mcp251x.c 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
31
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
32 33 34 35 36 37 38 39 40 41 42
 *
 *
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
43 44
 *                 .modalias = "mcp2510",
 *			// or "mcp2515" depending on your controller
45 46 47 48 49 50 51 52 53 54 55 56 57 58
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 *
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
59
#include <linux/can/led.h>
60
#include <linux/can/platform/mcp251x.h>
61
#include <linux/clk.h>
62 63 64 65 66 67 68 69 70 71
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
72 73
#include <linux/of.h>
#include <linux/of_device.h>
74
#include <linux/platform_device.h>
75
#include <linux/slab.h>
76 77
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
78
#include <linux/regulator/consumer.h>
79 80 81 82 83 84 85 86

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
87 88 89 90 91
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
134 135 136
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
178
#  define RXBSIDL_SRR   0x10
179 180 181 182 183 184 185 186 187 188 189 190 191 192
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
193 194 195 196 197
#define RXFSID(n) ((n < 3) ? 0 : 4)
#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
198 199 200 201
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

/*
 * Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

218 219
#define MCP251X_OST_DELAY_MS	(5)

220 221 222 223 224 225
#define DEVICE_NAME "mcp251x"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
module_param(mcp251x_enable_dma, int, S_IRUGO);
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

226
static const struct can_bittiming_const mcp251x_bittiming_const = {
227 228 229 230 231 232 233 234 235 236 237
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

238 239 240 241 242
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
};

243 244 245 246
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
247
	enum mcp251x_model model;
248

249 250
	struct mutex mcp_lock; /* SPI device lock */

251 252 253 254 255 256 257
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;
258

259 260
	struct workqueue_struct *wq;
	struct work_struct tx_work;
261 262
	struct work_struct restart_work;

263 264 265 266 267 268 269
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
270 271
	struct regulator *power;
	struct regulator *transceiver;
272
	struct clk *clk;
273 274
};

275 276 277
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
278
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
279 280 281 282 283 284
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);
MCP251X_IS(2515);

285 286 287 288
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

289 290
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

/*
 * Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
314
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
{
342
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
343 344 345 346 347 348 349 350 351 352 353
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

354 355 356
static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
		uint8_t *v1, uint8_t *v2)
{
357
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
358 359 360 361 362 363 364 365 366 367

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

368 369
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
{
370
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
371 372 373 374 375 376 377 378 379 380 381

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
			       u8 mask, uint8_t val)
{
382
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
383 384 385 386 387 388 389 390 391 392 393 394

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
395
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
396

397
	if (mcp251x_is_2510(spi)) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
412
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
434 435 436 437

	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	mcp251x_spi_trans(priv->spi, 1);
438 439 440 441 442
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
443
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
444

445
	if (mcp251x_is_2510(spi)) {
446 447 448 449
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
450 451

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
452 453 454 455 456 457 458 459 460 461 462
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
463
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
495 496
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
497 498
	}
	/* Data length */
499
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
500 501 502 503
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
504 505 506

	can_led_event(priv->net, CAN_LED_EVENT_RX);

507
	netif_rx_ni(skb);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

526
	if (can_dropped_invalid_skb(net, skb))
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
542
		mcp251x_clean(net);
543 544 545 546 547
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
548
		queue_work(priv->wq, &priv->restart_work);
549 550 551 552 553 554 555 556
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

557
static int mcp251x_set_normal_mode(struct spi_device *spi)
558
{
559
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
560 561 562 563 564
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
565
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
566 567 568 569

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
570 571 572
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
573 574
	} else {
		/* Put device into normal mode */
575
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
576 577 578 579 580 581 582 583

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
				dev_err(&spi->dev, "MCP251x didn't"
					" enter in normal mode\n");
584
				return -EBUSY;
585 586 587 588
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
589
	return 0;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
607 608 609 610
	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		mcp251x_read_reg(spi, CNF1),
		mcp251x_read_reg(spi, CNF2),
		mcp251x_read_reg(spi, CNF3));
611 612 613 614 615 616 617

	return 0;
}

static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
			 struct spi_device *spi)
{
618
	mcp251x_do_set_bittiming(net);
619

