mcp251x.c 31.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
29
 *                 .modalias = "mcp2510",
30
 *			// "mcp2515" or "mcp25625" depending on your controller
31 32 33 34 35 36 37 38 39 40 41 42 43
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
44
#include <linux/can/led.h>
45
#include <linux/can/platform/mcp251x.h>
46
#include <linux/clk.h>
47 48 49 50 51 52 53 54 55 56
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
57 58
#include <linux/of.h>
#include <linux/of_device.h>
59
#include <linux/platform_device.h>
60
#include <linux/slab.h>
61 62
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
63
#include <linux/regulator/consumer.h>
64 65 66 67 68 69 70 71

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
72 73 74 75 76
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
118 119 120
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
162
#  define RXBSIDL_SRR   0x10
163 164 165 166 167 168 169 170 171 172 173 174 175 176
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
177 178 179 180 181
#define RXFSID(n) ((n < 3) ? 0 : 4)
#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
182 183 184 185
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
186 187 188 189 190 191

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

192
/* Buffer size required for the largest SPI transfer (i.e., reading a
193 194 195 196 197 198 199 200
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

201 202
#define MCP251X_OST_DELAY_MS	(5)

203 204 205
#define DEVICE_NAME "mcp251x"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
206
module_param(mcp251x_enable_dma, int, 0444);
207 208
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

209
static const struct can_bittiming_const mcp251x_bittiming_const = {
210 211 212 213 214 215 216 217 218 219 220
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

221 222 223
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
224
	CAN_MCP251X_MCP25625	= 0x25625,
225 226
};

227 228 229 230
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
231
	enum mcp251x_model model;
232

233 234
	struct mutex mcp_lock; /* SPI device lock */

235 236 237 238 239 240 241
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;
242

243 244
	struct workqueue_struct *wq;
	struct work_struct tx_work;
245 246
	struct work_struct restart_work;

247 248 249 250 251 252 253
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
254 255
	struct regulator *power;
	struct regulator *transceiver;
256
	struct clk *clk;
257 258
};

259 260 261
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
262
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
263 264 265 266 267
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);

268 269 270 271
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

272 273
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
274 275 276 277 278 279 280 281
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

282
/* Note about handling of error return of mcp251x_spi_trans: accessing
283 284 285 286 287 288 289 290 291 292 293 294 295
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
296
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

322
static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
323
{
324
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
325 326 327 328 329 330 331 332 333 334 335
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

336
static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
337
{
338
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
339 340 341 342 343 344 345 346 347 348

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

349
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
350
{
351
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
352 353 354 355 356 357 358 359 360

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
361
			       u8 mask, u8 val)
362
{
363
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
364 365 366 367 368 369 370 371 372 373 374 375

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
376
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
377

378
	if (mcp251x_is_2510(spi)) {
379 380 381 382 383 384 385 386 387 388 389 390 391 392
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
393
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
415 416 417 418

	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	mcp251x_spi_trans(priv->spi, 1);
419 420 421 422 423
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
424
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
425

426
	if (mcp251x_is_2510(spi)) {
427 428 429 430
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
431 432

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
433 434 435 436 437 438 439 440 441 442 443
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
444
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
476 477
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
478 479
	}
	/* Data length */
480
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
481 482 483 484
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
485 486 487

	can_led_event(priv->net, CAN_LED_EVENT_RX);

488
	netif_rx_ni(skb);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

507
	if (can_dropped_invalid_skb(net, skb))
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
523
		mcp251x_clean(net);
524 525 526 527 528
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
529
		queue_work(priv->wq, &priv->restart_work);
530 531 532 533 534 535 536 537
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

538
static int mcp251x_set_normal_mode(struct spi_device *spi)
539
{
540
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
541 542 543 544 545
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
546
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
547 548 549 550

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
551 552 553
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
554 555
	} else {
		/* Put device into normal mode */
556
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
557 558 559 560 561 562

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
563
				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
564
				return -EBUSY;
565 566 567 568
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
569
	return 0;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
587 588 589 590
	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		mcp251x_read_reg(spi, CNF1),
		mcp251x_read_reg(spi, CNF2),
		mcp251x_read_reg(spi, CNF3));
591 592 593 594

	return 0;
}

595
static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
596
{
597
	mcp251x_do_set_bittiming(net);
598

599 600 601 602
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
603 604 605
	return 0;
}

