clk-sunxi.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright 2013 Emilio López
 *
 * Emilio López <emilio@elopez.com.ar>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>
21
#include <linux/reset-controller.h>
22 23 24 25 26

#include "clk-factors.h"

static DEFINE_SPINLOCK(clk_lock);

27 28 29
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS	5

30
/**
31
 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
32 33 34 35 36
 * PLL1 rate is calculated as follows
 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
 * parent_rate is always 24Mhz
 */

37
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a 6M multiple */
	div = *freq / 6000000;
	*freq = 6000000 * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	/* m is always zero for pll1 */
	*m = 0;

	/* k is 1 only on these cases */
	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
		*k = 1;
	else
		*k = 0;

	/* p will be 3 for divs under 10 */
	if (div < 10)
		*p = 3;

	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
	else if (div < 20 || (div < 32 && (div & 1)))
		*p = 2;

	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
	 * of divs between 40-62 */
	else if (div < 40 || (div < 64 && (div & 2)))
		*p = 1;

	/* any other entries have p = 0 */
	else
		*p = 0;

	/* calculate a suitable n based on k and p */
	div <<= *p;
	div /= (*k + 1);
	*n = div / 4;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/**
 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
 * PLL1 rate is calculated as follows
 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
 * parent_rate should always be 24MHz
 */
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	/*
	 * We can operate only on MHz, this will make our life easier
	 * later.
	 */
	u32 freq_mhz = *freq / 1000000;
	u32 parent_freq_mhz = parent_rate / 1000000;

	/*
	 * Round down the frequency to the closest multiple of either
	 * 6 or 16
	 */
	u32 round_freq_6 = round_down(freq_mhz, 6);
	u32 round_freq_16 = round_down(freq_mhz, 16);

	if (round_freq_6 > round_freq_16)
		freq_mhz = round_freq_6;
	else
		freq_mhz = round_freq_16;
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	*freq = freq_mhz * 1000000;

	/*
	 * If the factors pointer are null, we were just called to
	 * round down the frequency.
	 * Exit.
	 */
	if (n == NULL)
		return;

	/* If the frequency is a multiple of 32 MHz, k is always 3 */
	if (!(freq_mhz % 32))
		*k = 3;
	/* If the frequency is a multiple of 9 MHz, k is always 2 */
	else if (!(freq_mhz % 9))
		*k = 2;
	/* If the frequency is a multiple of 8 MHz, k is always 1 */
	else if (!(freq_mhz % 8))
		*k = 1;
	/* Otherwise, we don't use the k factor */
	else
		*k = 0;

	/*
	 * If the frequency is a multiple of 2 but not a multiple of
	 * 3, m is 3. This is the first time we use 6 here, yet we
	 * will use it on several other places.
	 * We use this number because it's the lowest frequency we can
	 * generate (with n = 0, k = 0, m = 3), so every other frequency
	 * somehow relates to this frequency.
	 */
	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
		*m = 2;
	/*
	 * If the frequency is a multiple of 6MHz, but the factor is
	 * odd, m will be 3
	 */
	else if ((freq_mhz / 6) & 1)
		*m = 3;
	/* Otherwise, we end up with m = 1 */
	else
		*m = 1;

	/* Calculate n thanks to the above factors we already got */
	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;

	/*
	 * If n end up being outbound, and that we can still decrease
	 * m, do it.
	 */
	if ((*n + 1) > 31 && (*m + 1) > 1) {
		*n = (*n + 1) / 2 - 1;
		*m = (*m + 1) / 2 - 1;
	}
}
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/**
 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
 * PLL5 rate is calculated as follows
 * rate = parent_rate * n * (k + 1)
 * parent_rate is always 24Mhz
 */

static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a parent_rate multiple (24M) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	if (div < 31)
		*k = 0;
	else if (div / 2 < 31)
		*k = 1;
	else if (div / 3 < 31)
		*k = 2;
	else
		*k = 3;

	*n = DIV_ROUND_UP(div, (*k+1));
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/**
 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
 * PLL6 rate is calculated as follows
 * rate = parent_rate * n * (k + 1) / 2
 * parent_rate is always 24Mhz
 */

static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/*
	 * We always have 24MHz / 2, so we can just say that our
	 * parent clock is 12MHz.
	 */
	parent_rate = parent_rate / 2;

