numa.c 44.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13 14 15 16 17
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
22
#include <linux/memblock.h>
23
#include <linux/of.h>
24
#include <linux/pfn.h>
25 26
#include <linux/cpuset.h>
#include <linux/node.h>
27
#include <linux/stop_machine.h>
28 29 30
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
31
#include <linux/slab.h>
32
#include <asm/cputhreads.h>
33
#include <asm/sparsemem.h>
34
#include <asm/prom.h>
35
#include <asm/smp.h>
36 37
#include <asm/cputhreads.h>
#include <asm/topology.h>
38 39
#include <asm/firmware.h>
#include <asm/paca.h>
40
#include <asm/hvcall.h>
41
#include <asm/setup.h>
42
#include <asm/vdso.h>
L
Linus Torvalds 已提交
43 44 45

static int numa_enabled = 1;

46 47
static char *cmdline __initdata;

L
Linus Torvalds 已提交
48 49 50
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

51
int numa_cpu_lookup_table[NR_CPUS];
52
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
53
struct pglist_data *node_data[MAX_NUMNODES];
54 55

EXPORT_SYMBOL(numa_cpu_lookup_table);
56
EXPORT_SYMBOL(node_to_cpumask_map);
57 58
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
59
static int min_common_depth;
60
static int n_mem_addr_cells, n_mem_size_cells;
61 62 63 64
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
65
static const __be32 *distance_ref_points;
66
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
67

68 69 70 71
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
72
 * Note: cpumask_of_node() is not valid until after this is done.
73 74 75
 */
static void __init setup_node_to_cpumask_map(void)
{
76
	unsigned int node;
77 78

	/* setup nr_node_ids if not done yet */
79 80
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
81 82 83 84 85 86 87 88 89

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

90
static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

137
/*
138
 * get_node_active_region - Return active region containing pfn
139
 * Active range returned is empty if none found.
140 141
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
142
 */
143 144
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
145
{
146 147 148 149 150 151 152 153 154 155 156
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
157 158
}

159 160 161 162 163 164 165 166 167
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
168 169
{
	numa_cpu_lookup_table[cpu] = node;
170 171 172 173 174
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
175

176 177
	dbg("adding cpu %d to node %d\n", cpu, node);

178 179
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
180 181
}

182
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
183 184 185 186 187 188
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

189
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
190
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
191 192 193 194 195
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
196
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
197 198

/* must hold reference to node during call */
199
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
200
{
201
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
202 203
}

204 205 206 207 208
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
209
static const __be32 *of_get_usable_memory(struct device_node *memory)
210
{
211
	const __be32 *prop;
212 213 214
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
215
		return NULL;
216 217 218
	return prop;
}

219 220 221 222 223 224
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
225
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
226 227 228 229 230 231 232 233 234 235 236

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
237
EXPORT_SYMBOL(__node_distance);
238 239

static void initialize_distance_lookup_table(int nid,
240
		const __be32 *associativity)
241 242 243 244 245 246 247
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
248 249 250 251
		const __be32 *entry;

		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
252 253 254
	}
}

255 256 257
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
258
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
259
{
260
	int nid = -1;
L
Linus Torvalds 已提交
261 262

	if (min_common_depth == -1)
263
		goto out;
L
Linus Torvalds 已提交
264

265 266
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
267 268

	/* POWER4 LPAR uses 0xffff as invalid node */
269 270
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
271

272 273
	if (nid > 0 &&
	    of_read_number(associativity, 1) >= distance_ref_points_depth)
274
		initialize_distance_lookup_table(nid, associativity);
275

276
out:
277
	return nid;
L
Linus Torvalds 已提交
278 279
}

280 281 282 283 284 285
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
286
	const __be32 *tmp;
287 288 289 290 291 292 293

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
316 317
static int __init find_min_common_depth(void)
{
318
	int depth;
319
	struct device_node *root;
L
Linus Torvalds 已提交
320

321 322 323 324
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
325 326
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
327 328

	/*
329 330 331 332 333 334 335 336 337 338
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
339
	 */
340
	distance_ref_points = of_get_property(root,
341 342 343 344 345 346 347 348 349
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
350

351 352 353
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
354
		form1_affinity = 1;
355 356
	}

357
	if (form1_affinity) {
358
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
359
	} else {
360 361 362 363 364 365
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

366
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
367 368
	}

369 370 371 372 373 374 375 376 377 378
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

379
	of_node_put(root);
L
Linus Torvalds 已提交
380
	return depth;
381 382

err:
383
	of_node_put(root);
384
	return -1;
L
Linus Torvalds 已提交
385 386
}

387
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
388 389 390 391
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
392
	if (!memory)
393
		panic("numa.c: No memory nodes found!");
394