606
static int mcp251x_hw_reset(struct spi_device *spi)
607
{
608
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
609
	unsigned long timeout;
610
	int ret;
611 612 613

	/* Wait for oscillator startup timer after power up */
	mdelay(MCP251X_OST_DELAY_MS);
614 615

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
616 617 618 619 620 621
	ret = mcp251x_spi_trans(spi, 1);
	if (ret)
		return ret;

	/* Wait for oscillator startup timer after reset */
	mdelay(MCP251X_OST_DELAY_MS);
622

623 624 625 626 627 628 629 630 631 632 633 634 635
	/* Wait for reset to finish */
	timeout = jiffies + HZ;
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
	       CANCTRL_REQOP_CONF) {
		usleep_range(MCP251X_OST_DELAY_MS * 1000,
			     MCP251X_OST_DELAY_MS * 1000 * 2);

		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev,
				"MCP251x didn't enter in conf mode after reset\n");
			return -EBUSY;
		}
	}
636
	return 0;
637 638 639 640
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
641 642 643 644 645 646
	u8 ctrl;
	int ret;

	ret = mcp251x_hw_reset(spi);
	if (ret)
		return ret;
647

648
	ctrl = mcp251x_read_reg(spi, CANCTRL);
649

650
	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
651

652 653 654
	/* Check for power up default value */
	if ((ctrl & 0x17) != 0x07)
		return -ENODEV;
655

656
	return 0;
657 658
}

659 660
static int mcp251x_power_enable(struct regulator *reg, int enable)
{
661
	if (IS_ERR_OR_NULL(reg))
662 663 664 665 666 667 668 669
		return 0;

	if (enable)
		return regulator_enable(reg);
	else
		return regulator_disable(reg);
}

670 671 672 673 674 675 676
static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	close_candev(net);

677 678 679 680 681 682 683
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

684 685 686 687 688
	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
689
	mcp251x_clean(net);
690 691 692

	mcp251x_hw_sleep(spi);

693
	mcp251x_power_enable(priv->transceiver, 0);
694 695 696

	priv->can.state = CAN_STATE_STOPPED;

697 698
	mutex_unlock(&priv->mcp_lock);

699 700
	can_led_event(net, CAN_LED_EVENT_STOP);

701 702 703
	return 0;
}

704 705 706 707 708 709 710
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
711
		frame->can_id |= can_id;
712
		frame->data[1] = data1;
713
		netif_rx_ni(skb);
714
	} else {
715
		netdev_err(net, "cannot allocate error skb\n");
716 717 718
	}
}

719 720 721 722 723 724 725 726
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

727
	mutex_lock(&priv->mcp_lock);
728 729 730
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
731 732 733 734 735 736 737 738 739
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
740 741
		}
	}
742
	mutex_unlock(&priv->mcp_lock);
743 744
}

745
static void mcp251x_restart_work_handler(struct work_struct *ws)
746 747
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
748
						 restart_work);
749 750 751
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

752
	mutex_lock(&priv->mcp_lock);
753 754
	if (priv->after_suspend) {
		mcp251x_hw_reset(spi);
755
		mcp251x_setup(net, spi);
756 757 758 759
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
760
			mcp251x_clean(net);
761
			mcp251x_set_normal_mode(spi);
762
			netif_wake_queue(net);
763 764 765 766
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
767
		priv->force_quit = 0;
768 769
	}

770 771 772 773 774 775 776 777 778
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
779

780 781 782 783 784
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
785

786 787 788
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
789
		u8 intf, eflag;
790
		u8 clear_intf = 0;
791
		int can_id = 0, data1 = 0;
792

793 794
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

795 796 797
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

798
		/* receive buffer 0 */
799 800
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
801 802
			/* Free one buffer ASAP
			 * (The MCP2515/25625 does this automatically.)
803 804
			 */
			if (mcp251x_is_2510(spi))
805 806
				mcp251x_write_bits(spi, CANINTF,
						   CANINTF_RX0IF, 0x00);
807 808
		}

809 810
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
811
			mcp251x_hw_rx(spi, 1);
812
			/* The MCP2515/25625 does this automatically. */
813 814
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
815
		}
816

817
		/* any error or tx interrupt we need to clear? */
818 819
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
820 821
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
822

823
		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
824
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
856 857
			/* fall through */
		case CAN_STATE_ERROR_WARNING:
858 859 860 861 862 863 864 865 866
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

