 372 373 374 375 376 377 378
static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = v1;
	priv->spi_tx_buf[3] = v2;

	mcp251x_spi_trans(spi, 4);
}

379
static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
380
			       u8 mask, u8 val)
381
{
382
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
383 384 385 386 387 388 389 390 391

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

392 393 394 395 396 397 398 399 400
static u8 mcp251x_read_stat(struct spi_device *spi)
{
	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
}

#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
			   delay_us, timeout_us)

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
#ifdef CONFIG_GPIOLIB
enum {
	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
	MCP251X_GPIO_TX1RTS,
	MCP251X_GPIO_TX2RTS,
	MCP251X_GPIO_RX0BF,			/* outputs */
	MCP251X_GPIO_RX1BF,
};

#define MCP251X_GPIO_INPUT_MASK \
	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
#define MCP251X_GPIO_OUTPUT_MASK \
	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)

static const char * const mcp251x_gpio_names[] = {
	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
	[MCP251X_GPIO_RX1BF] = "RX1BF",
};

static inline bool mcp251x_gpio_is_input(unsigned int offset)
{
	return offset <= MCP251X_GPIO_TX2RTS;
}

static int mcp251x_gpio_request(struct gpio_chip *chip,
				unsigned int offset)
{
	struct mcp251x_priv *priv = gpiochip_get_data(chip);
	u8 val;

	/* nothing to be done for inputs */
	if (mcp251x_gpio_is_input(offset))
		return 0;

	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);

	mutex_lock(&priv->mcp_lock);
	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
	mutex_unlock(&priv->mcp_lock);

	priv->reg_bfpctrl |= val;

	return 0;
}

static void mcp251x_gpio_free(struct gpio_chip *chip,
			      unsigned int offset)
{
	struct mcp251x_priv *priv = gpiochip_get_data(chip);
	u8 val;

	/* nothing to be done for inputs */
	if (mcp251x_gpio_is_input(offset))
		return;

	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);

	mutex_lock(&priv->mcp_lock);
	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
	mutex_unlock(&priv->mcp_lock);

	priv->reg_bfpctrl &= ~val;
}

static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
				      unsigned int offset)
{
	if (mcp251x_gpio_is_input(offset))
		return GPIOF_DIR_IN;

	return GPIOF_DIR_OUT;
}

static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
	struct mcp251x_priv *priv = gpiochip_get_data(chip);
	u8 reg, mask, val;

	if (mcp251x_gpio_is_input(offset)) {
		reg = TXRTSCTRL;
		mask = TXRTSCTRL_RTS(offset);
	} else {
		reg = BFPCTRL;
		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
	}

	mutex_lock(&priv->mcp_lock);
	val = mcp251x_read_reg(priv->spi, reg);
	mutex_unlock(&priv->mcp_lock);

	return !!(val & mask);
}

static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
				     unsigned long *maskp, unsigned long *bitsp)
{
	struct mcp251x_priv *priv = gpiochip_get_data(chip);
	unsigned long bits = 0;
	u8 val;

	mutex_lock(&priv->mcp_lock);
	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
	}
	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
		val = mcp251x_read_reg(priv->spi, BFPCTRL);
		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
	}
	mutex_unlock(&priv->mcp_lock);

	bitsp[0] = bits;
	return 0;
}

static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
			     int value)
{
	struct mcp251x_priv *priv = gpiochip_get_data(chip);
	u8 mask, val;

	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
	val = value ? mask : 0;

	mutex_lock(&priv->mcp_lock);
	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
	mutex_unlock(&priv->mcp_lock);

	priv->reg_bfpctrl &= ~mask;
	priv->reg_bfpctrl |= val;
}

static void
mcp251x_gpio_set_multiple(struct gpio_chip *chip,
			  unsigned long *maskp, unsigned long *bitsp)
{
	struct mcp251x_priv *priv = gpiochip_get_data(chip);
	u8 mask, val;

	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);

	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);

	if (!mask)
		return;

	mutex_lock(&priv->mcp_lock);
	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
	mutex_unlock(&priv->mcp_lock);

	priv->reg_bfpctrl &= ~mask;
	priv->reg_bfpctrl |= val;
}

static void mcp251x_gpio_restore(struct spi_device *spi)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
}

static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
{
	struct gpio_chip *gpio = &priv->gpio;

	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
		return 0;

