clk-sunxi.c 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2013 Emilio López
 *
 * Emilio López <emilio@elopez.com.ar>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>

#include "clk-factors.h"

static DEFINE_SPINLOCK(clk_lock);

26 27 28
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS	5

29
/**
30
 * sun4i_osc_clk_setup() - Setup function for gatable oscillator
31 32 33 34
 */

#define SUNXI_OSC24M_GATE	0

35
static void __init sun4i_osc_clk_setup(struct device_node *node)
36 37
{
	struct clk *clk;
38 39
	struct clk_fixed_rate *fixed;
	struct clk_gate *gate;
40
	const char *clk_name = node->name;
41
	u32 rate;
42

43 44 45
	if (of_property_read_u32(node, "clock-frequency", &rate))
		return;

46 47 48 49 50
	/* allocate fixed-rate and gate clock structs */
	fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
	if (!fixed)
		return;
	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
51 52
	if (!gate)
		goto err_free_fixed;
53

54 55
	of_property_read_string(node, "clock-output-names", &clk_name);

56 57 58 59 60
	/* set up gate and fixed rate properties */
	gate->reg = of_iomap(node, 0);
	gate->bit_idx = SUNXI_OSC24M_GATE;
	gate->lock = &clk_lock;
	fixed->fixed_rate = rate;
61

62 63 64 65 66 67
	clk = clk_register_composite(NULL, clk_name,
			NULL, 0,
			NULL, NULL,
			&fixed->hw, &clk_fixed_rate_ops,
			&gate->hw, &clk_gate_ops,
			CLK_IS_ROOT);
68

69 70 71 72 73 74 75 76 77 78 79 80
	if (IS_ERR(clk))
		goto err_free_gate;

	of_clk_add_provider(node, of_clk_src_simple_get, clk);
	clk_register_clkdev(clk, clk_name, NULL);

	return;

err_free_gate:
	kfree(gate);
err_free_fixed:
	kfree(fixed);
81
}
82
CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-osc-clk", sun4i_osc_clk_setup);
83 84 85 86



/**
87
 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
88 89 90 91 92
 * PLL1 rate is calculated as follows
 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
 * parent_rate is always 24Mhz
 */

93
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a 6M multiple */
	div = *freq / 6000000;
	*freq = 6000000 * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	/* m is always zero for pll1 */
	*m = 0;

	/* k is 1 only on these cases */
	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
		*k = 1;
	else
		*k = 0;

	/* p will be 3 for divs under 10 */
	if (div < 10)
		*p = 3;

	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
	else if (div < 20 || (div < 32 && (div & 1)))
		*p = 2;

	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
	 * of divs between 40-62 */
	else if (div < 40 || (div < 64 && (div & 2)))
		*p = 1;

	/* any other entries have p = 0 */
	else
		*p = 0;

	/* calculate a suitable n based on k and p */
	div <<= *p;
	div /= (*k + 1);
	*n = div / 4;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
 * PLL1 rate is calculated as follows
 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
 * parent_rate should always be 24MHz
 */
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	/*
	 * We can operate only on MHz, this will make our life easier
	 * later.
	 */
	u32 freq_mhz = *freq / 1000000;
	u32 parent_freq_mhz = parent_rate / 1000000;

	/*
	 * Round down the frequency to the closest multiple of either
	 * 6 or 16
	 */
	u32 round_freq_6 = round_down(freq_mhz, 6);
	u32 round_freq_16 = round_down(freq_mhz, 16);

	if (round_freq_6 > round_freq_16)
		freq_mhz = round_freq_6;
	else
		freq_mhz = round_freq_16;
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	*freq = freq_mhz * 1000000;

	/*
	 * If the factors pointer are null, we were just called to
	 * round down the frequency.
	 * Exit.
	 */
	if (n == NULL)
		return;

	/* If the frequency is a multiple of 32 MHz, k is always 3 */
	if (!(freq_mhz % 32))
		*k = 3;
	/* If the frequency is a multiple of 9 MHz, k is always 2 */
	else if (!(freq_mhz % 9))
		*k = 2;
	/* If the frequency is a multiple of 8 MHz, k is always 1 */
	else if (!(freq_mhz % 8))
		*k = 1;
	/* Otherwise, we don't use the k factor */
	else
		*k = 0;

