clk-sunxi.c 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright 2013 Emilio López
 *
 * Emilio López <emilio@elopez.com.ar>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>
21
#include <linux/reset-controller.h>
22 23 24 25 26

#include "clk-factors.h"

static DEFINE_SPINLOCK(clk_lock);

27 28 29
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS	5

30
/**
31
 * sun4i_osc_clk_setup() - Setup function for gatable oscillator
32 33 34 35
 */

#define SUNXI_OSC24M_GATE	0

36
static void __init sun4i_osc_clk_setup(struct device_node *node)
37 38
{
	struct clk *clk;
39 40
	struct clk_fixed_rate *fixed;
	struct clk_gate *gate;
41
	const char *clk_name = node->name;
42
	u32 rate;
43

44 45 46
	if (of_property_read_u32(node, "clock-frequency", &rate))
		return;

47 48 49 50 51
	/* allocate fixed-rate and gate clock structs */
	fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
	if (!fixed)
		return;
	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
52 53
	if (!gate)
		goto err_free_fixed;
54

55 56
	of_property_read_string(node, "clock-output-names", &clk_name);

57 58 59 60 61
	/* set up gate and fixed rate properties */
	gate->reg = of_iomap(node, 0);
	gate->bit_idx = SUNXI_OSC24M_GATE;
	gate->lock = &clk_lock;
	fixed->fixed_rate = rate;
62

63 64 65 66 67 68
	clk = clk_register_composite(NULL, clk_name,
			NULL, 0,
			NULL, NULL,
			&fixed->hw, &clk_fixed_rate_ops,
			&gate->hw, &clk_gate_ops,
			CLK_IS_ROOT);
69

70 71 72 73 74 75 76 77 78 79 80 81
	if (IS_ERR(clk))
		goto err_free_gate;

	of_clk_add_provider(node, of_clk_src_simple_get, clk);
	clk_register_clkdev(clk, clk_name, NULL);

	return;

err_free_gate:
	kfree(gate);
err_free_fixed:
	kfree(fixed);
82
}
83
CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-a10-osc-clk", sun4i_osc_clk_setup);
84 85 86 87



/**
88
 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
89 90 91 92 93
 * PLL1 rate is calculated as follows
 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
 * parent_rate is always 24Mhz
 */

94
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a 6M multiple */
	div = *freq / 6000000;
	*freq = 6000000 * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	/* m is always zero for pll1 */
	*m = 0;

	/* k is 1 only on these cases */
	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
		*k = 1;
	else
		*k = 0;

	/* p will be 3 for divs under 10 */
	if (div < 10)
		*p = 3;

	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
	else if (div < 20 || (div < 32 && (div & 1)))
		*p = 2;

	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
	 * of divs between 40-62 */
	else if (div < 40 || (div < 64 && (div & 2)))
		*p = 1;

	/* any other entries have p = 0 */
	else
		*p = 0;

	/* calculate a suitable n based on k and p */
	div <<= *p;
	div /= (*k + 1);
	*n = div / 4;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
 * PLL1 rate is calculated as follows
 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
 * parent_rate should always be 24MHz
 */
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	/*
	 * We can operate only on MHz, this will make our life easier
	 * later.
	 */
	u32 freq_mhz = *freq / 1000000;
	u32 parent_freq_mhz = parent_rate / 1000000;

	/*
	 * Round down the frequency to the closest multiple of either
	 * 6 or 16
	 */
	u32 round_freq_6 = round_down(freq_mhz, 6);
	u32 round_freq_16 = round_down(freq_mhz, 16);

	if (round_freq_6 > round_freq_16)
		freq_mhz = round_freq_6;
	else
		freq_mhz = round_freq_16;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	*freq = freq_mhz * 1000000;

	/*
	 * If the factors pointer are null, we were just called to
	 * round down the frequency.
	 * Exit.
	 */
	if (n == NULL)
		return;

	/* If the frequency is a multiple of 32 MHz, k is always 3 */
	if (!(freq_mhz % 32))
		*k = 3;
	/* If the frequency is a multiple of 9 MHz, k is always 2 */
	else if (!(freq_mhz % 9))
		*k = 2;
	/* If the frequency is a multiple of 8 MHz, k is always 1 */
	else if (!(freq_mhz % 8))
		*k = 1;
	/* Otherwise, we don't use the k factor */
	else
		*k = 0;