867 868 869
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
870
				if (eflag & EFLG_RX0OVR) {
871
					net->stats.rx_over_errors++;
872 873 874
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
875
					net->stats.rx_over_errors++;
876 877
					net->stats.rx_errors++;
				}
878 879
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
880
			}
881
			mcp251x_error_skb(net, can_id, data1);
882 883 884 885
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
886
				priv->force_quit = 1;
887
				priv->can.can_stats.bus_off++;
888 889
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
890
				break;
891 892 893 894 895 896
			}
		}

		if (intf == 0)
			break;

897
		if (intf & CANINTF_TX) {
898 899
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
900
			can_led_event(net, CAN_LED_EVENT_TX);
901 902 903 904 905 906
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}
907 908 909 910
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
911

912 913 914 915
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
916
	unsigned long flags = 0;
917 918 919 920 921 922 923 924 925
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
926
	mcp251x_power_enable(priv->transceiver, 1);
927 928 929 930 931

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

932 933 934
	if (!spi->dev.of_node)
		flags = IRQF_TRIGGER_FALLING;

935
	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
936 937
				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
				   priv);
938 939
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
940
		goto out_close;
941 942
	}

943 944
	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
				   0);
945 946 947 948
	if (!priv->wq) {
		ret = -ENOMEM;
		goto out_clean;
	}
949 950 951 952
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
953 954
	if (ret)
		goto out_free_wq;
955
	ret = mcp251x_setup(net, spi);
956 957
	if (ret)
		goto out_free_wq;
958
	ret = mcp251x_set_normal_mode(spi);
959 960
	if (ret)
		goto out_free_wq;
961 962 963

	can_led_event(net, CAN_LED_EVENT_OPEN);

964
	netif_wake_queue(net);
965
	mutex_unlock(&priv->mcp_lock);
966

967 968 969 970 971 972 973 974 975 976
	return 0;

out_free_wq:
	destroy_workqueue(priv->wq);
out_clean:
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
out_close:
	mcp251x_power_enable(priv->transceiver, 0);
	close_candev(net);
977 978
	mutex_unlock(&priv->mcp_lock);
	return ret;
979 980 981 982 983 984
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
985
	.ndo_change_mtu = can_change_mtu,
986 987
};

988 989 990 991 992 993 994 995 996
static const struct of_device_id mcp251x_of_match[] = {
	{
		.compatible	= "microchip,mcp2510",
		.data		= (void *)CAN_MCP251X_MCP2510,
	},
	{
		.compatible	= "microchip,mcp2515",
		.data		= (void *)CAN_MCP251X_MCP2515,
	},
997 998 999 1000
	{
		.compatible	= "microchip,mcp25625",
		.data		= (void *)CAN_MCP251X_MCP25625,
	},
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	{ }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
	{
		.name		= "mcp2510",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
	},
	{
		.name		= "mcp2515",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
	},
1014 1015 1016 1017
	{
		.name		= "mcp25625",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
	},
1018 1019 1020 1021
	{ }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

B
Bill Pemberton 已提交
1022
static int mcp251x_can_probe(struct spi_device *spi)
1023
{
1024 1025 1026
	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
							   &spi->dev);
	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1027 1028
	struct net_device *net;
	struct mcp251x_priv *priv;
1029
	struct clk *clk;
1030
	int freq, ret;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	clk = devm_clk_get(&spi->dev, NULL);
	if (IS_ERR(clk)) {
		if (pdata)
			freq = pdata->oscillator_frequency;
		else
			return PTR_ERR(clk);
	} else {
		freq = clk_get_rate(clk);
	}
1041

1042 1043 1044
	/* Sanity check */
	if (freq < 1000000 || freq > 25000000)
		return -ERANGE;
1045 1046 1047

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1048 1049 1050 1051 1052 1053 1054
	if (!net)
		return -ENOMEM;

	if (!IS_ERR(clk)) {
		ret = clk_prepare_enable(clk);
		if (ret)
			goto out_free;
1055 1056 1057 1058 1059 1060 1061 1062
	}

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
1063
	priv->can.clock.freq = freq / 2;
1064 1065
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1066 1067 1068 1069
	if (of_id)
		priv->model = (enum mcp251x_model)of_id->data;
	else
		priv->model = spi_get_device_id(spi)->driver_data;
1070
	priv->net = net;
1071
	priv->clk = clk;
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	spi_set_drvdata(spi, priv);

	/* Configure the SPI bus */
	spi->bits_per_word = 8;
	if (mcp251x_is_2510(spi))
		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
	else
		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
	ret = spi_setup(spi);
	if (ret)
		goto out_clk;