	/* Normalize value to a parent_rate multiple (24M / 2) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*k = div / 32;
	if (*k > 3)
		*k = 3;
227

228 229
	*n = DIV_ROUND_UP(div, (*k+1));
}
230

231
/**
232
 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
233 234 235 236
 * APB1 rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

237
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
238 239 240 241 242 243 244
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 calcm, calcp;

	if (parent_rate < *freq)
		*freq = parent_rate;

245
	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	/* Invalid rate! */
	if (parent_rate > 32)
		return;

	if (parent_rate <= 4)
		calcp = 0;
	else if (parent_rate <= 8)
		calcp = 1;
	else if (parent_rate <= 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = (parent_rate >> calcp) - 1;

	*freq = (parent_rate >> calcp) / (calcm + 1);

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm;
	*p = calcp;
}



E
Emilio López 已提交
274 275
/**
 * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
276
 * MOD0 rate is calculated as follows
E
Emilio López 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

290
	div = DIV_ROUND_UP(parent_rate, *freq);
E
Emilio López 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

	if (div < 16)
		calcp = 0;
	else if (div / 2 < 16)
		calcp = 1;
	else if (div / 4 < 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}



315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/**
 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
 * CLK_OUT rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
				      u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

331
	div = DIV_ROUND_UP(parent_rate, *freq);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	if (div < 32)
		calcp = 0;
	else if (div / 2 < 32)
		calcp = 1;
	else if (div / 4 < 32)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}

354 355 356 357
/**
 * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
 */

358
void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
359 360 361 362
{
	#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
	#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)

363
	struct clk_hw *hw = __clk_get_hw(clk);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	struct clk_composite *composite = to_clk_composite(hw);
	struct clk_hw *rate_hw = composite->rate_hw;
	struct clk_factors *factors = to_clk_factors(rate_hw);
	unsigned long flags = 0;
	u32 reg;

	if (factors->lock)
		spin_lock_irqsave(factors->lock, flags);

	reg = readl(factors->reg);

	/* set sample clock phase control */
	reg &= ~(0x7 << 20);
	reg |= ((sample & 0x7) << 20);

	/* set output clock phase control */
	reg &= ~(0x7 << 8);
	reg |= ((output & 0x7) << 8);

	writel(reg, factors->reg);

	if (factors->lock)
		spin_unlock_irqrestore(factors->lock, flags);
}
EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);


391 392 393 394
/**
 * sunxi_factors_clk_setup() - Setup function for factor clocks
 */

395 396
#define SUNXI_FACTORS_MUX_MASK 0x3

397
struct factors_data {
398 399
	int enable;
	int mux;
400 401
	struct clk_factors_config *table;
	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
402
	const char *name;
403 404
};

405
static struct clk_factors_config sun4i_pll1_config = {
406 407 408 409 410 411 412 413 414 415
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
	.pshift = 16,
	.pwidth = 2,
};

416 417 418 419 420 421 422 423 424
static struct clk_factors_config sun6i_a31_pll1_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
};

425 426 427 428 429 430 431
static struct clk_factors_config sun4i_pll5_config = {
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

432 433 434 435 436 437 438
static struct clk_factors_config sun6i_a31_pll6_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

439
static struct clk_factors_config sun4i_apb1_config = {
440 441 442 443 444 445
	.mshift = 0,
	.mwidth = 5,
	.pshift = 16,
	.pwidth = 2,
};

E
Emilio López 已提交
446 447 448 449 450 451 452 453
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun4i_mod0_config = {
	.mshift = 0,
	.mwidth = 4,
	.pshift = 16,
	.pwidth = 2,
};

454 455 456 457 458 459 460 461
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
	.mshift = 8,
	.mwidth = 5,
	.pshift = 20,
	.pwidth = 2,
};

462
static const struct factors_data sun4i_pll1_data __initconst = {
463
	.enable = 31,
464 465
	.table = &sun4i_pll1_config,
	.getter = sun4i_get_pll1_factors,
466 467
};

468
static const struct factors_data sun6i_a31_pll1_data __initconst = {
469
	.enable = 31,
470 471 472 473
	.table = &sun6i_a31_pll1_config,
	.getter = sun6i_a31_get_pll1_factors,
};

474 475 476 477 478 479
static const struct factors_data sun7i_a20_pll4_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
};