	/*
	 * If the frequency is a multiple of 2 but not a multiple of
	 * 3, m is 3. This is the first time we use 6 here, yet we
	 * will use it on several other places.
	 * We use this number because it's the lowest frequency we can
	 * generate (with n = 0, k = 0, m = 3), so every other frequency
	 * somehow relates to this frequency.
	 */
	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
		*m = 2;
	/*
	 * If the frequency is a multiple of 6MHz, but the factor is
	 * odd, m will be 3
	 */
	else if ((freq_mhz / 6) & 1)
		*m = 3;
	/* Otherwise, we end up with m = 1 */
	else
		*m = 1;

	/* Calculate n thanks to the above factors we already got */
	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;

	/*
	 * If n end up being outbound, and that we can still decrease
	 * m, do it.
	 */
	if ((*n + 1) > 31 && (*m + 1) > 1) {
		*n = (*n + 1) / 2 - 1;
		*m = (*m + 1) / 2 - 1;
	}
}
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/**
 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
 * PLL5 rate is calculated as follows
 * rate = parent_rate * n * (k + 1)
 * parent_rate is always 24Mhz
 */

static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a parent_rate multiple (24M) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	if (div < 31)
		*k = 0;
	else if (div / 2 < 31)
		*k = 1;
	else if (div / 3 < 31)
		*k = 2;
	else
		*k = 3;

	*n = DIV_ROUND_UP(div, (*k+1));
}



256
/**
257
 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
258 259 260 261
 * APB1 rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

262
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 calcm, calcp;

	if (parent_rate < *freq)
		*freq = parent_rate;

	parent_rate = (parent_rate + (*freq - 1)) / *freq;

	/* Invalid rate! */
	if (parent_rate > 32)
		return;

	if (parent_rate <= 4)
		calcp = 0;
	else if (parent_rate <= 8)
		calcp = 1;
	else if (parent_rate <= 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = (parent_rate >> calcp) - 1;

	*freq = (parent_rate >> calcp) / (calcm + 1);

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm;
	*p = calcp;
}



E
Emilio López 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/**
 * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
 * MMC rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

	div = parent_rate / *freq;

	if (div < 16)
		calcp = 0;
	else if (div / 2 < 16)
		calcp = 1;
	else if (div / 4 < 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}



340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
/**
 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
 * CLK_OUT rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
				      u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

	div = parent_rate / *freq;

	if (div < 32)
		calcp = 0;
	else if (div / 2 < 32)
		calcp = 1;
	else if (div / 4 < 32)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}



381 382 383 384
/**
 * sunxi_factors_clk_setup() - Setup function for factor clocks
 */

385 386
#define SUNXI_FACTORS_MUX_MASK 0x3

387
struct factors_data {
388 389
	int enable;
	int mux;
390 391 392 393
	struct clk_factors_config *table;
	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
};

394
static struct clk_factors_config sun4i_pll1_config = {
395 396 397 398 399 400 401 402 403 404
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
	.pshift = 16,
	.pwidth = 2,
};

405 406 407 408 409 410 411 412 413
static struct clk_factors_config sun6i_a31_pll1_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
};

414 415 416 417 418 419 420
static struct clk_factors_config sun4i_pll5_config = {
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

421
static struct clk_factors_config sun4i_apb1_config = {
422 423 424 425 426 427
	.mshift = 0,
	.mwidth = 5,
	.pshift = 16,
	.pwidth = 2,
};

E
Emilio López 已提交
428 429 430 431 432 433 434 435
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun4i_mod0_config = {
	.mshift = 0,
	.mwidth = 4,
	.pshift = 16,
	.pwidth = 2,
};

436 437 438 439 440 441 442 443
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
	.mshift = 8,
	.mwidth = 5,
	.pshift = 20,
	.pwidth = 2,
};

444
static const struct factors_data sun4i_pll1_data __initconst = {
445
	.enable = 31,
446 447
	.table = &sun4i_pll1_config,
	.getter = sun4i_get_pll1_factors,
448 449
};