1085 1086
	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1087 1088 1089
	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
		ret = -EPROBE_DEFER;
1090
		goto out_clk;
1091 1092 1093 1094
	}

	ret = mcp251x_power_enable(priv->power, 1);
	if (ret)
1095
		goto out_clk;
1096

1097
	priv->spi = spi;
1098
	mutex_init(&priv->mcp_lock);
1099 1100 1101 1102 1103

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

1104
		/* Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1105 1106
		 * that much and share it between Tx and Rx DMA buffers.
		 */
1107 1108 1109 1110
		priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
						       PAGE_SIZE,
						       &priv->spi_tx_dma,
						       GFP_DMA);
1111 1112

		if (priv->spi_tx_buf) {
1113
			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
1124 1125
		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
						GFP_KERNEL);
1126 1127
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
1128
			goto error_probe;
1129
		}
1130 1131
		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
						GFP_KERNEL);
1132
		if (!priv->spi_rx_buf) {
1133
			ret = -ENOMEM;
1134
			goto error_probe;
1135 1136 1137 1138 1139
		}
	}

	SET_NETDEV_DEV(net, &spi->dev);

1140
	/* Here is OK to not lock the MCP, no one knows about it yet */
1141
	ret = mcp251x_hw_probe(spi);
1142 1143
	if (ret) {
		if (ret == -ENODEV)
1144 1145
			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
				priv->model);
1146
		goto error_probe;
1147
	}
1148

1149 1150 1151
	mcp251x_hw_sleep(spi);

	ret = register_candev(net);
1152 1153 1154 1155 1156
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

1157
	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1158
	return 0;
1159

1160
error_probe:
1161
	mcp251x_power_enable(priv->power, 0);
1162 1163 1164 1165 1166 1167

out_clk:
	if (!IS_ERR(clk))
		clk_disable_unprepare(clk);

out_free:
1168
	free_candev(net);
1169

1170
	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1171 1172 1173
	return ret;
}

B
Bill Pemberton 已提交
1174
static int mcp251x_can_remove(struct spi_device *spi)
1175
{
1176
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1177 1178 1179 1180
	struct net_device *net = priv->net;

	unregister_candev(net);

1181 1182
	mcp251x_power_enable(priv->power, 0);

1183 1184 1185
	if (!IS_ERR(priv->clk))
		clk_disable_unprepare(priv->clk);

1186
	free_candev(net);
1187 1188 1189 1190

	return 0;
}

1191
static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1192
{
1193
	struct spi_device *spi = to_spi_device(dev);
1194
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1195 1196
	struct net_device *net = priv->net;

1197 1198
	priv->force_quit = 1;
	disable_irq(spi->irq);
1199
	/* Note: at this point neither IST nor workqueues are running.
1200 1201
	 * open/stop cannot be called anyway so locking is not needed
	 */
1202 1203 1204 1205
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
1206
		mcp251x_power_enable(priv->transceiver, 0);
1207 1208 1209 1210 1211
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

1212
	if (!IS_ERR_OR_NULL(priv->power)) {
1213
		regulator_disable(priv->power);
1214 1215 1216 1217 1218 1219
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

1220
static int __maybe_unused mcp251x_can_resume(struct device *dev)
1221
{
1222
	struct spi_device *spi = to_spi_device(dev);
1223
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1224

1225
	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1226
		mcp251x_power_enable(priv->power, 1);
1227 1228 1229

	if (priv->after_suspend & AFTER_SUSPEND_UP) {
		mcp251x_power_enable(priv->transceiver, 1);
1230
		queue_work(priv->wq, &priv->restart_work);
1231
	} else {
1232
		priv->after_suspend = 0;
1233
	}
1234

1235 1236
	priv->force_quit = 0;
	enable_irq(spi->irq);
1237 1238
	return 0;
}
1239 1240 1241

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);
1242 1243 1244 1245

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
1246
		.of_match_table = mcp251x_of_match,
1247
		.pm = &mcp251x_can_pm_ops,
1248
	},
1249
	.id_table = mcp251x_id_table,
1250
	.probe = mcp251x_can_probe,
B
Bill Pemberton 已提交
1251
	.remove = mcp251x_can_remove,
1252
};
1253
module_spi_driver(mcp251x_can_driver);
1254 1255 1256

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
1257
MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1258
MODULE_LICENSE("GPL v2");