480 481 482 483
static const struct factors_data sun4i_pll5_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
484 485 486 487 488 489 490 491
	.name = "pll5",
};

static const struct factors_data sun4i_pll6_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
	.name = "pll6",
492 493
};

494 495 496 497 498 499
static const struct factors_data sun6i_a31_pll6_data __initconst = {
	.enable = 31,
	.table = &sun6i_a31_pll6_config,
	.getter = sun6i_a31_get_pll6_factors,
};

500
static const struct factors_data sun4i_apb1_data __initconst = {
501 502
	.table = &sun4i_apb1_config,
	.getter = sun4i_get_apb1_factors,
503 504
};

E
Emilio López 已提交
505 506 507 508 509 510 511
static const struct factors_data sun4i_mod0_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun4i_mod0_config,
	.getter = sun4i_get_mod0_factors,
};

512 513 514 515 516 517 518
static const struct factors_data sun7i_a20_out_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun7i_a20_out_config,
	.getter = sun7i_a20_get_out_factors,
};

519 520
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
						const struct factors_data *data)
521 522
{
	struct clk *clk;
523 524 525 526 527
	struct clk_factors *factors;
	struct clk_gate *gate = NULL;
	struct clk_mux *mux = NULL;
	struct clk_hw *gate_hw = NULL;
	struct clk_hw *mux_hw = NULL;
528
	const char *clk_name = node->name;
529
	const char *parents[SUNXI_MAX_PARENTS];
530
	void *reg;
531
	int i = 0;
532 533 534

	reg = of_iomap(node, 0);

535 536 537 538 539
	/* if we have a mux, we will have >1 parents */
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
		i++;

540 541 542 543 544 545 546 547
	/*
	 * some factor clocks, such as pll5 and pll6, may have multiple
	 * outputs, and have their name designated in factors_data
	 */
	if (data->name)
		clk_name = data->name;
	else
		of_property_read_string(node, "clock-output-names", &clk_name);
548

549 550
	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
	if (!factors)
551
		return NULL;
552 553 554 555 556 557

	/* Add a gate if this factor clock can be gated */
	if (data->enable) {
		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
		if (!gate) {
			kfree(factors);
558
			return NULL;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		}

		/* set up gate properties */
		gate->reg = reg;
		gate->bit_idx = data->enable;
		gate->lock = &clk_lock;
		gate_hw = &gate->hw;
	}

	/* Add a mux if this factor clock can be muxed */
	if (data->mux) {
		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
		if (!mux) {
			kfree(factors);
			kfree(gate);
574
			return NULL;
575 576 577 578 579 580 581 582 583
		}

		/* set up gate properties */
		mux->reg = reg;
		mux->shift = data->mux;
		mux->mask = SUNXI_FACTORS_MUX_MASK;
		mux->lock = &clk_lock;
		mux_hw = &mux->hw;
	}
584

585 586 587 588 589 590 591 592 593 594
	/* set up factors properties */
	factors->reg = reg;
	factors->config = data->table;
	factors->get_factors = data->getter;
	factors->lock = &clk_lock;

	clk = clk_register_composite(NULL, clk_name,
			parents, i,
			mux_hw, &clk_mux_ops,
			&factors->hw, &clk_factors_ops,
595
			gate_hw, &clk_gate_ops, 0);
596

597
	if (!IS_ERR(clk)) {
598 599 600
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
601 602

	return clk;
603 604 605 606 607 608 609 610 611 612 613 614 615 616
}



/**
 * sunxi_mux_clk_setup() - Setup function for muxes
 */

#define SUNXI_MUX_GATE_WIDTH	2

struct mux_data {
	u8 shift;
};

617
static const struct mux_data sun4i_cpu_mux_data __initconst = {
618 619 620
	.shift = 16,
};

621
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
622 623 624
	.shift = 12,
};

625
static const struct mux_data sun4i_apb1_mux_data __initconst = {
626 627 628 629 630 631 632 633
	.shift = 24,
};

static void __init sunxi_mux_clk_setup(struct device_node *node,
				       struct mux_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
634
	const char *parents[SUNXI_MAX_PARENTS];
635 636 637 638 639
	void *reg;
	int i = 0;

	reg = of_iomap(node, 0);

640 641
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
642 643
		i++;

644 645
	of_property_read_string(node, "clock-output-names", &clk_name);