	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
	gpio->label = priv->spi->modalias;
	gpio->parent = &priv->spi->dev;
	gpio->owner = THIS_MODULE;
	gpio->request = mcp251x_gpio_request;
	gpio->free = mcp251x_gpio_free;
	gpio->get_direction = mcp251x_gpio_get_direction;
	gpio->get = mcp251x_gpio_get;
	gpio->get_multiple = mcp251x_gpio_get_multiple;
	gpio->set = mcp251x_gpio_set;
	gpio->set_multiple = mcp251x_gpio_set_multiple;
	gpio->base = -1;
	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
	gpio->names = mcp251x_gpio_names;
	gpio->can_sleep = true;
#ifdef CONFIG_OF_GPIO
	gpio->of_node = priv->spi->dev.of_node;
#endif

	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
}
#else
static inline void mcp251x_gpio_restore(struct spi_device *spi)
{
}

static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
{
	return 0;
}
#endif

608 609 610
static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
611
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
612

613
	if (mcp251x_is_2510(spi)) {
614 615 616 617 618 619 620 621 622 623 624 625 626 627
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
628
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
647 648 649
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
650 651 652 653

	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	mcp251x_spi_trans(priv->spi, 1);
654 655 656 657 658
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
659
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
660

661
	if (mcp251x_is_2510(spi)) {
662 663 664 665
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
666

667
		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
668 669 670 671
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
672 673 674 675 676 677 678 679 680 681
		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
			spi_write_then_read(spi, priv->spi_tx_buf, 1,
					    priv->spi_rx_buf,
					    SPI_TRANSFER_BUF_LEN);
			memcpy(buf + 1, priv->spi_rx_buf,
			       SPI_TRANSFER_BUF_LEN - 1);
		} else {
			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
		}
682 683 684 685 686
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
687
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
719 720
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
721 722
	}
	/* Data length */
723 724
	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
	memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
725 726

	priv->net->stats.rx_packets++;
727
	priv->net->stats.rx_bytes += frame->len;
728 729 730

	can_led_event(priv->net, CAN_LED_EVENT_RX);

731
	netif_rx_ni(skb);
732 733 734 735 736 737 738
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

739 740 741
/* May only be called when device is sleeping! */
static int mcp251x_hw_wake(struct spi_device *spi)
{
742 743
	u8 value;
	int ret;
744 745 746 747 748 749 750 751 752 753 754 755

	/* Force wakeup interrupt to wake device, but don't execute IST */
	disable_irq(spi->irq);
	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);

	/* Wait for oscillator startup timer after wake up */
	mdelay(MCP251X_OST_DELAY_MS);

	/* Put device into config mode */
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);

	/* Wait for the device to enter config mode */
756 757 758 759 760 761
	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
					     MCP251X_OST_DELAY_MS * 1000,
					     USEC_PER_SEC);
	if (ret) {
		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
		return ret;
762 763 764 765 766 767 768 769 770
	}

	/* Disable and clear pending interrupts */
	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
	enable_irq(spi->irq);

	return 0;
}

771 772 773 774 775 776 777 778 779 780 781
static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

782
	if (can_dropped_invalid_skb(net, skb))
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
798
		mcp251x_clean(net);
799 800 801 802 803
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
804
		queue_work(priv->wq, &priv->restart_work);
805 806 807 808 809 810 811 812
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

813
static int mcp251x_set_normal_mode(struct spi_device *spi)
814
{
815
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
816 817
	u8 value;
	int ret;
818 819 820 821

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
822
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
823 824 825 826

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
827 828 829
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
830 831
	} else {
		/* Put device into normal mode */
832
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
833 834

		/* Wait for the device to enter normal mode */
835 836 837 838 839 840
		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
						     MCP251X_OST_DELAY_MS * 1000,
						     USEC_PER_SEC);
		if (ret) {
			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
			return ret;
841 842 843
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
844
	return 0;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
862 863 864 865
	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		mcp251x_read_reg(spi, CNF1),
		mcp251x_read_reg(spi, CNF2),
		mcp251x_read_reg(spi, CNF3));
866 867 868 869

	return 0;
}

870
static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
871
{
872
	mcp251x_do_set_bittiming(net);
873

874 875 876 877
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
878 879 880
	return 0;
}

881
static int mcp251x_hw_reset(struct spi_device *spi)
882
{
883
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
884
	u8 value;
885
	int ret;
886 887 888

	/* Wait for oscillator startup timer after power up */
	mdelay(MCP251X_OST_DELAY_MS);
889 890