450
static const struct factors_data sun6i_a31_pll1_data __initconst = {
451
	.enable = 31,
452 453 454 455
	.table = &sun6i_a31_pll1_config,
	.getter = sun6i_a31_get_pll1_factors,
};

456 457 458 459 460 461
static const struct factors_data sun4i_pll5_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
};

462
static const struct factors_data sun4i_apb1_data __initconst = {
463 464
	.table = &sun4i_apb1_config,
	.getter = sun4i_get_apb1_factors,
465 466
};

E
Emilio López 已提交
467 468 469 470 471 472 473
static const struct factors_data sun4i_mod0_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun4i_mod0_config,
	.getter = sun4i_get_mod0_factors,
};

474 475 476 477 478 479 480
static const struct factors_data sun7i_a20_out_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun7i_a20_out_config,
	.getter = sun7i_a20_get_out_factors,
};

481 482
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
						const struct factors_data *data)
483 484
{
	struct clk *clk;
485 486 487 488 489
	struct clk_factors *factors;
	struct clk_gate *gate = NULL;
	struct clk_mux *mux = NULL;
	struct clk_hw *gate_hw = NULL;
	struct clk_hw *mux_hw = NULL;
490
	const char *clk_name = node->name;
491
	const char *parents[SUNXI_MAX_PARENTS];
492
	void *reg;
493
	int i = 0;
494 495 496

	reg = of_iomap(node, 0);

497 498 499 500 501
	/* if we have a mux, we will have >1 parents */
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
		i++;

502 503 504 505 506 507 508 509 510
	/* Nodes should be providing the name via clock-output-names
	 * but originally our dts didn't, and so we used node->name.
	 * The new, better nodes look like clk@deadbeef, so we pull the
	 * name just in this case */
	if (!strcmp("clk", clk_name)) {
		of_property_read_string_index(node, "clock-output-names",
					      0, &clk_name);
	}

511 512
	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
	if (!factors)
513
		return NULL;
514 515 516 517 518 519

	/* Add a gate if this factor clock can be gated */
	if (data->enable) {
		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
		if (!gate) {
			kfree(factors);
520
			return NULL;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		}

		/* set up gate properties */
		gate->reg = reg;
		gate->bit_idx = data->enable;
		gate->lock = &clk_lock;
		gate_hw = &gate->hw;
	}

	/* Add a mux if this factor clock can be muxed */
	if (data->mux) {
		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
		if (!mux) {
			kfree(factors);
			kfree(gate);
536
			return NULL;
537 538 539 540 541 542 543 544 545
		}

		/* set up gate properties */
		mux->reg = reg;
		mux->shift = data->mux;
		mux->mask = SUNXI_FACTORS_MUX_MASK;
		mux->lock = &clk_lock;
		mux_hw = &mux->hw;
	}
546

547 548 549 550 551 552 553 554 555 556
	/* set up factors properties */
	factors->reg = reg;
	factors->config = data->table;
	factors->get_factors = data->getter;
	factors->lock = &clk_lock;

	clk = clk_register_composite(NULL, clk_name,
			parents, i,
			mux_hw, &clk_mux_ops,
			&factors->hw, &clk_factors_ops,
557
			gate_hw, &clk_gate_ops, 0);
558

559
	if (!IS_ERR(clk)) {
560 561 562
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
563 564

	return clk;
565 566 567 568 569 570 571 572 573 574 575 576 577 578
}



/**
 * sunxi_mux_clk_setup() - Setup function for muxes
 */

#define SUNXI_MUX_GATE_WIDTH	2

struct mux_data {
	u8 shift;
};

579
static const struct mux_data sun4i_cpu_mux_data __initconst = {
580 581 582
	.shift = 16,
};

583
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
584 585 586
	.shift = 12,
};

587
static const struct mux_data sun4i_apb1_mux_data __initconst = {
588 589 590 591 592 593 594 595
	.shift = 24,
};

static void __init sunxi_mux_clk_setup(struct device_node *node,
				       struct mux_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
596
	const char *parents[SUNXI_MAX_PARENTS];
597 598 599 600 601
	void *reg;
	int i = 0;

	reg = of_iomap(node, 0);