	/*
	 * If the frequency is a multiple of 2 but not a multiple of
	 * 3, m is 3. This is the first time we use 6 here, yet we
	 * will use it on several other places.
	 * We use this number because it's the lowest frequency we can
	 * generate (with n = 0, k = 0, m = 3), so every other frequency
	 * somehow relates to this frequency.
	 */
	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
		*m = 2;
	/*
	 * If the frequency is a multiple of 6MHz, but the factor is
	 * odd, m will be 3
	 */
	else if ((freq_mhz / 6) & 1)
		*m = 3;
	/* Otherwise, we end up with m = 1 */
	else
		*m = 1;

	/* Calculate n thanks to the above factors we already got */
	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;

	/*
	 * If n end up being outbound, and that we can still decrease
	 * m, do it.
	 */
	if ((*n + 1) > 31 && (*m + 1) > 1) {
		*n = (*n + 1) / 2 - 1;
		*m = (*m + 1) / 2 - 1;
	}
}
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
 * PLL5 rate is calculated as follows
 * rate = parent_rate * n * (k + 1)
 * parent_rate is always 24Mhz
 */

static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a parent_rate multiple (24M) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	if (div < 31)
		*k = 0;
	else if (div / 2 < 31)
		*k = 1;
	else if (div / 3 < 31)
		*k = 2;
	else
		*k = 3;

	*n = DIV_ROUND_UP(div, (*k+1));
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/**
 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
 * PLL6 rate is calculated as follows
 * rate = parent_rate * n * (k + 1) / 2
 * parent_rate is always 24Mhz
 */

static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/*
	 * We always have 24MHz / 2, so we can just say that our
	 * parent clock is 12MHz.
	 */
	parent_rate = parent_rate / 2;

	/* Normalize value to a parent_rate multiple (24M / 2) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*k = div / 32;
	if (*k > 3)
		*k = 3;
284

285 286
	*n = DIV_ROUND_UP(div, (*k+1));
}
287

288
/**
289
 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
290 291 292 293
 * APB1 rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

294
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
295 296 297 298 299 300 301
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 calcm, calcp;

	if (parent_rate < *freq)
		*freq = parent_rate;

302
	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	/* Invalid rate! */
	if (parent_rate > 32)
		return;

	if (parent_rate <= 4)
		calcp = 0;
	else if (parent_rate <= 8)
		calcp = 1;
	else if (parent_rate <= 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = (parent_rate >> calcp) - 1;

	*freq = (parent_rate >> calcp) / (calcm + 1);

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm;
	*p = calcp;
}



E
Emilio López 已提交
331 332
/**
 * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
333
 * MOD0 rate is calculated as follows
E
Emilio López 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

347
	div = DIV_ROUND_UP(parent_rate, *freq);
E
Emilio López 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	if (div < 16)
		calcp = 0;
	else if (div / 2 < 16)
		calcp = 1;
	else if (div / 4 < 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}



372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/**
 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
 * CLK_OUT rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
				      u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

388
	div = DIV_ROUND_UP(parent_rate, *freq);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

	if (div < 32)
		calcp = 0;
	else if (div / 2 < 32)
		calcp = 1;
	else if (div / 4 < 32)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}



413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/**
 * sun7i_a20_gmac_clk_setup - Setup function for A20/A31 GMAC clock module
 *
 * This clock looks something like this
 *                               ________________________
 *  MII TX clock from PHY >-----|___________    _________|----> to GMAC core
 *  GMAC Int. RGMII TX clk >----|___________\__/__gate---|----> to PHY
 *  Ext. 125MHz RGMII TX clk >--|__divider__/            |
 *                              |________________________|
 *
 * The external 125 MHz reference is optional, i.e. GMAC can use its
 * internal TX clock just fine. The A31 GMAC clock module does not have
 * the divider controls for the external reference.
 *
 * To keep it simple, let the GMAC use either the MII TX clock for MII mode,
 * and its internal TX clock for GMII and RGMII modes. The GMAC driver should
 * select the appropriate source and gate/ungate the output to the PHY.
 *
 * Only the GMAC should use this clock. Altering the clock so that it doesn't
 * match the GMAC's operation parameters will result in the GMAC not being
 * able to send traffic out. The GMAC driver should set the clock rate and
 * enable/disable this clock to configure the required state. The clock
 * driver then responds by auto-reparenting the clock.
 */

