clk-sunxi.c 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2013 Emilio López
 *
 * Emilio López <emilio@elopez.com.ar>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>

#include "clk-factors.h"

static DEFINE_SPINLOCK(clk_lock);

/**
27
 * sun4i_osc_clk_setup() - Setup function for gatable oscillator
28 29 30 31
 */

#define SUNXI_OSC24M_GATE	0

32
static void __init sun4i_osc_clk_setup(struct device_node *node)
33 34
{
	struct clk *clk;
35 36
	struct clk_fixed_rate *fixed;
	struct clk_gate *gate;
37
	const char *clk_name = node->name;
38
	u32 rate;
39

40 41 42
	if (of_property_read_u32(node, "clock-frequency", &rate))
		return;

43 44 45 46 47
	/* allocate fixed-rate and gate clock structs */
	fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
	if (!fixed)
		return;
	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
48 49
	if (!gate)
		goto err_free_fixed;
50 51 52 53 54 55

	/* set up gate and fixed rate properties */
	gate->reg = of_iomap(node, 0);
	gate->bit_idx = SUNXI_OSC24M_GATE;
	gate->lock = &clk_lock;
	fixed->fixed_rate = rate;
56

57 58 59 60 61 62
	clk = clk_register_composite(NULL, clk_name,
			NULL, 0,
			NULL, NULL,
			&fixed->hw, &clk_fixed_rate_ops,
			&gate->hw, &clk_gate_ops,
			CLK_IS_ROOT);
63

64 65 66 67 68 69 70 71 72 73 74 75
	if (IS_ERR(clk))
		goto err_free_gate;

	of_clk_add_provider(node, of_clk_src_simple_get, clk);
	clk_register_clkdev(clk, clk_name, NULL);

	return;

err_free_gate:
	kfree(gate);
err_free_fixed:
	kfree(fixed);
76
}
77
CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-osc-clk", sun4i_osc_clk_setup);
78 79 80 81



/**
82
 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
83 84 85 86 87
 * PLL1 rate is calculated as follows
 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
 * parent_rate is always 24Mhz
 */

88
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a 6M multiple */
	div = *freq / 6000000;
	*freq = 6000000 * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	/* m is always zero for pll1 */
	*m = 0;

	/* k is 1 only on these cases */
	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
		*k = 1;
	else
		*k = 0;

	/* p will be 3 for divs under 10 */
	if (div < 10)
		*p = 3;

	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
	else if (div < 20 || (div < 32 && (div & 1)))
		*p = 2;

	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
	 * of divs between 40-62 */
	else if (div < 40 || (div < 64 && (div & 2)))
		*p = 1;

	/* any other entries have p = 0 */
	else
		*p = 0;

	/* calculate a suitable n based on k and p */
	div <<= *p;
	div /= (*k + 1);
	*n = div / 4;
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/**
 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
 * PLL1 rate is calculated as follows
 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
 * parent_rate should always be 24MHz
 */
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	/*
	 * We can operate only on MHz, this will make our life easier
	 * later.
	 */
	u32 freq_mhz = *freq / 1000000;
	u32 parent_freq_mhz = parent_rate / 1000000;

	/*
	 * Round down the frequency to the closest multiple of either
	 * 6 or 16
	 */
	u32 round_freq_6 = round_down(freq_mhz, 6);
	u32 round_freq_16 = round_down(freq_mhz, 16);

	if (round_freq_6 > round_freq_16)
		freq_mhz = round_freq_6;
	else
		freq_mhz = round_freq_16;
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	*freq = freq_mhz * 1000000;

	/*
	 * If the factors pointer are null, we were just called to
	 * round down the frequency.
	 * Exit.
	 */
	if (n == NULL)
		return;

	/* If the frequency is a multiple of 32 MHz, k is always 3 */
	if (!(freq_mhz % 32))
		*k = 3;
	/* If the frequency is a multiple of 9 MHz, k is always 2 */
	else if (!(freq_mhz % 9))
		*k = 2;
	/* If the frequency is a multiple of 8 MHz, k is always 1 */
	else if (!(freq_mhz % 8))
		*k = 1;
	/* Otherwise, we don't use the k factor */
	else
		*k = 0;

	/*
	 * If the frequency is a multiple of 2 but not a multiple of
	 * 3, m is 3. This is the first time we use 6 here, yet we
	 * will use it on several other places.
	 * We use this number because it's the lowest frequency we can
	 * generate (with n = 0, k = 0, m = 3), so every other frequency
	 * somehow relates to this frequency.
	 */
	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
		*m = 2;
	/*
	 * If the frequency is a multiple of 6MHz, but the factor is
	 * odd, m will be 3
	 */
	else if ((freq_mhz / 6) & 1)
		*m = 3;
	/* Otherwise, we end up with m = 1 */
	else
		*m = 1;

	/* Calculate n thanks to the above factors we already got */
	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;

	/*
	 * If n end up being outbound, and that we can still decrease
	 * m, do it.
	 */
	if ((*n + 1) > 31 && (*m + 1) > 1) {
		*n = (*n + 1) / 2 - 1;
		*m = (*m + 1) / 2 - 1;
	}
}
216 217

