guest.c 24.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/guest.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

11
#include <linux/bits.h>
12 13
#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/nospec.h>
15 16
#include <linux/kvm_host.h>
#include <linux/module.h>
17
#include <linux/stddef.h>
18
#include <linux/string.h>
19 20
#include <linux/vmalloc.h>
#include <linux/fs.h>
21
#include <kvm/arm_psci.h>
22
#include <asm/cputype.h>
23
#include <linux/uaccess.h>
24
#include <asm/fpsimd.h>
25 26 27
#include <asm/kvm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
28
#include <asm/sigcontext.h>
29

30 31
#include "trace.h"

32
struct kvm_stats_debugfs_item debugfs_entries[] = {
33 34 35 36 37 38 39 40 41 42
	VCPU_STAT("halt_successful_poll", halt_successful_poll),
	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
	VCPU_STAT("halt_wakeup", halt_wakeup),
	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
	VCPU_STAT("mmio_exit_user", mmio_exit_user),
	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
	VCPU_STAT("exits", exits),
43 44
	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
45 46 47 48 49 50 51 52 53 54 55 56 57
	{ "vcpu_stat", 0, KVM_STAT_DFX },
	{ NULL }
};

/* debugfs entries of Detail For vcpu stat EXtension */
struct dfx_kvm_stats_debugfs_item dfx_debugfs_entries[] = {
	DFX_STAT("pid", pid),
	DFX_STAT("hvc_exit_stat", hvc_exit_stat),
	DFX_STAT("wfe_exit_stat", wfe_exit_stat),
	DFX_STAT("wfi_exit_stat", wfi_exit_stat),
	DFX_STAT("mmio_exit_user", mmio_exit_user),
	DFX_STAT("mmio_exit_kernel", mmio_exit_kernel),
	DFX_STAT("exits", exits),
58 59 60
	{ NULL }
};

61 62 63 64 65 66
static bool core_reg_offset_is_vreg(u64 off)
{
	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
}

67 68 69 70 71
static u64 core_reg_offset_from_id(u64 id)
{
	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
}

72
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	int size;

	switch (off) {
	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
	case KVM_REG_ARM_CORE_REG(regs.sp):
	case KVM_REG_ARM_CORE_REG(regs.pc):
	case KVM_REG_ARM_CORE_REG(regs.pstate):
	case KVM_REG_ARM_CORE_REG(sp_el1):
	case KVM_REG_ARM_CORE_REG(elr_el1):
	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
		size = sizeof(__u64);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
		size = sizeof(__uint128_t);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
		size = sizeof(__u32);
		break;

	default:
		return -EINVAL;
	}

103
	if (!IS_ALIGNED(off, size / sizeof(__u32)))
104
		return -EINVAL;
105

106 107 108 109 110 111 112 113
	/*
	 * The KVM_REG_ARM64_SVE regs must be used instead of
	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
	 * SVE-enabled vcpus:
	 */
	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
		return -EINVAL;

114 115 116
	return size;
}

117
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
118 119 120 121 122
{
	u64 off = core_reg_offset_from_id(reg->id);
	int size = core_reg_size_from_offset(vcpu, off);

	if (size < 0)
123
		return NULL;
124 125

	if (KVM_REG_SIZE(reg->id) != size)
126
		return NULL;
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	switch (off) {
	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
		off /= 2;
		return &vcpu->arch.ctxt.regs.regs[off];

	case KVM_REG_ARM_CORE_REG(regs.sp):
		return &vcpu->arch.ctxt.regs.sp;

	case KVM_REG_ARM_CORE_REG(regs.pc):
		return &vcpu->arch.ctxt.regs.pc;

	case KVM_REG_ARM_CORE_REG(regs.pstate):
		return &vcpu->arch.ctxt.regs.pstate;

	case KVM_REG_ARM_CORE_REG(sp_el1):
145
		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
146 147

	case KVM_REG_ARM_CORE_REG(elr_el1):
148
		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
149