602 603
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
604 605
		i++;

606 607
	of_property_read_string(node, "clock-output-names", &clk_name);

608 609
	clk = clk_register_mux(NULL, clk_name, parents, i,
			       CLK_SET_RATE_NO_REPARENT, reg,
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			       data->shift, SUNXI_MUX_GATE_WIDTH,
			       0, &clk_lock);

	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
 */

struct div_data {
626 627 628
	u8	shift;
	u8	pow;
	u8	width;
629 630
};

631
static const struct div_data sun4i_axi_data __initconst = {
632 633 634
	.shift	= 0,
	.pow	= 0,
	.width	= 2,
635 636
};

637
static const struct div_data sun4i_ahb_data __initconst = {
638 639 640
	.shift	= 4,
	.pow	= 1,
	.width	= 2,
641 642
};

643
static const struct div_data sun4i_apb0_data __initconst = {
644 645 646
	.shift	= 8,
	.pow	= 1,
	.width	= 2,
647 648
};

649
static const struct div_data sun6i_a31_apb2_div_data __initconst = {
650 651 652 653 654
	.shift	= 0,
	.pow	= 0,
	.width	= 4,
};

655 656 657 658 659 660 661 662 663 664 665 666
static void __init sunxi_divider_clk_setup(struct device_node *node,
					   struct div_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *clk_parent;
	void *reg;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

667 668
	of_property_read_string(node, "clock-output-names", &clk_name);

669
	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
670
				   reg, data->shift, data->width,
671 672 673 674 675 676 677 678 679
				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
				   &clk_lock);
	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}


680 681 682 683 684 685 686 687 688 689 690

/**
 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
 */

#define SUNXI_GATES_MAX_SIZE	64

struct gates_data {
	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
};

691
static const struct gates_data sun4i_axi_gates_data __initconst = {
692 693 694
	.mask = {1},
};

695
static const struct gates_data sun4i_ahb_gates_data __initconst = {
696 697 698
	.mask = {0x7F77FFF, 0x14FB3F},
};

699
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
M
Maxime Ripard 已提交
700 701 702
	.mask = {0x147667e7, 0x185915},
};

703
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
704 705 706
	.mask = {0x107067e7, 0x185111},
};

707
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
708 709 710
	.mask = {0xEDFE7F62, 0x794F931},
};

711
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
712 713 714
	.mask = { 0x12f77fff, 0x16ff3f },
};

715
static const struct gates_data sun4i_apb0_gates_data __initconst = {
716 717 718
	.mask = {0x4EF},
};

719
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
M
Maxime Ripard 已提交
720 721 722
	.mask = {0x469},
};

723
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
724 725 726
	.mask = {0x61},
};

727
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
728 729 730
	.mask = { 0x4ff },
};

731
static const struct gates_data sun4i_apb1_gates_data __initconst = {
732 733 734
	.mask = {0xFF00F7},
};

735
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
M
Maxime Ripard 已提交
736 737 738
	.mask = {0xf0007},
};

739
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
740 741 742
	.mask = {0xa0007},
};

743
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
744 745 746
	.mask = {0x3031},
};

747
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
748 749 750
	.mask = {0x3F000F},
};

751
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
752 753 754
	.mask = { 0xff80ff },
};

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void __init sunxi_gates_clk_setup(struct device_node *node,
					 struct gates_data *data)
{
	struct clk_onecell_data *clk_data;
	const char *clk_parent;
	const char *clk_name;
	void *reg;
	int qty;
	int i = 0;
	int j = 0;
	int ignore;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	/* Worst-case size approximation and memory allocation */
	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;
	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
	if (!clk_data->clks) {
		kfree(clk_data);
		return;
	}

	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
		of_property_read_string_index(node, "clock-output-names",
					      j, &clk_name);

		/* No driver claims this clock, but it should remain gated */
		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;