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
891 892 893 894 895 896
	ret = mcp251x_spi_trans(spi, 1);
	if (ret)
		return ret;

	/* Wait for oscillator startup timer after reset */
	mdelay(MCP251X_OST_DELAY_MS);
897

898
	/* Wait for reset to finish */
899 900 901 902 903 904
	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
					     MCP251X_OST_DELAY_MS * 1000,
					     USEC_PER_SEC);
	if (ret)
		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
	return ret;
905 906 907 908
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
909 910 911 912 913 914
	u8 ctrl;
	int ret;

	ret = mcp251x_hw_reset(spi);
	if (ret)
		return ret;
915

916
	ctrl = mcp251x_read_reg(spi, CANCTRL);
917

918
	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
919

920 921 922
	/* Check for power up default value */
	if ((ctrl & 0x17) != 0x07)
		return -ENODEV;
923

924
	return 0;
925 926
}

927 928
static int mcp251x_power_enable(struct regulator *reg, int enable)
{
929
	if (IS_ERR_OR_NULL(reg))
930 931 932 933 934 935 936 937
		return 0;

	if (enable)
		return regulator_enable(reg);
	else
		return regulator_disable(reg);
}

938 939 940 941 942 943 944
static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	close_candev(net);

945 946 947 948 949 950 951
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

952
	/* Disable and clear pending interrupts */
953
	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
954 955

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
956
	mcp251x_clean(net);
957 958 959

	mcp251x_hw_sleep(spi);

960
	mcp251x_power_enable(priv->transceiver, 0);
961 962 963

	priv->can.state = CAN_STATE_STOPPED;

964 965
	mutex_unlock(&priv->mcp_lock);

966 967
	can_led_event(net, CAN_LED_EVENT_STOP);

968 969 970
	return 0;
}

971 972 973 974 975 976 977
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
978
		frame->can_id |= can_id;
979
		frame->data[1] = data1;
980
		netif_rx_ni(skb);
981
	} else {
982
		netdev_err(net, "cannot allocate error skb\n");
983 984 985
	}
}

986 987 988 989 990 991 992 993
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

994
	mutex_lock(&priv->mcp_lock);
995 996 997
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
998 999 1000
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

1001 1002
			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
				frame->len = CAN_FRAME_MAX_DATA_LEN;
1003
			mcp251x_hw_tx(spi, frame, 0);
1004
			priv->tx_len = 1 + frame->len;
1005 1006
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
1007 1008
		}
	}
1009
	mutex_unlock(&priv->mcp_lock);
1010 1011
}

1012
static void mcp251x_restart_work_handler(struct work_struct *ws)
1013 1014
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1015
						 restart_work);
1016 1017 1018
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

1019
	mutex_lock(&priv->mcp_lock);
1020
	if (priv->after_suspend) {
1021 1022 1023
		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
			mcp251x_hw_reset(spi);
			mcp251x_setup(net, spi);
1024
			mcp251x_gpio_restore(spi);
1025 1026 1027
		} else {
			mcp251x_hw_wake(spi);
		}
1028
		priv->force_quit = 0;
1029 1030 1031 1032
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
1033
			mcp251x_clean(net);
1034
			mcp251x_set_normal_mode(spi);
1035
			netif_wake_queue(net);
1036 1037 1038 1039 1040 1041
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
	}

1042 1043 1044 1045 1046 1047 1048 1049 1050
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
1051

1052 1053 1054 1055 1056
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
1057

1058 1059 1060
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
1061
		u8 intf, eflag;
1062
		u8 clear_intf = 0;
1063
		int can_id = 0, data1 = 0;
1064

1065 1066
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

1067 1068 1069
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

1070
		/* receive buffer 0 */
1071 1072
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
1073 1074
			/* Free one buffer ASAP
			 * (The MCP2515/25625 does this automatically.)
1075 1076
			 */
			if (mcp251x_is_2510(spi))
1077 1078
				mcp251x_write_bits(spi, CANINTF,
						   CANINTF_RX0IF, 0x00);
1079 1080
		}

1081 1082
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
1083
			mcp251x_hw_rx(spi, 1);
1084
			/* The MCP2515/25625 does this automatically. */
1085 1086
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
1087
		}
1088

1089
		/* any error or tx interrupt we need to clear? */
1090 1091
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1092 1093
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1094

1095
		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1096
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
1128
			fallthrough;
1129
		case CAN_STATE_ERROR_WARNING:
1130 1131 1132 1133 1134 1135 1136 1137 1138
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