646 647
	clk = clk_register_mux(NULL, clk_name, parents, i,
			       CLK_SET_RATE_NO_REPARENT, reg,
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
			       data->shift, SUNXI_MUX_GATE_WIDTH,
			       0, &clk_lock);

	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
 */

struct div_data {
664 665 666
	u8	shift;
	u8	pow;
	u8	width;
667 668
};

669
static const struct div_data sun4i_axi_data __initconst = {
670 671 672
	.shift	= 0,
	.pow	= 0,
	.width	= 2,
673 674
};

675
static const struct div_data sun4i_ahb_data __initconst = {
676 677 678
	.shift	= 4,
	.pow	= 1,
	.width	= 2,
679 680
};

681
static const struct div_data sun4i_apb0_data __initconst = {
682 683 684
	.shift	= 8,
	.pow	= 1,
	.width	= 2,
685 686
};

687
static const struct div_data sun6i_a31_apb2_div_data __initconst = {
688 689 690 691 692
	.shift	= 0,
	.pow	= 0,
	.width	= 4,
};

693 694 695 696 697 698 699 700 701 702 703 704
static void __init sunxi_divider_clk_setup(struct device_node *node,
					   struct div_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *clk_parent;
	void *reg;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

705 706
	of_property_read_string(node, "clock-output-names", &clk_name);

707
	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
708
				   reg, data->shift, data->width,
709 710 711 712 713 714 715 716 717
				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
				   &clk_lock);
	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}


718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
/**
 * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
 */

struct gates_reset_data {
	void __iomem			*reg;
	spinlock_t			*lock;
	struct reset_controller_dev	rcdev;
};

static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
			      unsigned long id)
{
	struct gates_reset_data *data = container_of(rcdev,
						     struct gates_reset_data,
						     rcdev);
	unsigned long flags;
	u32 reg;

	spin_lock_irqsave(data->lock, flags);

	reg = readl(data->reg);
	writel(reg & ~BIT(id), data->reg);

	spin_unlock_irqrestore(data->lock, flags);

	return 0;
}

static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
				unsigned long id)
{
	struct gates_reset_data *data = container_of(rcdev,
						     struct gates_reset_data,
						     rcdev);
	unsigned long flags;
	u32 reg;

	spin_lock_irqsave(data->lock, flags);

	reg = readl(data->reg);
	writel(reg | BIT(id), data->reg);

	spin_unlock_irqrestore(data->lock, flags);

	return 0;
}

static struct reset_control_ops sunxi_gates_reset_ops = {
	.assert		= sunxi_gates_reset_assert,
	.deassert	= sunxi_gates_reset_deassert,
};

772 773 774 775 776 777 778 779
/**
 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
 */

#define SUNXI_GATES_MAX_SIZE	64

struct gates_data {
	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
780
	u32 reset_mask;
781 782
};

783
static const struct gates_data sun4i_axi_gates_data __initconst = {
784 785 786
	.mask = {1},
};

787
static const struct gates_data sun4i_ahb_gates_data __initconst = {
788 789 790
	.mask = {0x7F77FFF, 0x14FB3F},
};

791
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
M
Maxime Ripard 已提交
792 793 794
	.mask = {0x147667e7, 0x185915},
};

795
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
796 797 798
	.mask = {0x107067e7, 0x185111},
};

799
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
800 801 802
	.mask = {0xEDFE7F62, 0x794F931},
};

803
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
804 805 806
	.mask = { 0x12f77fff, 0x16ff3f },
};

807
static const struct gates_data sun4i_apb0_gates_data __initconst = {
808 809 810
	.mask = {0x4EF},
};

811
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
M
Maxime Ripard 已提交
812 813 814
	.mask = {0x469},
};

815
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
816 817 818
	.mask = {0x61},
};

819
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
820 821 822
	.mask = { 0x4ff },
};

823
static const struct gates_data sun4i_apb1_gates_data __initconst = {
824 825 826
	.mask = {0xFF00F7},
};

827
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
M
Maxime Ripard 已提交
828 829 830
	.mask = {0xf0007},
};

831
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
832 833 834
	.mask = {0xa0007},
};

835
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
836 837 838
	.mask = {0x3031},
};

839
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
840 841 842
	.mask = {0x3F000F},
};

843
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
844 845 846
	.mask = { 0xff80ff },
};