395
	*n_addr_cells = of_n_addr_cells(memory);
396
	*n_size_cells = of_n_size_cells(memory);
397
	of_node_put(memory);
L
Linus Torvalds 已提交
398 399
}

400
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
401 402 403 404
{
	unsigned long result = 0;

	while (n--) {
405
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
406 407 408 409 410
		(*buf)++;
	}
	return result;
}

411
/*
Y
Yinghai Lu 已提交
412
 * Read the next memblock list entry from the ibm,dynamic-memory property
413 414
 * and return the information in the provided of_drconf_cell structure.
 */
415
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
416
{
417
	const __be32 *cp;
418 419 420 421

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
422 423 424 425
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
426 427 428 429 430

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
431
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
432
 *
Y
Yinghai Lu 已提交
433 434
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
435
 * contains information as laid out in the of_drconf_cell struct above.
436
 */
437
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
438
{
439
	const __be32 *prop;
440 441 442 443 444 445
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

446
	entries = of_read_number(prop++, 1);
447 448 449 450 451 452 453 454 455 456 457 458

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
459
 * Retrieve and validate the ibm,lmb-size property for drconf memory
460 461
 * from the device tree.
 */
462
static u64 of_get_lmb_size(struct device_node *memory)
463
{
464
	const __be32 *prop;
465 466
	u32 len;

467
	prop = of_get_property(memory, "ibm,lmb-size", &len);
468 469 470 471 472 473 474 475 476
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
477
	const __be32 *arrays;
478 479 480
};

/*
L
Lucas De Marchi 已提交
481
 * Retrieve and validate the list of associativity arrays for drconf
482 483 484 485 486 487 488 489 490 491 492
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
493
	const __be32 *prop;
494 495 496 497 498 499
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

500 501
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
502

503
	/* Now that we know the number of arrays and size of each array,
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
528
		nid = of_read_number(&aa->arrays[index], 1);
529 530 531 532 533 534 535 536

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
537 538 539 540
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
541
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
542
{
543
	int nid = -1;
544 545 546 547 548 549 550 551 552 553 554 555 556
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
557 558 559

	if (!cpu) {
		WARN_ON(1);
560 561 562 563
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
564 565
	}

566
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
567

568
out_present:
569
	if (nid < 0 || !node_online(nid))
570
		nid = first_online_node;
L
Linus Torvalds 已提交
571

572
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
573
	of_node_put(cpu);
574
out:
575
	return nid;
L
Linus Torvalds 已提交
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

599
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
L
Linus Torvalds 已提交
600 601 602
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
603
	int ret = NOTIFY_DONE, nid;
L
Linus Torvalds 已提交
604 605 606

	switch (action) {
	case CPU_UP_PREPARE:
607
	case CPU_UP_PREPARE_FROZEN:
608 609
		nid = numa_setup_cpu(lcpu);
		verify_cpu_node_mapping((int)lcpu, nid);
L
Linus Torvalds 已提交
610 611 612 613
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
614
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
615
	case CPU_UP_CANCELED:
616
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
617 618
		unmap_cpu_from_node(lcpu);
		ret = NOTIFY_OK;
619
		break;
L
Linus Torvalds 已提交
620 621 622 623 624 625 626 627 628 629 630
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
631
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
632
 */
633 634
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
635 636
{
	/*
Y
Yinghai Lu 已提交
637
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
638
	 * we've already adjusted it for the limit and it takes care of
639 640
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
641 642
	 */

Y
Yinghai Lu 已提交
643
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
644 645
		return size;

Y
Yinghai Lu 已提交
646
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
647 648
		return 0;

Y
Yinghai Lu 已提交
649
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
650 651
}

652 653 654 655
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
656
static inline int __init read_usm_ranges(const __be32 **usm)
657 658
{
	/*
659
	 * For each lmb in ibm,dynamic-memory a corresponding
660 661 662 663 664 665 666
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

667 668 669 670 671 672
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
673
	const __be32 *uninitialized_var(dm), *usm;
674
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
675
	unsigned long lmb_size, base, size, sz;
676
	int nid;
677
	struct assoc_arrays aa = { .arrays = NULL };
678 679 680

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
681 682
		return;

683 684
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
685 686 687 688
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
689 690
		return;

691 692 693 694 695
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

696
	for (; n != 0; --n) {
697 698 699 700 701 702 703 704
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
705
			continue;
706