/**
218
 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
219 220 221 222
 * APB1 rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

223
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 calcm, calcp;

	if (parent_rate < *freq)
		*freq = parent_rate;

	parent_rate = (parent_rate + (*freq - 1)) / *freq;

	/* Invalid rate! */
	if (parent_rate > 32)
		return;

	if (parent_rate <= 4)
		calcp = 0;
	else if (parent_rate <= 8)
		calcp = 1;
	else if (parent_rate <= 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = (parent_rate >> calcp) - 1;

	*freq = (parent_rate >> calcp) / (calcm + 1);

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm;
	*p = calcp;
}



/**
 * sunxi_factors_clk_setup() - Setup function for factor clocks
 */

struct factors_data {
	struct clk_factors_config *table;
	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
};

269
static struct clk_factors_config sun4i_pll1_config = {
270 271 272 273 274 275 276 277 278 279
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
	.pshift = 16,
	.pwidth = 2,
};

280 281 282 283 284 285 286 287 288
static struct clk_factors_config sun6i_a31_pll1_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
};

289
static struct clk_factors_config sun4i_apb1_config = {
290 291 292 293 294 295
	.mshift = 0,
	.mwidth = 5,
	.pshift = 16,
	.pwidth = 2,
};

296
static const struct factors_data sun4i_pll1_data __initconst = {
297 298
	.table = &sun4i_pll1_config,
	.getter = sun4i_get_pll1_factors,
299 300
};

301
static const struct factors_data sun6i_a31_pll1_data __initconst = {
302 303 304 305
	.table = &sun6i_a31_pll1_config,
	.getter = sun6i_a31_get_pll1_factors,
};

306
static const struct factors_data sun4i_apb1_data __initconst = {
307 308
	.table = &sun4i_apb1_config,
	.getter = sun4i_get_apb1_factors,
309 310 311 312 313 314 315 316 317 318 319 320 321 322
};

static void __init sunxi_factors_clk_setup(struct device_node *node,
					   struct factors_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *parent;
	void *reg;

	reg = of_iomap(node, 0);

	parent = of_clk_get_parent_name(node, 0);

323 324
	clk = clk_register_factors(NULL, clk_name, parent, 0, reg,
				   data->table, data->getter, &clk_lock);
325

326
	if (!IS_ERR(clk)) {
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_mux_clk_setup() - Setup function for muxes
 */

#define SUNXI_MUX_GATE_WIDTH	2

struct mux_data {
	u8 shift;
};

344
static const struct mux_data sun4i_cpu_mux_data __initconst = {
345 346 347
	.shift = 16,
};

348
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
349 350 351
	.shift = 12,
};

352
static const struct mux_data sun4i_apb1_mux_data __initconst = {
353 354 355 356 357 358 359 360
	.shift = 24,
};

static void __init sunxi_mux_clk_setup(struct device_node *node,
				       struct mux_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
361
	const char *parents[5];
362 363 364 365 366 367 368 369
	void *reg;
	int i = 0;

	reg = of_iomap(node, 0);

	while (i < 5 && (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
		i++;

370 371
	clk = clk_register_mux(NULL, clk_name, parents, i,
			       CLK_SET_RATE_NO_REPARENT, reg,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
			       data->shift, SUNXI_MUX_GATE_WIDTH,
			       0, &clk_lock);

	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
 */

struct div_data {
388 389 390
	u8	shift;
	u8	pow;
	u8	width;
391 392
};

393
static const struct div_data sun4i_axi_data __initconst = {
394 395 396
	.shift	= 0,
	.pow	= 0,
	.width	= 2,
397 398
};

399
static const struct div_data sun4i_ahb_data __initconst = {
400 401 402
	.shift	= 4,
	.pow	= 1,
	.width	= 2,
403 404
};

405
static const struct div_data sun4i_apb0_data __initconst = {
406 407 408
	.shift	= 8,
	.pow	= 1,
	.width	= 2,
409 410
};

411
static const struct div_data sun6i_a31_apb2_div_data __initconst = {
412 413 414 415 416
	.shift	= 0,
	.pow	= 0,
	.width	= 4,
};

417 418 419 420 421 422 423 424 425 426 427 428 429
static void __init sunxi_divider_clk_setup(struct device_node *node,
					   struct div_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *clk_parent;
	void *reg;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
430
				   reg, data->shift, data->width,
431 432 433 434 435 436 437 438 439
				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
				   &clk_lock);
	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}


440 441 442 443 444 445 446 447 448 449 450

/**
 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
 */

#define SUNXI_GATES_MAX_SIZE	64

struct gates_data {
	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
};

451
static const struct gates_data sun4i_axi_gates_data __initconst = {
452 453 454
	.mask = {1},
};

455
static const struct gates_data sun4i_ahb_gates_data __initconst = {
456 457 458
	.mask = {0x7F77FFF, 0x14FB3F},
};

459
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
M
Maxime Ripard 已提交
460 461 462
	.mask = {0x147667e7, 0x185915},
};