#define SUN7I_A20_GMAC_GPIT	2
#define SUN7I_A20_GMAC_MASK	0x3
#define SUN7I_A20_GMAC_PARENTS	2

static void __init sun7i_a20_gmac_clk_setup(struct device_node *node)
{
	struct clk *clk;
	struct clk_mux *mux;
	struct clk_gate *gate;
	const char *clk_name = node->name;
	const char *parents[SUN7I_A20_GMAC_PARENTS];
	void *reg;

	if (of_property_read_string(node, "clock-output-names", &clk_name))
		return;

	/* allocate mux and gate clock structs */
	mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
	if (!mux)
		return;

	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
	if (!gate)
		goto free_mux;

	/* gmac clock requires exactly 2 parents */
	parents[0] = of_clk_get_parent_name(node, 0);
	parents[1] = of_clk_get_parent_name(node, 1);
	if (!parents[0] || !parents[1])
		goto free_gate;

	reg = of_iomap(node, 0);
	if (!reg)
		goto free_gate;

	/* set up gate and fixed rate properties */
	gate->reg = reg;
	gate->bit_idx = SUN7I_A20_GMAC_GPIT;
	gate->lock = &clk_lock;
	mux->reg = reg;
	mux->mask = SUN7I_A20_GMAC_MASK;
	mux->flags = CLK_MUX_INDEX_BIT;
	mux->lock = &clk_lock;

	clk = clk_register_composite(NULL, clk_name,
			parents, SUN7I_A20_GMAC_PARENTS,
			&mux->hw, &clk_mux_ops,
			NULL, NULL,
			&gate->hw, &clk_gate_ops,
			0);

	if (IS_ERR(clk))
		goto iounmap_reg;

	of_clk_add_provider(node, of_clk_src_simple_get, clk);
	clk_register_clkdev(clk, clk_name, NULL);

	return;

iounmap_reg:
	iounmap(reg);
free_gate:
	kfree(gate);
free_mux:
	kfree(mux);
}
CLK_OF_DECLARE(sun7i_a20_gmac, "allwinner,sun7i-a20-gmac-clk",
		sun7i_a20_gmac_clk_setup);



509 510 511 512
/**
 * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
 */

513
void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
514 515 516 517
{
	#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
	#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)

518
	struct clk_hw *hw = __clk_get_hw(clk);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	struct clk_composite *composite = to_clk_composite(hw);
	struct clk_hw *rate_hw = composite->rate_hw;
	struct clk_factors *factors = to_clk_factors(rate_hw);
	unsigned long flags = 0;
	u32 reg;

	if (factors->lock)
		spin_lock_irqsave(factors->lock, flags);

	reg = readl(factors->reg);

	/* set sample clock phase control */
	reg &= ~(0x7 << 20);
	reg |= ((sample & 0x7) << 20);

	/* set output clock phase control */
	reg &= ~(0x7 << 8);
	reg |= ((output & 0x7) << 8);

	writel(reg, factors->reg);

	if (factors->lock)
		spin_unlock_irqrestore(factors->lock, flags);
}
EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);


546 547 548 549
/**
 * sunxi_factors_clk_setup() - Setup function for factor clocks
 */

550 551
#define SUNXI_FACTORS_MUX_MASK 0x3

552
struct factors_data {
553 554
	int enable;
	int mux;
555 556
	struct clk_factors_config *table;
	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
557
	const char *name;
558 559
};

560
static struct clk_factors_config sun4i_pll1_config = {
561 562 563 564 565 566 567 568 569 570
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
	.pshift = 16,
	.pwidth = 2,
};

571 572 573 574 575 576 577 578 579
static struct clk_factors_config sun6i_a31_pll1_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
};

580 581 582 583 584 585 586
static struct clk_factors_config sun4i_pll5_config = {
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

587 588 589 590 591 592 593
static struct clk_factors_config sun6i_a31_pll6_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

594
static struct clk_factors_config sun4i_apb1_config = {
595 596 597 598 599 600
	.mshift = 0,
	.mwidth = 5,
	.pshift = 16,
	.pwidth = 2,
};

E
Emilio López 已提交
601 602 603 604 605 606 607 608
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun4i_mod0_config = {
	.mshift = 0,
	.mwidth = 4,
	.pshift = 16,
	.pwidth = 2,
};

609 610 611 612 613 614 615 616
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
	.mshift = 8,
	.mwidth = 5,
	.pshift = 20,
	.pwidth = 2,
};