620 621 622 623
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
624 625 626
	return 0;
}

627
static int mcp251x_hw_reset(struct spi_device *spi)
628
{
629
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
630
	u8 reg;
631
	int ret;
632 633 634

	/* Wait for oscillator startup timer after power up */
	mdelay(MCP251X_OST_DELAY_MS);
635 636

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
637 638 639 640 641 642 643 644 645 646
	ret = mcp251x_spi_trans(spi, 1);
	if (ret)
		return ret;

	/* Wait for oscillator startup timer after reset */
	mdelay(MCP251X_OST_DELAY_MS);
	
	reg = mcp251x_read_reg(spi, CANSTAT);
	if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
		return -ENODEV;
647 648

	return 0;
649 650 651 652
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
653 654 655 656 657 658
	u8 ctrl;
	int ret;

	ret = mcp251x_hw_reset(spi);
	if (ret)
		return ret;
659

660
	ctrl = mcp251x_read_reg(spi, CANCTRL);
661

662
	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
663

664 665 666
	/* Check for power up default value */
	if ((ctrl & 0x17) != 0x07)
		return -ENODEV;
667

668
	return 0;
669 670
}

671 672
static int mcp251x_power_enable(struct regulator *reg, int enable)
{
673
	if (IS_ERR_OR_NULL(reg))
674 675 676 677 678 679 680 681
		return 0;

	if (enable)
		return regulator_enable(reg);
	else
		return regulator_disable(reg);
}

682
static void mcp251x_open_clean(struct net_device *net)
683 684 685
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
686

687 688
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
689
	mcp251x_power_enable(priv->transceiver, 0);
690
	close_candev(net);
691 692 693 694 695 696 697 698 699
}

static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	close_candev(net);

700 701 702 703 704 705 706
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

707 708 709 710 711
	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
712
	mcp251x_clean(net);
713 714 715

	mcp251x_hw_sleep(spi);

716
	mcp251x_power_enable(priv->transceiver, 0);
717 718 719

	priv->can.state = CAN_STATE_STOPPED;

720 721
	mutex_unlock(&priv->mcp_lock);

722 723
	can_led_event(net, CAN_LED_EVENT_STOP);

724 725 726
	return 0;
}

727 728 729 730 731 732 733
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
734
		frame->can_id |= can_id;
735
		frame->data[1] = data1;
736
		netif_rx_ni(skb);
737
	} else {
738
		netdev_err(net, "cannot allocate error skb\n");
739 740 741
	}
}

742 743 744 745 746 747 748 749
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

750
	mutex_lock(&priv->mcp_lock);
751 752 753
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
754 755 756 757 758 759 760 761 762
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
763 764
		}
	}
765
	mutex_unlock(&priv->mcp_lock);
766 767
}

768
static void mcp251x_restart_work_handler(struct work_struct *ws)
769 770
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
771
						 restart_work);
772 773 774
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

775
	mutex_lock(&priv->mcp_lock);
776 777 778 779 780 781 782
	if (priv->after_suspend) {
		mcp251x_hw_reset(spi);
		mcp251x_setup(net, priv, spi);
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
783
			mcp251x_clean(net);
784
			mcp251x_set_normal_mode(spi);
785
			netif_wake_queue(net);
786 787 788 789
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
790
		priv->force_quit = 0;
791 792
	}

793 794 795 796 797 798 799 800 801
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
802

803 804 805 806 807
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
808

809 810 811
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
812
		u8 intf, eflag;
813
		u8 clear_intf = 0;
814
		int can_id = 0, data1 = 0;
815

816 817
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

818 819 820
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

821
		/* receive buffer 0 */
822 823
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
824 825 826 827 828 829
			/*
			 * Free one buffer ASAP
			 * (The MCP2515 does this automatically.)
			 */
			if (mcp251x_is_2510(spi))
				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
830 831
		}

832 833
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
834
			mcp251x_hw_rx(spi, 1);
835 836 837
			/* the MCP2515 does this automatically */
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
838
		}
839

840
		/* any error or tx interrupt we need to clear? */
841 842
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
843 844
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
845