463
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
464 465 466
	.mask = {0x107067e7, 0x185111},
};

467
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
468 469 470
	.mask = {0xEDFE7F62, 0x794F931},
};

471
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
472 473 474
	.mask = { 0x12f77fff, 0x16ff3f },
};

475
static const struct gates_data sun4i_apb0_gates_data __initconst = {
476 477 478
	.mask = {0x4EF},
};

479
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
M
Maxime Ripard 已提交
480 481 482
	.mask = {0x469},
};

483
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
484 485 486
	.mask = {0x61},
};

487
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
488 489 490
	.mask = { 0x4ff },
};

491
static const struct gates_data sun4i_apb1_gates_data __initconst = {
492 493 494
	.mask = {0xFF00F7},
};

495
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
M
Maxime Ripard 已提交
496 497 498
	.mask = {0xf0007},
};

499
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
500 501 502
	.mask = {0xa0007},
};

503
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
504 505 506
	.mask = {0x3031},
};

507
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
508 509 510
	.mask = {0x3F000F},
};

511
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
512 513 514
	.mask = { 0xff80ff },
};

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static void __init sunxi_gates_clk_setup(struct device_node *node,
					 struct gates_data *data)
{
	struct clk_onecell_data *clk_data;
	const char *clk_parent;
	const char *clk_name;
	void *reg;
	int qty;
	int i = 0;
	int j = 0;
	int ignore;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	/* Worst-case size approximation and memory allocation */
	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;
	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
	if (!clk_data->clks) {
		kfree(clk_data);
		return;
	}

	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
		of_property_read_string_index(node, "clock-output-names",
					      j, &clk_name);

		/* No driver claims this clock, but it should remain gated */
		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;

		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
						      clk_parent, ignore,
						      reg + 4 * (i/32), i % 32,
						      0, &clk_lock);
		WARN_ON(IS_ERR(clk_data->clks[i]));

		j++;
	}

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
}

564
/* Matches for factors clocks */
565
static const struct of_device_id clk_factors_match[] __initconst = {
566
	{.compatible = "allwinner,sun4i-pll1-clk", .data = &sun4i_pll1_data,},
567
	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
568
	{.compatible = "allwinner,sun4i-apb1-clk", .data = &sun4i_apb1_data,},
569 570 571 572
	{}
};

/* Matches for divider clocks */
573
static const struct of_device_id clk_div_match[] __initconst = {
574 575 576
	{.compatible = "allwinner,sun4i-axi-clk", .data = &sun4i_axi_data,},
	{.compatible = "allwinner,sun4i-ahb-clk", .data = &sun4i_ahb_data,},
	{.compatible = "allwinner,sun4i-apb0-clk", .data = &sun4i_apb0_data,},
577
	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
578 579 580 581
	{}
};

/* Matches for mux clocks */
582
static const struct of_device_id clk_mux_match[] __initconst = {
583 584
	{.compatible = "allwinner,sun4i-cpu-clk", .data = &sun4i_cpu_mux_data,},
	{.compatible = "allwinner,sun4i-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
585
	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
586 587 588
	{}
};

589
/* Matches for gate clocks */
590
static const struct of_device_id clk_gates_match[] __initconst = {
591 592
	{.compatible = "allwinner,sun4i-axi-gates-clk", .data = &sun4i_axi_gates_data,},
	{.compatible = "allwinner,sun4i-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
M
Maxime Ripard 已提交
593
	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
594
	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
595
	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
596
	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
597
	{.compatible = "allwinner,sun4i-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
M
Maxime Ripard 已提交
598
	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
599
	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
600
	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
601
	{.compatible = "allwinner,sun4i-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
M
Maxime Ripard 已提交
602
	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
603
	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
604
	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
605
	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
606
	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
607 608 609
	{}
};

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
					      void *function)
{
	struct device_node *np;
	const struct div_data *data;
	const struct of_device_id *match;
	void (*setup_function)(struct device_node *, const void *) = function;

	for_each_matching_node(np, clk_match) {
		match = of_match_node(clk_match, np);
		data = match->data;
		setup_function(np, data);
	}
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/**
 * System clock protection
 *
 * By enabling these critical clocks, we prevent their accidental gating
 * by the framework
 */
static void __init sunxi_clock_protect(void)
{
	struct clk *clk;

	/* memory bus clock - sun5i+ */
	clk = clk_get(NULL, "mbus");
	if (!IS_ERR(clk)) {
		clk_prepare_enable(clk);
		clk_put(clk);
	}

	/* DDR clock - sun4i+ */
	clk = clk_get(NULL, "pll5_ddr");
	if (!IS_ERR(clk)) {
		clk_prepare_enable(clk);
		clk_put(clk);
	}
}

650
static void __init sunxi_init_clocks(void)
651 652 653 654 655 656 657 658 659
{
	/* Register factor clocks */
	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);

	/* Register divider clocks */
	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);

	/* Register mux clocks */
	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
660 661 662

	/* Register gate clocks */
	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
663 664 665

	/* Enable core system clocks */
	sunxi_clock_protect();
666
}
667 668 669 670 671
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);