		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
						      clk_parent, ignore,
						      reg + 4 * (i/32), i % 32,
						      0, &clk_lock);
		WARN_ON(IS_ERR(clk_data->clks[i]));

		j++;
	}

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883


/**
 * sunxi_divs_clk_setup() helper data
 */

#define SUNXI_DIVS_MAX_QTY	2
#define SUNXI_DIVISOR_WIDTH	2

struct divs_data {
	const struct factors_data *factors; /* data for the factor clock */
	struct {
		u8 fixed; /* is it a fixed divisor? if not... */
		struct clk_div_table *table; /* is it a table based divisor? */
		u8 shift; /* otherwise it's a normal divisor with this shift */
		u8 pow;   /* is it power-of-two based? */
		u8 gate;  /* is it independently gateable? */
	} div[SUNXI_DIVS_MAX_QTY];
};

static struct clk_div_table pll6_sata_tbl[] = {
	{ .val = 0, .div = 6, },
	{ .val = 1, .div = 12, },
	{ .val = 2, .div = 18, },
	{ .val = 3, .div = 24, },
	{ } /* sentinel */
};

static const struct divs_data pll5_divs_data __initconst = {
	.factors = &sun4i_pll5_data,
	.div = {
		{ .shift = 0, .pow = 0, }, /* M, DDR */
		{ .shift = 16, .pow = 1, }, /* P, other */
	}
};

static const struct divs_data pll6_divs_data __initconst = {
	.factors = &sun4i_pll5_data,
	.div = {
		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
		{ .fixed = 2 }, /* P, other */
	}
};

/**
 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
 *
 * These clocks look something like this
 *            ________________________
 *           |         ___divisor 1---|----> to consumer
 * parent >--|  pll___/___divisor 2---|----> to consumer
 *           |        \_______________|____> to consumer
 *           |________________________|
 */

static void __init sunxi_divs_clk_setup(struct device_node *node,
					struct divs_data *data)
{
	struct clk_onecell_data *clk_data;
	const char *parent  = node->name;
	const char *clk_name;
	struct clk **clks, *pclk;
	struct clk_hw *gate_hw, *rate_hw;
	const struct clk_ops *rate_ops;
	struct clk_gate *gate = NULL;
	struct clk_fixed_factor *fix_factor;
	struct clk_divider *divider;
	void *reg;
	int i = 0;
	int flags, clkflags;

	/* Set up factor clock that we will be dividing */
	pclk = sunxi_factors_clk_setup(node, data->factors);

	reg = of_iomap(node, 0);

	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;

884
	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	if (!clks)
		goto free_clkdata;

	clk_data->clks = clks;

	/* It's not a good idea to have automatic reparenting changing
	 * our RAM clock! */
	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;

	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
		if (of_property_read_string_index(node, "clock-output-names",
						  i, &clk_name) != 0)
			break;

		gate_hw = NULL;
		rate_hw = NULL;
		rate_ops = NULL;

		/* If this leaf clock can be gated, create a gate */
		if (data->div[i].gate) {
			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
			if (!gate)
				goto free_clks;

			gate->reg = reg;
			gate->bit_idx = data->div[i].gate;
			gate->lock = &clk_lock;

			gate_hw = &gate->hw;
		}

		/* Leaves can be fixed or configurable divisors */
		if (data->div[i].fixed) {
			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
			if (!fix_factor)
				goto free_gate;

			fix_factor->mult = 1;
			fix_factor->div = data->div[i].fixed;

			rate_hw = &fix_factor->hw;
			rate_ops = &clk_fixed_factor_ops;
		} else {
			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
			if (!divider)
				goto free_gate;

			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;

			divider->reg = reg;
			divider->shift = data->div[i].shift;
			divider->width = SUNXI_DIVISOR_WIDTH;
			divider->flags = flags;
			divider->lock = &clk_lock;
			divider->table = data->div[i].table;

			rate_hw = &divider->hw;
			rate_ops = &clk_divider_ops;
		}

		/* Wrap the (potential) gate and the divisor on a composite
		 * clock to unify them */
		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
						 NULL, NULL,
						 rate_hw, rate_ops,
						 gate_hw, &clk_gate_ops,
						 clkflags);