846 847
		if (eflag)
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
848

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

889 890 891
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
892
				if (eflag & EFLG_RX0OVR) {
893
					net->stats.rx_over_errors++;
894 895 896
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
897
					net->stats.rx_over_errors++;
898 899
					net->stats.rx_errors++;
				}
900 901
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
902
			}
903
			mcp251x_error_skb(net, can_id, data1);
904 905 906 907
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
908
				priv->force_quit = 1;
909
				priv->can.can_stats.bus_off++;
910 911
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
912
				break;
913 914 915 916 917 918
			}
		}

		if (intf == 0)
			break;

919
		if (intf & CANINTF_TX) {
920 921
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
922
			can_led_event(net, CAN_LED_EVENT_TX);
923 924 925 926 927 928 929
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}

930 931 932 933
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
934

935 936 937 938
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
939
	unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
940 941 942 943 944 945 946 947 948
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
949
	mcp251x_power_enable(priv->transceiver, 1);
950 951 952 953 954 955

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
956
				   flags | IRQF_ONESHOT, DEVICE_NAME, priv);
957 958
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
959
		mcp251x_power_enable(priv->transceiver, 0);
960 961 962 963
		close_candev(net);
		goto open_unlock;
	}

964
	priv->wq = create_freezable_workqueue("mcp251x_wq");
965 966 967 968 969 970 971 972 973 974 975 976
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_setup(net, priv, spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
977
	}
978 979 980 981 982
	ret = mcp251x_set_normal_mode(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
983 984 985

	can_led_event(net, CAN_LED_EVENT_OPEN);

986 987 988 989 990
	netif_wake_queue(net);

open_unlock:
	mutex_unlock(&priv->mcp_lock);
	return ret;
991 992 993 994 995 996
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
997
	.ndo_change_mtu = can_change_mtu,
998 999
};

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static const struct of_device_id mcp251x_of_match[] = {
	{
		.compatible	= "microchip,mcp2510",
		.data		= (void *)CAN_MCP251X_MCP2510,
	},
	{
		.compatible	= "microchip,mcp2515",
		.data		= (void *)CAN_MCP251X_MCP2515,
	},
	{ }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
	{
		.name		= "mcp2510",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
	},
	{
		.name		= "mcp2515",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
	},
	{ }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

B
Bill Pemberton 已提交
1026
static int mcp251x_can_probe(struct spi_device *spi)
1027
{
1028 1029 1030
	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
							   &spi->dev);
	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1031 1032
	struct net_device *net;
	struct mcp251x_priv *priv;
1033
	struct clk *clk;
1034
	int freq, ret;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

	clk = devm_clk_get(&spi->dev, NULL);
	if (IS_ERR(clk)) {
		if (pdata)
			freq = pdata->oscillator_frequency;
		else
			return PTR_ERR(clk);
	} else {
		freq = clk_get_rate(clk);
	}
1045

1046 1047 1048
	/* Sanity check */
	if (freq < 1000000 || freq > 25000000)
		return -ERANGE;
1049 1050 1051

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1052 1053 1054 1055 1056 1057 1058
	if (!net)
		return -ENOMEM;

	if (!IS_ERR(clk)) {
		ret = clk_prepare_enable(clk);
		if (ret)
			goto out_free;
1059 1060 1061 1062 1063 1064 1065 1066
	}

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
1067
	priv->can.clock.freq = freq / 2;
1068 1069
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1070 1071 1072 1073
	if (of_id)
		priv->model = (enum mcp251x_model)of_id->data;
	else
		priv->model = spi_get_device_id(spi)->driver_data;
1074
	priv->net = net;
1075
	priv->clk = clk;
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	spi_set_drvdata(spi, priv);

	/* Configure the SPI bus */
	spi->bits_per_word = 8;
	if (mcp251x_is_2510(spi))
		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
	else
		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
	ret = spi_setup(spi);
	if (ret)
		goto out_clk;

1089 1090 1091 1092 1093
	priv->power = devm_regulator_get(&spi->dev, "vdd");
	priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
		ret = -EPROBE_DEFER;
1094
		goto out_clk;
1095 1096 1097 1098
	}

	ret = mcp251x_power_enable(priv->power, 1);
	if (ret)
1099
		goto out_clk;
1100

1101
	priv->spi = spi;
1102
	mutex_init(&priv->mcp_lock);
1103 1104 1105 1106 1107 1108 1109 1110 1111