707
		base = drmem.base_addr;
708
		size = lmb_size;
709
		ranges = 1;
710

711 712 713 714 715 716 717 718 719 720 721 722 723
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
724
					   &nid);
725 726 727
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
728 729
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
730
		} while (--ranges);
731 732 733
	}
}

L
Linus Torvalds 已提交
734 735
static int __init parse_numa_properties(void)
{
736
	struct device_node *memory;
737
	int default_nid = 0;
L
Linus Torvalds 已提交
738 739 740 741 742 743 744 745 746 747 748 749
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

750 751
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
752
	/*
753 754 755
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
756
	 */
757
	for_each_present_cpu(i) {
758
		struct device_node *cpu;
759
		int nid;
L
Linus Torvalds 已提交
760

761
		cpu = of_get_cpu_node(i, NULL);
762
		BUG_ON(!cpu);
763
		nid = of_node_to_nid_single(cpu);
764
		of_node_put(cpu);
L
Linus Torvalds 已提交
765

766 767 768 769 770 771 772 773
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
774 775
	}

776
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
777 778

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
779 780
		unsigned long start;
		unsigned long size;
781
		int nid;
L
Linus Torvalds 已提交
782
		int ranges;
783
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
784 785
		unsigned int len;

786
		memcell_buf = of_get_property(memory,
787 788
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
789
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
790 791 792
		if (!memcell_buf || len <= 0)
			continue;

793 794
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
795 796
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
797 798
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
799

800 801 802 803 804
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
805
		nid = of_node_to_nid_single(memory);
806 807
		if (nid < 0)
			nid = default_nid;
808 809

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
810
		node_set_online(nid);
L
Linus Torvalds 已提交
811

812
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
813 814 815 816 817 818
			if (--ranges)
				goto new_range;
			else
				continue;
		}

819
		memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
820 821 822 823 824

		if (--ranges)
			goto new_range;
	}

825
	/*
826 827 828
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
829 830 831 832 833
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
834 835 836 837 838
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
839 840
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
841
	unsigned long start_pfn, end_pfn;
842 843
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
844

845
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
846
	       top_of_ram, total_ram);
847
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
848 849
	       (top_of_ram - total_ram) >> 20);

850
	for_each_memblock(memory, reg) {
851 852
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
853 854

		fake_numa_create_new_node(end_pfn, &nid);
855
		memblock_set_node(PFN_PHYS(start_pfn),
856 857
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
858
		node_set_online(nid);
859
	}
L
Linus Torvalds 已提交
860 861
}

862 863 864 865 866 867 868 869 870
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
871
		printk(KERN_DEBUG "Node %d CPUs:", node);
872 873 874 875 876 877

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
878 879 880
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
881 882 883 884 885 886 887 888 889 890 891
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
892
			printk("-%u", nr_cpu_ids - 1);
893 894 895 896 897
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
898 899 900 901 902 903 904 905 906 907
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

908
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
909 910 911

		count = 0;

Y
Yinghai Lu 已提交
912
		for (i = 0; i < memblock_end_of_DRAM();
913 914
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
932
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
933 934 935
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
936
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
937
 */
938
static void __init *careful_zallocation(int nid, unsigned long size,
939 940
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
941
{
942
	void *ret;
943
	int new_nid;
944 945
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
946
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
947 948

	/* retry over all memory */
949
	if (!ret_paddr)
Y
Yinghai Lu 已提交
950
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
951

952
	if (!ret_paddr)
953
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
954 955
		      size, nid);

956 957
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
958
	/*
959
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
960
	 * and hand over control from the MEMBLOCK allocator to the
961 962
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
963
	 * bootmem allocator instead of the MEMBLOCK allocator.
964 965 966
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
967
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
968
	 * since it would be useless.
L
Linus Torvalds 已提交
969
	 */
970
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
971
	if (new_nid < nid) {
972
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
973 974
				size, align, 0);

975
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
976 977
	}

978
	memset(ret, 0, size);
979
	return ret;
L
Linus Torvalds 已提交
980 981
}

982
static struct notifier_block ppc64_numa_nb = {
983 984 985 986
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

987
static void __init mark_reserved_regions_for_nid(int nid)
988 989
{
	struct pglist_data *node = NODE_DATA(nid);
990
	struct memblock_region *reg;
991

992 993 994
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
995
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
996
		unsigned long end_pfn = PFN_UP(physbase + size);
997
		struct node_active_region node_ar;
998
		unsigned long node_end_pfn = pgdat_end_pfn(node);
999 1000

