mcp251x.c 31.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
24
#include <linux/can/led.h>
25
#include <linux/clk.h>
26 27 28 29 30 31 32 33 34
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
35
#include <linux/property.h>
36
#include <linux/platform_device.h>
37
#include <linux/slab.h>
38 39
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
40
#include <linux/regulator/consumer.h>
41 42 43 44 45 46 47 48

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
49 50 51 52 53
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
95 96 97
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
139
#  define RXBSIDL_SRR   0x10
140 141 142 143 144 145 146 147 148 149 150 151 152 153
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
154 155 156 157 158
#define RXFSID(n) ((n < 3) ? 0 : 4)
#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
159 160 161 162
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
163 164 165 166 167 168

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

169
/* Buffer size required for the largest SPI transfer (i.e., reading a
170 171 172 173 174 175 176 177
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

178 179
#define MCP251X_OST_DELAY_MS	(5)

180 181
#define DEVICE_NAME "mcp251x"

182
static const struct can_bittiming_const mcp251x_bittiming_const = {
183 184 185 186 187 188 189 190 191 192 193
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

194 195 196
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
197
	CAN_MCP251X_MCP25625	= 0x25625,
198 199
};

200 201 202 203
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
204
	enum mcp251x_model model;
205

206 207
	struct mutex mcp_lock; /* SPI device lock */

208 209 210 211 212
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;

	struct sk_buff *tx_skb;
	int tx_len;
213

214 215
	struct workqueue_struct *wq;
	struct work_struct tx_work;
216 217
	struct work_struct restart_work;

218 219 220 221 222 223 224
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
225 226
	struct regulator *power;
	struct regulator *transceiver;
227
	struct clk *clk;
228 229
};

230 231 232
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
233
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
234 235 236 237 238
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);

239 240 241 242
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

243 244
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
245
	dev_kfree_skb(priv->tx_skb);
246 247 248 249 250 251
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

252
/* Note about handling of error return of mcp251x_spi_trans: accessing
253 254 255 256 257 258 259 260 261 262 263 264 265
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
266
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);
	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

285
static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
286
{
287
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
288 289 290 291 292 293 294 295 296 297 298
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

299
static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
300
{
301
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
302 303 304 305 306 307 308 309 310 311

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

312
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
313
{
314
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
315 316 317 318 319 320 321 322

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

323 324 325 326 327 328 329 330 331 332 333 334
static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = v1;
	priv->spi_tx_buf[3] = v2;

	mcp251x_spi_trans(spi, 4);
}

335
static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
336
			       u8 mask, u8 val)
337
{
338
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
339 340 341 342 343 344 345 346 347 348 349 350

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
351
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
352

353
	if (mcp251x_is_2510(spi)) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
368
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
390 391 392 393

	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	mcp251x_spi_trans(priv->spi, 1);
394 395 396 397 398
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
399
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
400

401
	if (mcp251x_is_2510(spi)) {
402 403 404 405
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
406 407

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
408 409 410 411 412 413 414 415 416 417 418
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
419
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
451 452
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
453 454
	}
	/* Data length */
455
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
456 457 458 459
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
460 461 462

	can_led_event(priv->net, CAN_LED_EVENT_RX);

463
	netif_rx_ni(skb);
464 465 466 467 468 469 470
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/* May only be called when device is sleeping! */
static int mcp251x_hw_wake(struct spi_device *spi)
{
	unsigned long timeout;

	/* Force wakeup interrupt to wake device, but don't execute IST */
	disable_irq(spi->irq);
	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);

	/* Wait for oscillator startup timer after wake up */
	mdelay(MCP251X_OST_DELAY_MS);

	/* Put device into config mode */
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);

	/* Wait for the device to enter config mode */
	timeout = jiffies + HZ;
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
			CANCTRL_REQOP_CONF) {
		schedule();
		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
			return -EBUSY;
		}
	}

	/* Disable and clear pending interrupts */
	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
	enable_irq(spi->irq);

	return 0;
}

504 505 506 507 508 509 510 511 512 513 514
static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

515
	if (can_dropped_invalid_skb(net, skb))
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
531
		mcp251x_clean(net);
532 533 534 535 536
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
537
		queue_work(priv->wq, &priv->restart_work);
538 539 540 541 542 543 544 545
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

546
static int mcp251x_set_normal_mode(struct spi_device *spi)
547
{
548
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
549 550 551 552 553
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
554
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
555 556 557 558

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
559 560 561
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
562 563
	} else {
		/* Put device into normal mode */
564
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
565 566 567 568 569 570