617
static const struct factors_data sun4i_pll1_data __initconst = {
618
	.enable = 31,
619 620
	.table = &sun4i_pll1_config,
	.getter = sun4i_get_pll1_factors,
621 622
};

623
static const struct factors_data sun6i_a31_pll1_data __initconst = {
624
	.enable = 31,
625 626 627 628
	.table = &sun6i_a31_pll1_config,
	.getter = sun6i_a31_get_pll1_factors,
};

629 630 631 632 633 634
static const struct factors_data sun7i_a20_pll4_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
};

635 636 637 638
static const struct factors_data sun4i_pll5_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
639 640 641 642 643 644 645 646
	.name = "pll5",
};

static const struct factors_data sun4i_pll6_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
	.name = "pll6",
647 648
};

649 650 651 652 653 654
static const struct factors_data sun6i_a31_pll6_data __initconst = {
	.enable = 31,
	.table = &sun6i_a31_pll6_config,
	.getter = sun6i_a31_get_pll6_factors,
};

655
static const struct factors_data sun4i_apb1_data __initconst = {
656 657
	.table = &sun4i_apb1_config,
	.getter = sun4i_get_apb1_factors,
658 659
};

E
Emilio López 已提交
660 661 662 663 664 665 666
static const struct factors_data sun4i_mod0_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun4i_mod0_config,
	.getter = sun4i_get_mod0_factors,
};

667 668 669 670 671 672 673
static const struct factors_data sun7i_a20_out_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun7i_a20_out_config,
	.getter = sun7i_a20_get_out_factors,
};

674 675
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
						const struct factors_data *data)
676 677
{
	struct clk *clk;
678 679 680 681 682
	struct clk_factors *factors;
	struct clk_gate *gate = NULL;
	struct clk_mux *mux = NULL;
	struct clk_hw *gate_hw = NULL;
	struct clk_hw *mux_hw = NULL;
683
	const char *clk_name = node->name;
684
	const char *parents[SUNXI_MAX_PARENTS];
685
	void *reg;
686
	int i = 0;
687 688 689

	reg = of_iomap(node, 0);

690 691 692 693 694
	/* if we have a mux, we will have >1 parents */
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
		i++;

695 696 697 698 699 700 701 702
	/*
	 * some factor clocks, such as pll5 and pll6, may have multiple
	 * outputs, and have their name designated in factors_data
	 */
	if (data->name)
		clk_name = data->name;
	else
		of_property_read_string(node, "clock-output-names", &clk_name);
703

704 705
	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
	if (!factors)
706
		return NULL;
707 708 709 710 711 712

	/* Add a gate if this factor clock can be gated */
	if (data->enable) {
		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
		if (!gate) {
			kfree(factors);
713
			return NULL;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		}

		/* set up gate properties */
		gate->reg = reg;
		gate->bit_idx = data->enable;
		gate->lock = &clk_lock;
		gate_hw = &gate->hw;
	}

	/* Add a mux if this factor clock can be muxed */
	if (data->mux) {
		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
		if (!mux) {
			kfree(factors);
			kfree(gate);
729
			return NULL;
730 731 732 733 734 735 736 737 738
		}

		/* set up gate properties */
		mux->reg = reg;
		mux->shift = data->mux;
		mux->mask = SUNXI_FACTORS_MUX_MASK;
		mux->lock = &clk_lock;
		mux_hw = &mux->hw;
	}
739

740 741 742 743 744 745 746 747 748 749
	/* set up factors properties */
	factors->reg = reg;
	factors->config = data->table;
	factors->get_factors = data->getter;
	factors->lock = &clk_lock;

	clk = clk_register_composite(NULL, clk_name,
			parents, i,
			mux_hw, &clk_mux_ops,
			&factors->hw, &clk_factors_ops,
750
			gate_hw, &clk_gate_ops, 0);
751

752
	if (!IS_ERR(clk)) {
753 754 755
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
756 757

	return clk;
758 759 760 761 762 763 764 765 766 767 768 769 770 771
}



/**
 * sunxi_mux_clk_setup() - Setup function for muxes
 */

#define SUNXI_MUX_GATE_WIDTH	2

struct mux_data {
	u8 shift;
};

772
static const struct mux_data sun4i_cpu_mux_data __initconst = {
773 774 775
	.shift = 16,
};

776
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
777 778 779
	.shift = 12,
};