847 848 849 850 851 852 853 854 855 856
static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
	.mask = {0x1C0},
	.reset_mask = 0x07,
};

static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
	.mask = {0x140},
	.reset_mask = 0x03,
};

857 858 859 860 861
static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
	.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
	.reset_mask = BIT(2) | BIT(1) | BIT(0),
};

862 863 864 865
static void __init sunxi_gates_clk_setup(struct device_node *node,
					 struct gates_data *data)
{
	struct clk_onecell_data *clk_data;
866
	struct gates_reset_data *reset_data;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	const char *clk_parent;
	const char *clk_name;
	void *reg;
	int qty;
	int i = 0;
	int j = 0;
	int ignore;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	/* Worst-case size approximation and memory allocation */
	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;
	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
	if (!clk_data->clks) {
		kfree(clk_data);
		return;
	}

	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
		of_property_read_string_index(node, "clock-output-names",
					      j, &clk_name);

		/* No driver claims this clock, but it should remain gated */
		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;

		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
						      clk_parent, ignore,
						      reg + 4 * (i/32), i % 32,
						      0, &clk_lock);
		WARN_ON(IS_ERR(clk_data->clks[i]));

		j++;
	}

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

	/* Register a reset controler for gates with reset bits */
	if (data->reset_mask == 0)
		return;

	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
	if (!reset_data)
		return;

	reset_data->reg = reg;
	reset_data->lock = &clk_lock;
	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
	reset_data->rcdev.of_node = node;
	reset_controller_register(&reset_data->rcdev);
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963


/**
 * sunxi_divs_clk_setup() helper data
 */

#define SUNXI_DIVS_MAX_QTY	2
#define SUNXI_DIVISOR_WIDTH	2

struct divs_data {
	const struct factors_data *factors; /* data for the factor clock */
	struct {
		u8 fixed; /* is it a fixed divisor? if not... */
		struct clk_div_table *table; /* is it a table based divisor? */
		u8 shift; /* otherwise it's a normal divisor with this shift */
		u8 pow;   /* is it power-of-two based? */
		u8 gate;  /* is it independently gateable? */
	} div[SUNXI_DIVS_MAX_QTY];
};

static struct clk_div_table pll6_sata_tbl[] = {
	{ .val = 0, .div = 6, },
	{ .val = 1, .div = 12, },
	{ .val = 2, .div = 18, },
	{ .val = 3, .div = 24, },
	{ } /* sentinel */
};

static const struct divs_data pll5_divs_data __initconst = {
	.factors = &sun4i_pll5_data,
	.div = {
		{ .shift = 0, .pow = 0, }, /* M, DDR */
		{ .shift = 16, .pow = 1, }, /* P, other */
	}
};

static const struct divs_data pll6_divs_data __initconst = {
964
	.factors = &sun4i_pll6_data,
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	.div = {
		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
		{ .fixed = 2 }, /* P, other */
	}
};

/**
 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
 *
 * These clocks look something like this
 *            ________________________
 *           |         ___divisor 1---|----> to consumer
 * parent >--|  pll___/___divisor 2---|----> to consumer
 *           |        \_______________|____> to consumer
 *           |________________________|
 */

static void __init sunxi_divs_clk_setup(struct device_node *node,
					struct divs_data *data)
{
	struct clk_onecell_data *clk_data;
986
	const char *parent;
987 988 989 990 991 992 993 994 995 996 997 998 999
	const char *clk_name;
	struct clk **clks, *pclk;
	struct clk_hw *gate_hw, *rate_hw;
	const struct clk_ops *rate_ops;
	struct clk_gate *gate = NULL;
	struct clk_fixed_factor *fix_factor;
	struct clk_divider *divider;
	void *reg;
	int i = 0;
	int flags, clkflags;

	/* Set up factor clock that we will be dividing */
	pclk = sunxi_factors_clk_setup(node, data->factors);
1000
	parent = __clk_get_name(pclk);
1001 1002 1003 1004 1005 1006 1007

	reg = of_iomap(node, 0);

	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;

1008
	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	if (!clks)
		goto free_clkdata;

	clk_data->clks = clks;

	/* It's not a good idea to have automatic reparenting changing
	 * our RAM clock! */
	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;

	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
		if (of_property_read_string_index(node, "clock-output-names",
						  i, &clk_name) != 0)
			break;

		gate_hw = NULL;
		rate_hw = NULL;
		rate_ops = NULL;