		WARN_ON(IS_ERR(clk_data->clks[i]));
		clk_register_clkdev(clks[i], clk_name, NULL);
	}

	/* The last clock available on the getter is the parent */
	clks[i++] = pclk;

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);

	return;

free_gate:
	kfree(gate);
free_clks:
	kfree(clks);
free_clkdata:
	kfree(clk_data);
}



977
/* Matches for factors clocks */
978
static const struct of_device_id clk_factors_match[] __initconst = {
979
	{.compatible = "allwinner,sun4i-pll1-clk", .data = &sun4i_pll1_data,},
980
	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
981
	{.compatible = "allwinner,sun4i-apb1-clk", .data = &sun4i_apb1_data,},
E
Emilio López 已提交
982
	{.compatible = "allwinner,sun4i-mod0-clk", .data = &sun4i_mod0_data,},
983
	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
984 985 986 987
	{}
};

/* Matches for divider clocks */
988
static const struct of_device_id clk_div_match[] __initconst = {
989 990 991
	{.compatible = "allwinner,sun4i-axi-clk", .data = &sun4i_axi_data,},
	{.compatible = "allwinner,sun4i-ahb-clk", .data = &sun4i_ahb_data,},
	{.compatible = "allwinner,sun4i-apb0-clk", .data = &sun4i_apb0_data,},
992
	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
993 994 995
	{}
};

996 997 998 999 1000 1001 1002
/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
	{.compatible = "allwinner,sun4i-pll5-clk", .data = &pll5_divs_data,},
	{.compatible = "allwinner,sun4i-pll6-clk", .data = &pll6_divs_data,},
	{}
};

1003
/* Matches for mux clocks */
1004
static const struct of_device_id clk_mux_match[] __initconst = {
1005 1006
	{.compatible = "allwinner,sun4i-cpu-clk", .data = &sun4i_cpu_mux_data,},
	{.compatible = "allwinner,sun4i-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1007
	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1008 1009 1010
	{}
};

1011
/* Matches for gate clocks */
1012
static const struct of_device_id clk_gates_match[] __initconst = {
1013 1014
	{.compatible = "allwinner,sun4i-axi-gates-clk", .data = &sun4i_axi_gates_data,},
	{.compatible = "allwinner,sun4i-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
M
Maxime Ripard 已提交
1015
	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1016
	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1017
	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1018
	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1019
	{.compatible = "allwinner,sun4i-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
M
Maxime Ripard 已提交
1020
	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1021
	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1022
	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1023
	{.compatible = "allwinner,sun4i-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
M
Maxime Ripard 已提交
1024
	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1025
	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1026
	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1027
	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1028
	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1029 1030 1031
	{}
};

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
					      void *function)
{
	struct device_node *np;
	const struct div_data *data;
	const struct of_device_id *match;
	void (*setup_function)(struct device_node *, const void *) = function;

	for_each_matching_node(np, clk_match) {
		match = of_match_node(clk_match, np);
		data = match->data;
		setup_function(np, data);
	}
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * System clock protection
 *
 * By enabling these critical clocks, we prevent their accidental gating
 * by the framework
 */
static void __init sunxi_clock_protect(void)
{
	struct clk *clk;

	/* memory bus clock - sun5i+ */
	clk = clk_get(NULL, "mbus");
	if (!IS_ERR(clk)) {
		clk_prepare_enable(clk);
		clk_put(clk);
	}

	/* DDR clock - sun4i+ */
	clk = clk_get(NULL, "pll5_ddr");
	if (!IS_ERR(clk)) {
		clk_prepare_enable(clk);
		clk_put(clk);
	}
}

1072
static void __init sunxi_init_clocks(void)
1073 1074 1075 1076 1077 1078 1079
{
	/* Register factor clocks */
	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);

	/* Register divider clocks */
	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);

1080 1081 1082
	/* Register divided output clocks */
	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);

1083 1084
	/* Register mux clocks */
	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1085 1086 1087

	/* Register gate clocks */
	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1088 1089 1090

	/* Enable core system clocks */
	sunxi_clock_protect();
1091
}
1092 1093 1094 1095 1096
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);