780
static const struct mux_data sun4i_apb1_mux_data __initconst = {
781 782 783 784 785 786 787 788
	.shift = 24,
};

static void __init sunxi_mux_clk_setup(struct device_node *node,
				       struct mux_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
789
	const char *parents[SUNXI_MAX_PARENTS];
790 791 792 793 794
	void *reg;
	int i = 0;

	reg = of_iomap(node, 0);

795 796
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
797 798
		i++;

799 800
	of_property_read_string(node, "clock-output-names", &clk_name);

801 802
	clk = clk_register_mux(NULL, clk_name, parents, i,
			       CLK_SET_RATE_NO_REPARENT, reg,
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
			       data->shift, SUNXI_MUX_GATE_WIDTH,
			       0, &clk_lock);

	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
 */

struct div_data {
819 820 821
	u8	shift;
	u8	pow;
	u8	width;
822 823
};

824
static const struct div_data sun4i_axi_data __initconst = {
825 826 827
	.shift	= 0,
	.pow	= 0,
	.width	= 2,
828 829
};

830
static const struct div_data sun4i_ahb_data __initconst = {
831 832 833
	.shift	= 4,
	.pow	= 1,
	.width	= 2,
834 835
};

836
static const struct div_data sun4i_apb0_data __initconst = {
837 838 839
	.shift	= 8,
	.pow	= 1,
	.width	= 2,
840 841
};

842
static const struct div_data sun6i_a31_apb2_div_data __initconst = {
843 844 845 846 847
	.shift	= 0,
	.pow	= 0,
	.width	= 4,
};

848 849 850 851 852 853 854 855 856 857 858 859
static void __init sunxi_divider_clk_setup(struct device_node *node,
					   struct div_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *clk_parent;
	void *reg;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

860 861
	of_property_read_string(node, "clock-output-names", &clk_name);

862
	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
863
				   reg, data->shift, data->width,
864 865 866 867 868 869 870 871 872
				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
				   &clk_lock);
	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}


873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/**
 * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
 */

struct gates_reset_data {
	void __iomem			*reg;
	spinlock_t			*lock;
	struct reset_controller_dev	rcdev;
};

static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
			      unsigned long id)
{
	struct gates_reset_data *data = container_of(rcdev,
						     struct gates_reset_data,
						     rcdev);
	unsigned long flags;
	u32 reg;

	spin_lock_irqsave(data->lock, flags);

	reg = readl(data->reg);
	writel(reg & ~BIT(id), data->reg);

	spin_unlock_irqrestore(data->lock, flags);

	return 0;
}

static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
				unsigned long id)
{
	struct gates_reset_data *data = container_of(rcdev,
						     struct gates_reset_data,
						     rcdev);
	unsigned long flags;
	u32 reg;

	spin_lock_irqsave(data->lock, flags);

	reg = readl(data->reg);
	writel(reg | BIT(id), data->reg);

	spin_unlock_irqrestore(data->lock, flags);

	return 0;
}

static struct reset_control_ops sunxi_gates_reset_ops = {
	.assert		= sunxi_gates_reset_assert,
	.deassert	= sunxi_gates_reset_deassert,
};

927 928 929 930 931 932 933 934
/**
 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
 */

#define SUNXI_GATES_MAX_SIZE	64

struct gates_data {
	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
935
	u32 reset_mask;
936 937
};

938
static const struct gates_data sun4i_axi_gates_data __initconst = {
939 940 941
	.mask = {1},
};

942
static const struct gates_data sun4i_ahb_gates_data __initconst = {
943 944 945
	.mask = {0x7F77FFF, 0x14FB3F},
};

946
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
M
Maxime Ripard 已提交
947 948 949
	.mask = {0x147667e7, 0x185915},
};

950
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
951 952 953
	.mask = {0x107067e7, 0x185111},
};

954
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
955 956 957
	.mask = {0xEDFE7F62, 0x794F931},
};

958
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
959 960 961
	.mask = { 0x12f77fff, 0x16ff3f },
};

962
static const struct gates_data sun4i_apb0_gates_data __initconst = {
963 964 965
	.mask = {0x4EF},
};

966
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
M
Maxime Ripard 已提交
967 968 969
	.mask = {0x469},
};

970
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
971 972 973
	.mask = {0x61},
};

974
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
975 976 977
	.mask = { 0x4ff },
};

978
static const struct gates_data sun4i_apb1_gates_data __initconst = {
979 980 981
	.mask = {0xFF00F7},
};

982
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
M
Maxime Ripard 已提交
983 984 985
	.mask = {0xf0007},
};