1139 1140 1141
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1142
				if (eflag & EFLG_RX0OVR) {
1143
					net->stats.rx_over_errors++;
1144 1145 1146
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
1147
					net->stats.rx_over_errors++;
1148 1149
					net->stats.rx_errors++;
				}
1150 1151
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1152
			}
1153
			mcp251x_error_skb(net, can_id, data1);
1154 1155 1156 1157
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
1158
				priv->force_quit = 1;
1159
				priv->can.can_stats.bus_off++;
1160 1161
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
1162
				break;
1163 1164 1165 1166 1167 1168
			}
		}

		if (intf == 0)
			break;

1169
		if (intf & CANINTF_TX) {
1170 1171
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
1172
			can_led_event(net, CAN_LED_EVENT_TX);
1173 1174 1175 1176 1177 1178
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}
1179 1180 1181 1182
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
1183

1184 1185 1186 1187
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
1188
	unsigned long flags = 0;
1189 1190 1191 1192 1193 1194 1195 1196 1197
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
1198
	mcp251x_power_enable(priv->transceiver, 1);
1199 1200 1201 1202 1203

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

1204
	if (!dev_fwnode(&spi->dev))
1205 1206
		flags = IRQF_TRIGGER_FALLING;

1207
	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1208 1209
				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
				   priv);
1210 1211
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1212
		goto out_close;
1213 1214
	}

1215 1216
	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
				   0);
1217 1218 1219 1220
	if (!priv->wq) {
		ret = -ENOMEM;
		goto out_clean;
	}
1221 1222 1223
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

1224
	ret = mcp251x_hw_wake(spi);
1225 1226
	if (ret)
		goto out_free_wq;
1227
	ret = mcp251x_setup(net, spi);
1228 1229
	if (ret)
		goto out_free_wq;
1230
	ret = mcp251x_set_normal_mode(spi);
1231 1232
	if (ret)
		goto out_free_wq;
1233 1234 1235

	can_led_event(net, CAN_LED_EVENT_OPEN);

1236
	netif_wake_queue(net);
1237
	mutex_unlock(&priv->mcp_lock);
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	return 0;

out_free_wq:
	destroy_workqueue(priv->wq);
out_clean:
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
out_close:
	mcp251x_power_enable(priv->transceiver, 0);
	close_candev(net);
1249 1250
	mutex_unlock(&priv->mcp_lock);
	return ret;
1251 1252 1253 1254 1255 1256
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
1257
	.ndo_change_mtu = can_change_mtu,
1258 1259
};

1260 1261 1262 1263 1264 1265 1266 1267 1268
static const struct of_device_id mcp251x_of_match[] = {
	{
		.compatible	= "microchip,mcp2510",
		.data		= (void *)CAN_MCP251X_MCP2510,
	},
	{
		.compatible	= "microchip,mcp2515",
		.data		= (void *)CAN_MCP251X_MCP2515,
	},
1269 1270 1271 1272
	{
		.compatible	= "microchip,mcp25625",
		.data		= (void *)CAN_MCP251X_MCP25625,
	},
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	{ }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
	{
		.name		= "mcp2510",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
	},
	{
		.name		= "mcp2515",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
	},
1286 1287 1288 1289
	{
		.name		= "mcp25625",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
	},
1290 1291 1292 1293
	{ }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

B
Bill Pemberton 已提交
1294
static int mcp251x_can_probe(struct spi_device *spi)
1295
{
1296
	const void *match = device_get_match_data(&spi->dev);
1297 1298
	struct net_device *net;
	struct mcp251x_priv *priv;
1299
	struct clk *clk;
1300 1301
	u32 freq;
	int ret;
1302

1303 1304 1305 1306 1307
	clk = devm_clk_get_optional(&spi->dev, NULL);
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	freq = clk_get_rate(clk);
1308 1309
	if (freq == 0)
		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1310

1311 1312 1313
	/* Sanity check */
	if (freq < 1000000 || freq > 25000000)
		return -ERANGE;
1314 1315 1316

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1317 1318 1319
	if (!net)
		return -ENOMEM;

1320 1321 1322
	ret = clk_prepare_enable(clk);
	if (ret)
		goto out_free;
1323 1324 1325 1326 1327 1328 1329

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
1330
	priv->can.clock.freq = freq / 2;
1331 1332
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1333 1334
	if (match)
		priv->model = (enum mcp251x_model)match;
1335 1336
	else
		priv->model = spi_get_device_id(spi)->driver_data;
1337
	priv->net = net;
1338
	priv->clk = clk;
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	spi_set_drvdata(spi, priv);