		/*
Y
Yinghai Lu 已提交
1001
		 * Check to make sure that this memblock.reserved area is
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1021
					- physbase;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
1054 1055
void __init do_init_bootmem(void)
{
1056
	int nid, cpu;
L
Linus Torvalds 已提交
1057 1058

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1059
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1060 1061 1062 1063 1064
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1065
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1066 1067

	for_each_online_node(nid) {
1068
		unsigned long start_pfn, end_pfn;
1069
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1070 1071
		unsigned long bootmap_pages;

1072
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1073

1074 1075 1076 1077 1078 1079 1080
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1081
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1082
					sizeof(struct pglist_data),
1083
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1084 1085 1086 1087

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1088
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1089 1090
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1091 1092 1093 1094

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1095 1096
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1097

1098
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1099
		bootmem_vaddr = careful_zallocation(nid,
1100 1101
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1102

1103
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1104

1105 1106
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1107
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1108

1109
		free_bootmem_with_active_regions(nid, end_pfn);
1110 1111
		/*
		 * Be very careful about moving this around.  Future
1112
		 * calls to careful_zallocation() depend on this getting
1113 1114 1115
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1116
		sparse_memory_present_with_active_regions(nid);
1117
	}
1118 1119

	init_bootmem_done = 1;
1120 1121 1122 1123 1124 1125 1126

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

1127
	reset_numa_cpu_lookup_table();
1128
	register_cpu_notifier(&ppc64_numa_nb);
1129 1130 1131 1132 1133
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
	 */
1134
	for_each_present_cpu(cpu) {
1135
		numa_setup_cpu((unsigned long)cpu);
1136
	}
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1150 1151 1152 1153
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1154 1155 1156
	return 0;
}
early_param("numa", early_numa);
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static bool topology_updates_enabled = true;

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

	if (!strcmp(p, "off")) {
		pr_info("Disabling topology updates\n");
		topology_updates_enabled = false;
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

1174
#ifdef CONFIG_MEMORY_HOTPLUG
1175
/*
1176 1177 1178
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1179 1180 1181 1182
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
1183
	const __be32 *dm;
1184
	unsigned int drconf_cell_cnt, rc;
1185
	unsigned long lmb_size;
1186
	struct assoc_arrays aa;
1187
	int nid = -1;
1188

1189 1190 1191
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1192

1193 1194
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1195
		return -1;
1196 1197 1198

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1199
		return -1;
1200

1201
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1212
		if ((scn_addr < drmem.base_addr)
1213
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1214 1215
			continue;

1216
		nid = of_drconf_to_nid_single(&drmem, &aa);
1217 1218 1219 1220 1221 1222 1223 1224 1225
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1226
 * each memblock.
1227
 */
1228
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1229
{
1230
	struct device_node *memory;
1231 1232
	int nid = -1;

1233
	for_each_node_by_type(memory, "memory") {
1234 1235
		unsigned long start, size;
		int ranges;
1236
		const __be32 *memcell_buf;
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1256

1257 1258
		if (nid >= 0)
			break;
1259 1260
	}

1261 1262
	of_node_put(memory);

1263
	return nid;
1264 1265
}

1266 1267
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1268 1269
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1270 1271 1272 1273
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1274
	int nid, found = 0;
1275 1276

	if (!numa_enabled || (min_common_depth < 0))
1277
		return first_online_node;
1278 1279 1280 1281 1282

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1283 1284
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1285
	}
1286

1287
	if (nid < 0 || !node_online(nid))
1288
		nid = first_online_node;
1289

1290 1291
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1292

1293 1294 1295 1296
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1297 1298
		}
	}
1299 1300 1301

	BUG_ON(!found);
	return nid;
1302
}
1303

1304 1305 1306 1307 1308
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
1309
	const __be32 *dm = NULL;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1330
#endif /* CONFIG_MEMORY_HOTPLUG */
1331

1332
/* Virtual Processor Home Node (VPHN) support */
1333
#ifdef CONFIG_PPC_SPLPAR
1334 1335 1336 1337 1338 1339 1340
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1341
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1342 1343
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1344 1345
static int prrn_enabled;
static void reset_topology_timer(void);
1346 1347 1348 1349 1350 1351 1352

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1353
	int cpu;
1354

1355 1356 1357
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1358
	for_each_possible_cpu(cpu) {
1359
		int i;
1360 1361 1362
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1363
		for (i = 0; i < distance_ref_points_depth; i++)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1381
	int cpu;
1382 1383 1384 1385 1386 1387 1388
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1389
		for (i = 0; i < distance_ref_points_depth; i++) {
1390
			if (hypervisor_counts[i] != counts[i]) {
1391 1392 1393 1394 1395
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1396 1397
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1398 1399 1400
		}
	}