986
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
987 988 989
	.mask = {0xa0007},
};

990
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
991 992 993
	.mask = {0x3031},
};

994
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
995 996 997
	.mask = {0x3F000F},
};

998
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
999 1000 1001
	.mask = { 0xff80ff },
};

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
	.mask = {0x1C0},
	.reset_mask = 0x07,
};

static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
	.mask = {0x140},
	.reset_mask = 0x03,
};

1012 1013 1014 1015
static void __init sunxi_gates_clk_setup(struct device_node *node,
					 struct gates_data *data)
{
	struct clk_onecell_data *clk_data;
1016
	struct gates_reset_data *reset_data;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	const char *clk_parent;
	const char *clk_name;
	void *reg;
	int qty;
	int i = 0;
	int j = 0;
	int ignore;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	/* Worst-case size approximation and memory allocation */
	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;
	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
	if (!clk_data->clks) {
		kfree(clk_data);
		return;
	}

	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
		of_property_read_string_index(node, "clock-output-names",
					      j, &clk_name);

		/* No driver claims this clock, but it should remain gated */
		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;

		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
						      clk_parent, ignore,
						      reg + 4 * (i/32), i % 32,
						      0, &clk_lock);
		WARN_ON(IS_ERR(clk_data->clks[i]));

		j++;
	}

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	/* Register a reset controler for gates with reset bits */
	if (data->reset_mask == 0)
		return;

	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
	if (!reset_data)
		return;

	reset_data->reg = reg;
	reset_data->lock = &clk_lock;
	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
	reset_data->rcdev.of_node = node;
	reset_controller_register(&reset_data->rcdev);
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113


/**
 * sunxi_divs_clk_setup() helper data
 */

#define SUNXI_DIVS_MAX_QTY	2
#define SUNXI_DIVISOR_WIDTH	2

struct divs_data {
	const struct factors_data *factors; /* data for the factor clock */
	struct {
		u8 fixed; /* is it a fixed divisor? if not... */
		struct clk_div_table *table; /* is it a table based divisor? */
		u8 shift; /* otherwise it's a normal divisor with this shift */
		u8 pow;   /* is it power-of-two based? */
		u8 gate;  /* is it independently gateable? */
	} div[SUNXI_DIVS_MAX_QTY];
};

static struct clk_div_table pll6_sata_tbl[] = {
	{ .val = 0, .div = 6, },
	{ .val = 1, .div = 12, },
	{ .val = 2, .div = 18, },
	{ .val = 3, .div = 24, },
	{ } /* sentinel */
};

static const struct divs_data pll5_divs_data __initconst = {
	.factors = &sun4i_pll5_data,
	.div = {
		{ .shift = 0, .pow = 0, }, /* M, DDR */
		{ .shift = 16, .pow = 1, }, /* P, other */
	}
};

static const struct divs_data pll6_divs_data __initconst = {
1114
	.factors = &sun4i_pll6_data,
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	.div = {
		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
		{ .fixed = 2 }, /* P, other */
	}
};

/**
 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
 *
 * These clocks look something like this
 *            ________________________
 *           |         ___divisor 1---|----> to consumer
 * parent >--|  pll___/___divisor 2---|----> to consumer
 *           |        \_______________|____> to consumer
 *           |________________________|
 */

static void __init sunxi_divs_clk_setup(struct device_node *node,
					struct divs_data *data)
{
	struct clk_onecell_data *clk_data;
1136
	const char *parent;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	const char *clk_name;
	struct clk **clks, *pclk;
	struct clk_hw *gate_hw, *rate_hw;
	const struct clk_ops *rate_ops;
	struct clk_gate *gate = NULL;
	struct clk_fixed_factor *fix_factor;
	struct clk_divider *divider;
	void *reg;
	int i = 0;
	int flags, clkflags;

	/* Set up factor clock that we will be dividing */
	pclk = sunxi_factors_clk_setup(node, data->factors);
1150
	parent = __clk_get_name(pclk);
1151 1152 1153 1154 1155 1156 1157

	reg = of_iomap(node, 0);

	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;

1158
	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	if (!clks)
		goto free_clkdata;

	clk_data->clks = clks;

	/* It's not a good idea to have automatic reparenting changing
	 * our RAM clock! */
	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;

	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
		if (of_property_read_string_index(node, "clock-output-names",
						  i, &clk_name) != 0)
			break;

		gate_hw = NULL;
		rate_hw = NULL;
		rate_ops = NULL;