	/* Configure the SPI bus */
	spi->bits_per_word = 8;
	if (mcp251x_is_2510(spi))
		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
	else
		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
	ret = spi_setup(spi);
	if (ret)
		goto out_clk;

1352 1353
	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1354 1355 1356
	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
		ret = -EPROBE_DEFER;
1357
		goto out_clk;
1358 1359 1360 1361
	}

	ret = mcp251x_power_enable(priv->power, 1);
	if (ret)
1362
		goto out_clk;
1363

1364
	priv->spi = spi;
1365
	mutex_init(&priv->mcp_lock);
1366

1367 1368 1369 1370 1371
	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
					GFP_KERNEL);
	if (!priv->spi_tx_buf) {
		ret = -ENOMEM;
		goto error_probe;
1372 1373
	}

1374 1375 1376 1377 1378
	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
					GFP_KERNEL);
	if (!priv->spi_rx_buf) {
		ret = -ENOMEM;
		goto error_probe;
1379 1380 1381 1382
	}

	SET_NETDEV_DEV(net, &spi->dev);

1383
	/* Here is OK to not lock the MCP, no one knows about it yet */
1384
	ret = mcp251x_hw_probe(spi);
1385 1386
	if (ret) {
		if (ret == -ENODEV)
1387 1388
			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
				priv->model);
1389
		goto error_probe;
1390
	}
1391

1392 1393 1394
	mcp251x_hw_sleep(spi);

	ret = register_candev(net);
1395 1396 1397 1398 1399
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

1400 1401 1402 1403
	ret = mcp251x_gpio_setup(priv);
	if (ret)
		goto error_probe;

1404
	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1405
	return 0;
1406

1407
error_probe:
1408
	mcp251x_power_enable(priv->power, 0);
1409 1410

out_clk:
1411
	clk_disable_unprepare(clk);
1412 1413

out_free:
1414
	free_candev(net);
1415

1416
	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1417 1418 1419
	return ret;
}

B
Bill Pemberton 已提交
1420
static int mcp251x_can_remove(struct spi_device *spi)
1421
{
1422
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1423 1424 1425 1426
	struct net_device *net = priv->net;

	unregister_candev(net);

1427 1428
	mcp251x_power_enable(priv->power, 0);

1429
	clk_disable_unprepare(priv->clk);
1430

1431
	free_candev(net);
1432 1433 1434 1435

	return 0;
}

1436
static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1437
{
1438
	struct spi_device *spi = to_spi_device(dev);
1439
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1440 1441
	struct net_device *net = priv->net;

1442 1443
	priv->force_quit = 1;
	disable_irq(spi->irq);
1444
	/* Note: at this point neither IST nor workqueues are running.
1445 1446
	 * open/stop cannot be called anyway so locking is not needed
	 */
1447 1448 1449 1450
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
1451
		mcp251x_power_enable(priv->transceiver, 0);
1452 1453 1454 1455 1456
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

1457 1458
	mcp251x_power_enable(priv->power, 0);
	priv->after_suspend |= AFTER_SUSPEND_POWER;
1459 1460 1461 1462

	return 0;
}

1463
static int __maybe_unused mcp251x_can_resume(struct device *dev)
1464
{
1465
	struct spi_device *spi = to_spi_device(dev);
1466
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1467

1468
	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1469
		mcp251x_power_enable(priv->power, 1);
1470
	if (priv->after_suspend & AFTER_SUSPEND_UP)
1471
		mcp251x_power_enable(priv->transceiver, 1);
1472 1473

	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1474
		queue_work(priv->wq, &priv->restart_work);
1475
	else
1476 1477
		priv->after_suspend = 0;

1478 1479
	priv->force_quit = 0;
	enable_irq(spi->irq);
1480 1481
	return 0;
}
1482 1483 1484

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);
1485 1486 1487 1488

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
1489
		.of_match_table = mcp251x_of_match,
1490
		.pm = &mcp251x_can_pm_ops,
1491
	},
1492
	.id_table = mcp251x_id_table,
1493
	.probe = mcp251x_can_probe,
B
Bill Pemberton 已提交
1494
	.remove = mcp251x_can_remove,
1495
};
1496
module_spi_driver(mcp251x_can_driver);
1497 1498 1499

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
1500
MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1501
MODULE_LICENSE("GPL v2");