		/* If this leaf clock can be gated, create a gate */
		if (data->div[i].gate) {
			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
			if (!gate)
				goto free_clks;

			gate->reg = reg;
			gate->bit_idx = data->div[i].gate;
			gate->lock = &clk_lock;

			gate_hw = &gate->hw;
		}

		/* Leaves can be fixed or configurable divisors */
		if (data->div[i].fixed) {
			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
			if (!fix_factor)
				goto free_gate;

			fix_factor->mult = 1;
			fix_factor->div = data->div[i].fixed;

			rate_hw = &fix_factor->hw;
			rate_ops = &clk_fixed_factor_ops;
		} else {
			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
			if (!divider)
				goto free_gate;

			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;

			divider->reg = reg;
			divider->shift = data->div[i].shift;
			divider->width = SUNXI_DIVISOR_WIDTH;
			divider->flags = flags;
			divider->lock = &clk_lock;
			divider->table = data->div[i].table;

			rate_hw = &divider->hw;
			rate_ops = &clk_divider_ops;
		}

		/* Wrap the (potential) gate and the divisor on a composite
		 * clock to unify them */
		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
						 NULL, NULL,
						 rate_hw, rate_ops,
						 gate_hw, &clk_gate_ops,
						 clkflags);

		WARN_ON(IS_ERR(clk_data->clks[i]));
		clk_register_clkdev(clks[i], clk_name, NULL);
	}

	/* The last clock available on the getter is the parent */
	clks[i++] = pclk;

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);

	return;

free_gate:
	kfree(gate);
free_clks:
	kfree(clks);
free_clkdata:
	kfree(clk_data);
}



1101
/* Matches for factors clocks */
1102
static const struct of_device_id clk_factors_match[] __initconst = {
1103
	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1104
	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1105
	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1106
	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1107 1108
	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1109
	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1110 1111 1112 1113
	{}
};

/* Matches for divider clocks */
1114
static const struct of_device_id clk_div_match[] __initconst = {
1115 1116 1117
	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1118
	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1119 1120 1121
	{}
};

1122 1123
/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
1124 1125
	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1126 1127 1128
	{}
};

1129
/* Matches for mux clocks */
1130
static const struct of_device_id clk_mux_match[] __initconst = {
1131 1132
	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1133
	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1134 1135 1136
	{}
};

1137
/* Matches for gate clocks */
1138
static const struct of_device_id clk_gates_match[] __initconst = {
1139 1140
	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
M
Maxime Ripard 已提交
1141
	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1142
	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1143
	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1144
	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1145
	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
M
Maxime Ripard 已提交
1146
	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1147
	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1148
	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1149
	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
M
Maxime Ripard 已提交
1150
	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1151
	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1152
	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1153
	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1154
	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1155 1156
	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1157
	{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
1158 1159 1160
	{}
};

1161 1162 1163 1164 1165 1166 1167 1168
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
					      void *function)
{
	struct device_node *np;
	const struct div_data *data;
	const struct of_device_id *match;
	void (*setup_function)(struct device_node *, const void *) = function;

1169
	for_each_matching_node_and_match(np, clk_match, &match) {
1170 1171 1172 1173 1174
		data = match->data;
		setup_function(np, data);
	}
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * System clock protection
 *
 * By enabling these critical clocks, we prevent their accidental gating
 * by the framework
 */
static void __init sunxi_clock_protect(void)
{
	struct clk *clk;

	/* memory bus clock - sun5i+ */
	clk = clk_get(NULL, "mbus");
1187
	if (!IS_ERR(clk))
1188 1189 1190 1191
		clk_prepare_enable(clk);

	/* DDR clock - sun4i+ */
	clk = clk_get(NULL, "pll5_ddr");
1192
	if (!IS_ERR(clk))
1193 1194 1195
		clk_prepare_enable(clk);
}

1196
static void __init sunxi_init_clocks(struct device_node *np)
1197 1198 1199 1200 1201 1202 1203
{
	/* Register factor clocks */
	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);

	/* Register divider clocks */
	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);

1204 1205 1206
	/* Register divided output clocks */
	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);

1207 1208
	/* Register mux clocks */
	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1209 1210 1211

	/* Register gate clocks */
	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1212 1213 1214

	/* Enable core system clocks */
	sunxi_clock_protect();
1215
}
1216 1217 1218 1219 1220
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);