		/* If this leaf clock can be gated, create a gate */
		if (data->div[i].gate) {
			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
			if (!gate)
				goto free_clks;

			gate->reg = reg;
			gate->bit_idx = data->div[i].gate;
			gate->lock = &clk_lock;

			gate_hw = &gate->hw;
		}

		/* Leaves can be fixed or configurable divisors */
		if (data->div[i].fixed) {
			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
			if (!fix_factor)
				goto free_gate;

			fix_factor->mult = 1;
			fix_factor->div = data->div[i].fixed;

			rate_hw = &fix_factor->hw;
			rate_ops = &clk_fixed_factor_ops;
		} else {
			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
			if (!divider)
				goto free_gate;

			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;

			divider->reg = reg;
			divider->shift = data->div[i].shift;
			divider->width = SUNXI_DIVISOR_WIDTH;
			divider->flags = flags;
			divider->lock = &clk_lock;
			divider->table = data->div[i].table;

			rate_hw = &divider->hw;
			rate_ops = &clk_divider_ops;
		}

		/* Wrap the (potential) gate and the divisor on a composite
		 * clock to unify them */
		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
						 NULL, NULL,
						 rate_hw, rate_ops,
						 gate_hw, &clk_gate_ops,
						 clkflags);

		WARN_ON(IS_ERR(clk_data->clks[i]));
		clk_register_clkdev(clks[i], clk_name, NULL);
	}

	/* The last clock available on the getter is the parent */
	clks[i++] = pclk;

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);

	return;

free_gate:
	kfree(gate);
free_clks:
	kfree(clks);
free_clkdata:
	kfree(clk_data);
}



1251
/* Matches for factors clocks */
1252
static const struct of_device_id clk_factors_match[] __initconst = {
1253
	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1254
	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1255
	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1256
	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1257 1258
	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1259
	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1260 1261 1262 1263
	{}
};

/* Matches for divider clocks */
1264
static const struct of_device_id clk_div_match[] __initconst = {
1265 1266 1267
	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1268
	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1269 1270 1271
	{}
};

1272 1273
/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
1274 1275
	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1276 1277 1278
	{}
};

1279
/* Matches for mux clocks */
1280
static const struct of_device_id clk_mux_match[] __initconst = {
1281 1282
	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1283
	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1284 1285 1286
	{}
};

1287
/* Matches for gate clocks */
1288
static const struct of_device_id clk_gates_match[] __initconst = {
1289 1290
	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
M
Maxime Ripard 已提交
1291
	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1292
	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1293
	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1294
	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1295
	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
M
Maxime Ripard 已提交
1296
	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1297
	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1298
	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1299
	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
M
Maxime Ripard 已提交
1300
	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1301
	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1302
	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1303
	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1304
	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1305 1306
	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1307 1308 1309
	{}
};

1310 1311 1312 1313 1314 1315 1316 1317
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
					      void *function)
{
	struct device_node *np;
	const struct div_data *data;
	const struct of_device_id *match;
	void (*setup_function)(struct device_node *, const void *) = function;

1318
	for_each_matching_node_and_match(np, clk_match, &match) {
1319 1320 1321 1322 1323
		data = match->data;
		setup_function(np, data);
	}
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/**
 * System clock protection
 *
 * By enabling these critical clocks, we prevent their accidental gating
 * by the framework
 */
static void __init sunxi_clock_protect(void)
{
	struct clk *clk;

	/* memory bus clock - sun5i+ */
	clk = clk_get(NULL, "mbus");
	if (!IS_ERR(clk)) {
		clk_prepare_enable(clk);
		clk_put(clk);
	}

	/* DDR clock - sun4i+ */
	clk = clk_get(NULL, "pll5_ddr");
	if (!IS_ERR(clk)) {
		clk_prepare_enable(clk);
		clk_put(clk);
	}
}

1349
static void __init sunxi_init_clocks(struct device_node *np)
1350 1351 1352 1353 1354 1355 1356
{
	/* Register factor clocks */
	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);

	/* Register divider clocks */
	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);

1357 1358 1359
	/* Register divided output clocks */
	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);

1360 1361
	/* Register mux clocks */
	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1362 1363 1364

	/* Register gate clocks */
	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1365 1366 1367

	/* Enable core system clocks */
	sunxi_clock_protect();
1368
}
1369 1370 1371 1372 1373
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);