1401
	return cpumask_weight(changes);
1402 1403
}

1404 1405 1406 1407 1408
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1409 1410 1411 1412 1413

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
1414
static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1415
{
1416
	int i, nr_assoc_doms = 0;
1417
	const __be16 *field = (const __be16 *) packed;
1418 1419 1420 1421 1422

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1423
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1424
		if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1425 1426 1427 1428
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
1429
			unpacked[i] = *((__be32 *)field);
1430
			field += 2;
1431
		} else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1432
			/* Data is in the lower 15 bits of this field */
1433 1434
			unpacked[i] = cpu_to_be32(
				be16_to_cpup(field) & VPHN_FIELD_MASK);
1435 1436
			field++;
			nr_assoc_doms++;
1437
		} else {
1438 1439 1440
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
1441
			unpacked[i] = *((__be32 *)field);
1442 1443 1444 1445 1446
			field += 2;
			nr_assoc_doms++;
		}
	}

1447
	/* The first cell contains the length of the property */
1448
	unpacked[0] = cpu_to_be32(nr_assoc_doms);
1449

1450 1451 1452 1453 1454 1455 1456
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1457
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1458
{
1459
	long rc;
1460 1461 1462
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);
1463
	int i;
1464 1465

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1466 1467
	for (i = 0; i < 6; i++)
		retbuf[i] = cpu_to_be64(retbuf[i]);
1468 1469 1470 1471 1472 1473
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1474
					__be32 *associativity)
1475
{
1476
	long rc;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1509
	cpu = smp_processor_id();
1510 1511 1512 1513 1514 1515 1516

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1517
		vdso_getcpu_init();
1518 1519 1520 1521 1522
	}

	return 0;
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1550 1551
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1552
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1553 1554 1555
 */
int arch_update_cpu_topology(void)
{
1556
	unsigned int cpu, sibling, changed = 0;
1557
	struct topology_update_data *updates, *ud;
1558
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1559
	cpumask_t updated_cpus;
1560
	struct device *dev;
1561
	int weight, new_nid, i = 0;
1562

1563 1564 1565
	if (!prrn_enabled && !vphn_enabled)
		return 0;

1566 1567 1568 1569 1570 1571 1572
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1573

1574 1575
	cpumask_clear(&updated_cpus);

1576
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1617 1618
	}

1619 1620 1621 1622 1623 1624 1625 1626 1627
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1642
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1643

1644 1645 1646 1647 1648 1649 1650 1651
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
	stop_machine(update_lookup_table, &updates[0],
					cpumask_of(raw_smp_processor_id()));

1652
	for (ud = &updates[0]; ud; ud = ud->next) {
1653 1654 1655
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1656
		dev = get_cpu_device(ud->cpu);
1657 1658
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1659
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1660
		changed = 1;
1661 1662
	}

1663
out:
1664
	kfree(updates);
1665
	return changed;
1666 1667 1668 1669 1670 1671 1672 1673
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1674
static void topology_schedule_update(void)
1675 1676 1677 1678 1679 1680
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1681
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1682
		topology_schedule_update();
1683 1684 1685 1686 1687
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1688 1689 1690 1691
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1692
static void reset_topology_timer(void)
1693 1694 1695
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1696
	mod_timer(&topology_timer, topology_timer.expires);
1697 1698
}

1699 1700
#ifdef CONFIG_SMP

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1717 1718
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1719 1720 1721 1722 1723 1724 1725 1726 1727
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1728 1729
}

1730 1731 1732 1733
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1734 1735
#endif

1736
/*
1737
 * Start polling for associativity changes.
1738 1739 1740 1741 1742
 */
int start_topology_update(void)
{
	int rc = 0;

1743 1744 1745 1746
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1747
#ifdef CONFIG_SMP
1748
			rc = of_reconfig_notifier_register(&dt_update_nb);
1749
#endif
1750
		}
1751
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1752
		   lppaca_shared_proc(get_lppaca())) {
1753 1754 1755 1756 1757 1758 1759
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1770 1771 1772 1773
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1774
#ifdef CONFIG_SMP
1775
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1776
#endif
1777 1778 1779 1780 1781 1782
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1783
}
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1836 1837 1838 1839
	/* Do not poll for changes if disabled at boot */
	if (topology_updates_enabled)
		start_topology_update();

1840 1841
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1842 1843

	return 0;
1844
}
1845
device_initcall(topology_update_init);
1846
#endif /* CONFIG_PPC_SPLPAR */
新手
引导
客服 返回
顶部