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
571
				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
572
				return -EBUSY;
573 574 575 576
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
577
	return 0;
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
595 596 597 598
	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		mcp251x_read_reg(spi, CNF1),
		mcp251x_read_reg(spi, CNF2),
		mcp251x_read_reg(spi, CNF3));
599 600 601 602

	return 0;
}

603
static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
604
{
605
	mcp251x_do_set_bittiming(net);
606

607 608 609 610
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
611 612 613
	return 0;
}

614
static int mcp251x_hw_reset(struct spi_device *spi)
615
{
616
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
617
	unsigned long timeout;
618
	int ret;
619 620 621

	/* Wait for oscillator startup timer after power up */
	mdelay(MCP251X_OST_DELAY_MS);
622 623

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
624 625 626 627 628 629
	ret = mcp251x_spi_trans(spi, 1);
	if (ret)
		return ret;

	/* Wait for oscillator startup timer after reset */
	mdelay(MCP251X_OST_DELAY_MS);
630

631 632 633 634 635 636 637 638 639 640 641 642 643
	/* Wait for reset to finish */
	timeout = jiffies + HZ;
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
	       CANCTRL_REQOP_CONF) {
		usleep_range(MCP251X_OST_DELAY_MS * 1000,
			     MCP251X_OST_DELAY_MS * 1000 * 2);

		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev,
				"MCP251x didn't enter in conf mode after reset\n");
			return -EBUSY;
		}
	}
644
	return 0;
645 646 647 648
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
649 650 651 652 653 654
	u8 ctrl;
	int ret;

	ret = mcp251x_hw_reset(spi);
	if (ret)
		return ret;
655

656
	ctrl = mcp251x_read_reg(spi, CANCTRL);
657

658
	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
659

660 661 662
	/* Check for power up default value */
	if ((ctrl & 0x17) != 0x07)
		return -ENODEV;
663

664
	return 0;
665 666
}

667 668
static int mcp251x_power_enable(struct regulator *reg, int enable)
{
669
	if (IS_ERR_OR_NULL(reg))
670 671 672 673 674 675 676 677
		return 0;

	if (enable)
		return regulator_enable(reg);
	else
		return regulator_disable(reg);
}

678 679 680 681 682 683 684
static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	close_candev(net);

685 686 687 688 689 690 691
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

692
	/* Disable and clear pending interrupts */
693
	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
694 695

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
696
	mcp251x_clean(net);
697 698 699

	mcp251x_hw_sleep(spi);

700
	mcp251x_power_enable(priv->transceiver, 0);
701 702 703

	priv->can.state = CAN_STATE_STOPPED;

704 705
	mutex_unlock(&priv->mcp_lock);

706 707
	can_led_event(net, CAN_LED_EVENT_STOP);

708 709 710
	return 0;
}

711 712 713 714 715 716 717
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
718
		frame->can_id |= can_id;
719
		frame->data[1] = data1;
720
		netif_rx_ni(skb);
721
	} else {
722
		netdev_err(net, "cannot allocate error skb\n");
723 724 725
	}
}

726 727 728 729 730 731 732 733
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

734
	mutex_lock(&priv->mcp_lock);
735 736 737
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
738 739 740 741 742 743 744 745 746
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
747 748
		}
	}
749
	mutex_unlock(&priv->mcp_lock);
750 751
}

752
static void mcp251x_restart_work_handler(struct work_struct *ws)
753 754
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
755
						 restart_work);
756 757 758
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

759
	mutex_lock(&priv->mcp_lock);
760
	if (priv->after_suspend) {
761 762 763 764 765 766
		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
			mcp251x_hw_reset(spi);
			mcp251x_setup(net, spi);
		} else {
			mcp251x_hw_wake(spi);
		}
767
		priv->force_quit = 0;
768 769 770 771
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
772
			mcp251x_clean(net);
773
			mcp251x_set_normal_mode(spi);
774
			netif_wake_queue(net);
775 776 777 778 779 780
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
	}

781 782 783 784 785 786 787 788 789
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
790

791 792 793 794 795
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
796

797 798 799
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
800
		u8 intf, eflag;
801
		u8 clear_intf = 0;
802
		int can_id = 0, data1 = 0;
803

804 805
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

806 807 808
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

809
		/* receive buffer 0 */
810 811
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
812 813
			/* Free one buffer ASAP
			 * (The MCP2515/25625 does this automatically.)
814 815
			 */
			if (mcp251x_is_2510(spi))
816 817
				mcp251x_write_bits(spi, CANINTF,
						   CANINTF_RX0IF, 0x00);
818 819
		}