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

		/*
		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
		 * that much and share it between Tx and Rx DMA buffers.
		 */
1112 1113 1114 1115
		priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
						       PAGE_SIZE,
						       &priv->spi_tx_dma,
						       GFP_DMA);
1116 1117

		if (priv->spi_tx_buf) {
1118
			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
1129 1130
		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
						GFP_KERNEL);
1131 1132
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
1133
			goto error_probe;
1134
		}
1135 1136
		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
						GFP_KERNEL);
1137
		if (!priv->spi_rx_buf) {
1138
			ret = -ENOMEM;
1139
			goto error_probe;
1140 1141 1142 1143 1144
		}
	}

	SET_NETDEV_DEV(net, &spi->dev);

1145
	/* Here is OK to not lock the MCP, no one knows about it yet */
1146 1147
	ret = mcp251x_hw_probe(spi);
	if (ret)
1148
		goto error_probe;
1149

1150 1151 1152
	mcp251x_hw_sleep(spi);

	ret = register_candev(net);
1153 1154 1155 1156 1157
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

1158
	return 0;
1159

1160
error_probe:
1161
	mcp251x_power_enable(priv->power, 0);
1162 1163 1164 1165 1166 1167

out_clk:
	if (!IS_ERR(clk))
		clk_disable_unprepare(clk);

out_free:
1168
	free_candev(net);
1169

1170 1171 1172
	return ret;
}

B
Bill Pemberton 已提交
1173
static int mcp251x_can_remove(struct spi_device *spi)
1174
{
1175
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1176 1177 1178 1179
	struct net_device *net = priv->net;

	unregister_candev(net);

1180 1181
	mcp251x_power_enable(priv->power, 0);

1182 1183 1184
	if (!IS_ERR(priv->clk))
		clk_disable_unprepare(priv->clk);

1185
	free_candev(net);
1186 1187 1188 1189

	return 0;
}

1190
static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1191
{
1192
	struct spi_device *spi = to_spi_device(dev);
1193
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1194 1195
	struct net_device *net = priv->net;

1196 1197 1198 1199 1200 1201
	priv->force_quit = 1;
	disable_irq(spi->irq);
	/*
	 * Note: at this point neither IST nor workqueues are running.
	 * open/stop cannot be called anyway so locking is not needed
	 */
1202 1203 1204 1205
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
1206
		mcp251x_power_enable(priv->transceiver, 0);
1207 1208 1209 1210 1211
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

1212
	if (!IS_ERR_OR_NULL(priv->power)) {
1213
		regulator_disable(priv->power);
1214 1215 1216 1217 1218 1219
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

1220
static int __maybe_unused mcp251x_can_resume(struct device *dev)
1221
{
1222
	struct spi_device *spi = to_spi_device(dev);
1223
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1224 1225

	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1226
		mcp251x_power_enable(priv->power, 1);
1227
		queue_work(priv->wq, &priv->restart_work);
1228 1229
	} else {
		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1230
			mcp251x_power_enable(priv->transceiver, 1);
1231
			queue_work(priv->wq, &priv->restart_work);
1232 1233 1234 1235
		} else {
			priv->after_suspend = 0;
		}
	}
1236 1237
	priv->force_quit = 0;
	enable_irq(spi->irq);
1238 1239
	return 0;
}
1240 1241 1242

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);
1243 1244 1245 1246 1247

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
		.owner = THIS_MODULE,
1248
		.of_match_table = mcp251x_of_match,
1249
		.pm = &mcp251x_can_pm_ops,
1250
	},
1251
	.id_table = mcp251x_id_table,
1252
	.probe = mcp251x_can_probe,
B
Bill Pemberton 已提交
1253
	.remove = mcp251x_can_remove,
1254
};
1255
module_spi_driver(mcp251x_can_driver);
1256 1257 1258 1259 1260

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x CAN driver");
MODULE_LICENSE("GPL v2");