820 821
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
822
			mcp251x_hw_rx(spi, 1);
823
			/* The MCP2515/25625 does this automatically. */
824 825
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
826
		}
827

828
		/* any error or tx interrupt we need to clear? */
829 830
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
831 832
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
833

834
		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
835
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
867 868
			/* fall through */
		case CAN_STATE_ERROR_WARNING:
869 870 871 872 873 874 875 876 877
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

878 879 880
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
881
				if (eflag & EFLG_RX0OVR) {
882
					net->stats.rx_over_errors++;
883 884 885
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
886
					net->stats.rx_over_errors++;
887 888
					net->stats.rx_errors++;
				}
889 890
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
891
			}
892
			mcp251x_error_skb(net, can_id, data1);
893 894 895 896
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
897
				priv->force_quit = 1;
898
				priv->can.can_stats.bus_off++;
899 900
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
901
				break;
902 903 904 905 906 907
			}
		}

		if (intf == 0)
			break;

908
		if (intf & CANINTF_TX) {
909 910
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
911
			can_led_event(net, CAN_LED_EVENT_TX);
912 913 914 915 916 917
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}
918 919 920 921
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
922

923 924 925 926
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
927
	unsigned long flags = 0;
928 929 930 931 932 933 934 935 936
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
937
	mcp251x_power_enable(priv->transceiver, 1);
938 939 940 941 942

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

943
	if (!dev_fwnode(&spi->dev))
944 945
		flags = IRQF_TRIGGER_FALLING;

946
	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
947 948
				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
				   priv);
949 950
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
951
		goto out_close;
952 953
	}

954 955
	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
				   0);
956 957 958 959
	if (!priv->wq) {
		ret = -ENOMEM;
		goto out_clean;
	}
960 961 962
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

963
	ret = mcp251x_hw_wake(spi);
964 965
	if (ret)
		goto out_free_wq;
966
	ret = mcp251x_setup(net, spi);
967 968
	if (ret)
		goto out_free_wq;
969
	ret = mcp251x_set_normal_mode(spi);
970 971
	if (ret)
		goto out_free_wq;
972 973 974

	can_led_event(net, CAN_LED_EVENT_OPEN);

975
	netif_wake_queue(net);
976
	mutex_unlock(&priv->mcp_lock);
977

978 979 980 981 982 983 984 985 986 987
	return 0;

out_free_wq:
	destroy_workqueue(priv->wq);
out_clean:
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
out_close:
	mcp251x_power_enable(priv->transceiver, 0);
	close_candev(net);
988 989
	mutex_unlock(&priv->mcp_lock);
	return ret;
990 991 992 993 994 995
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
996
	.ndo_change_mtu = can_change_mtu,
997 998
};

999 1000 1001 1002 1003 1004 1005 1006 1007
static const struct of_device_id mcp251x_of_match[] = {
	{
		.compatible	= "microchip,mcp2510",
		.data		= (void *)CAN_MCP251X_MCP2510,
	},
	{
		.compatible	= "microchip,mcp2515",
		.data		= (void *)CAN_MCP251X_MCP2515,
	},
1008 1009 1010 1011
	{
		.compatible	= "microchip,mcp25625",
		.data		= (void *)CAN_MCP251X_MCP25625,
	},
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	{ }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
	{
		.name		= "mcp2510",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
	},
	{
		.name		= "mcp2515",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
	},
1025 1026 1027 1028
	{
		.name		= "mcp25625",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
	},
1029 1030 1031 1032
	{ }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

B
Bill Pemberton 已提交
1033
static int mcp251x_can_probe(struct spi_device *spi)
1034
{
1035
	const void *match = device_get_match_data(&spi->dev);
1036 1037
	struct net_device *net;
	struct mcp251x_priv *priv;
1038
	struct clk *clk;
1039 1040
	u32 freq;
	int ret;
1041

1042 1043 1044 1045 1046
	clk = devm_clk_get_optional(&spi->dev, NULL);
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	freq = clk_get_rate(clk);
1047 1048
	if (freq == 0)
		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1049

1050 1051 1052
	/* Sanity check */
	if (freq < 1000000 || freq > 25000000)
		return -ERANGE;
1053 1054 1055

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1056 1057 1058
	if (!net)
		return -ENOMEM;

1059 1060 1061
	ret = clk_prepare_enable(clk);
	if (ret)
		goto out_free;
1062 1063 1064 1065 1066 1067 1068

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
1069
	priv->can.clock.freq = freq / 2;
1070 1071
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1072 1073
	if (match)
		priv->model = (enum mcp251x_model)match;
1074 1075
	else
		priv->model = spi_get_device_id(spi)->driver_data;
1076
	priv->net = net;
1077
	priv->clk = clk;
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	spi_set_drvdata(spi, priv);

	/* Configure the SPI bus */
	spi->bits_per_word = 8;
	if (mcp251x_is_2510(spi))
		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
	else
		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
	ret = spi_setup(spi);
	if (ret)
		goto out_clk;

1091 1092
	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1093 1094 1095
	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
		ret = -EPROBE_DEFER;
1096
		goto out_clk;
1097 1098 1099 1100
	}

	ret = mcp251x_power_enable(priv->power, 1);
	if (ret)
1101
		goto out_clk;
1102

1103
	priv->spi = spi;
1104
	mutex_init(&priv->mcp_lock);
1105

1106 1107 1108 1109 1110
	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
					GFP_KERNEL);
	if (!priv->spi_tx_buf) {
		ret = -ENOMEM;
		goto error_probe;
1111 1112
	}

1113 1114 1115 1116 1117
	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
					GFP_KERNEL);
	if (!priv->spi_rx_buf) {
		ret = -ENOMEM;
		goto error_probe;
1118 1119 1120 1121
	}

	SET_NETDEV_DEV(net, &spi->dev);

1122
	/* Here is OK to not lock the MCP, no one knows about it yet */
1123
	ret = mcp251x_hw_probe(spi);
1124 1125
	if (ret) {
		if (ret == -ENODEV)
1126 1127
			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
				priv->model);
1128
		goto error_probe;
1129
	}
1130

1131 1132 1133
	mcp251x_hw_sleep(spi);

	ret = register_candev(net);
1134 1135 1136 1137 1138
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

1139
	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1140
	return 0;
1141

1142
error_probe:
1143
	mcp251x_power_enable(priv->power, 0);
1144 1145

out_clk:
1146
	clk_disable_unprepare(clk);
1147 1148

out_free:
1149
	free_candev(net);
1150

1151
	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1152 1153 1154
	return ret;
}

B
Bill Pemberton 已提交
1155
static int mcp251x_can_remove(struct spi_device *spi)
1156
{
1157
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1158 1159 1160 1161
	struct net_device *net = priv->net;

	unregister_candev(net);

1162 1163
	mcp251x_power_enable(priv->power, 0);

1164
	clk_disable_unprepare(priv->clk);
1165

1166
	free_candev(net);
1167 1168 1169 1170

	return 0;
}

1171
static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1172
{
1173
	struct spi_device *spi = to_spi_device(dev);
1174
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1175 1176
	struct net_device *net = priv->net;

1177 1178
	priv->force_quit = 1;
	disable_irq(spi->irq);
1179
	/* Note: at this point neither IST nor workqueues are running.
1180 1181
	 * open/stop cannot be called anyway so locking is not needed
	 */
1182 1183 1184 1185
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
1186
		mcp251x_power_enable(priv->transceiver, 0);
1187 1188 1189 1190 1191
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

1192 1193
	mcp251x_power_enable(priv->power, 0);
	priv->after_suspend |= AFTER_SUSPEND_POWER;
1194 1195 1196 1197

	return 0;
}

1198
static int __maybe_unused mcp251x_can_resume(struct device *dev)
1199
{
1200
	struct spi_device *spi = to_spi_device(dev);
1201
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1202

1203
	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1204
		mcp251x_power_enable(priv->power, 1);
1205
	if (priv->after_suspend & AFTER_SUSPEND_UP)
1206
		mcp251x_power_enable(priv->transceiver, 1);
1207 1208

	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1209
		queue_work(priv->wq, &priv->restart_work);
1210
	else
1211 1212
		priv->after_suspend = 0;

1213 1214
	priv->force_quit = 0;
	enable_irq(spi->irq);
1215 1216
	return 0;
}
1217 1218 1219

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);
1220 1221 1222 1223

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
1224
		.of_match_table = mcp251x_of_match,
1225
		.pm = &mcp251x_can_pm_ops,
1226
	},
1227
	.id_table = mcp251x_id_table,
1228
	.probe = mcp251x_can_probe,
B
Bill Pemberton 已提交
1229
	.remove = mcp251x_can_remove,
1230
};
1231
module_spi_driver(mcp251x_can_driver);
1232 1233 1234

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
1235
MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1236
MODULE_LICENSE("GPL v2");