150
	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
151
		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
152 153 154 155 156 157 158 159 160 161 162 163

	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
		return &vcpu->arch.ctxt.spsr_abt;

	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
		return &vcpu->arch.ctxt.spsr_und;

	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
		return &vcpu->arch.ctxt.spsr_irq;

	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
		return &vcpu->arch.ctxt.spsr_fiq;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
		off /= 4;
		return &vcpu->arch.ctxt.fp_regs.vregs[off];

	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
		return &vcpu->arch.ctxt.fp_regs.fpsr;

	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
		return &vcpu->arch.ctxt.fp_regs.fpcr;

	default:
		return NULL;
	}
180 181
}

182 183 184 185 186 187 188 189 190
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/*
	 * Because the kvm_regs structure is a mix of 32, 64 and
	 * 128bit fields, we index it as if it was a 32bit
	 * array. Hence below, nr_regs is the number of entries, and
	 * off the index in the "array".
	 */
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
191 192
	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
	void *addr;
193 194 195 196 197 198 199 200
	u32 off;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

201 202
	addr = core_reg_addr(vcpu, reg);
	if (!addr)
203 204
		return -EINVAL;

205
	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
206 207 208 209 210 211 212 213
		return -EFAULT;

	return 0;
}

static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
214
	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
215
	__uint128_t tmp;
216
	void *valp = &tmp, *addr;
217 218 219 220 221 222 223 224 225
	u64 off;
	int err = 0;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

226 227
	addr = core_reg_addr(vcpu, reg);
	if (!addr)
228 229
		return -EINVAL;

230 231 232 233 234 235 236 237 238
	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
		err = -EFAULT;
		goto out;
	}

	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
239
		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
240
		switch (mode) {
M
Mark Rutland 已提交
241
		case PSR_AA32_MODE_USR:
242 243 244
			if (!system_supports_32bit_el0())
				return -EINVAL;
			break;
M
Mark Rutland 已提交
245 246 247 248 249
		case PSR_AA32_MODE_FIQ:
		case PSR_AA32_MODE_IRQ:
		case PSR_AA32_MODE_SVC:
		case PSR_AA32_MODE_ABT:
		case PSR_AA32_MODE_UND:
250 251 252
			if (!vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
			break;
253 254 255
		case PSR_MODE_EL0t:
		case PSR_MODE_EL1t:
		case PSR_MODE_EL1h:
256 257
			if (vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
258 259 260 261 262 263 264
			break;
		default:
			err = -EINVAL;
			goto out;
		}
	}

265
	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
266 267 268 269 270 271 272

	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
		int i;

		for (i = 0; i < 16; i++)
			*vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
	}
273 274 275 276
out:
	return err;
}

277 278
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
279
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
280 281 282 283

static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	unsigned int max_vq, vq;
284
	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
285

286 287 288
	if (!vcpu_has_sve(vcpu))
		return -ENOENT;

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
		return -EINVAL;

	memset(vqs, 0, sizeof(vqs));

	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
		if (sve_vq_available(vq))
			vqs[vq_word(vq)] |= vq_mask(vq);

	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
		return -EFAULT;

	return 0;
}

static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	unsigned int max_vq, vq;
308
	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
309

310 311 312
	if (!vcpu_has_sve(vcpu))
		return -ENOENT;

313 314 315 316 317 318 319 320 321 322 323
	if (kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM; /* too late! */

	if (WARN_ON(vcpu->arch.sve_state))
		return -EINVAL;

	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
		return -EFAULT;

	max_vq = 0;
	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
324
		if (vq_present(vqs, vq))
325 326 327 328 329
			max_vq = vq;

	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
		return -EINVAL;

330 331 332
	/*
	 * Vector lengths supported by the host can't currently be
	 * hidden from the guest individually: instead we can only set a
F
Fuad Tabba 已提交
333
	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
334 335 336
	 * lengths match the set requested exactly up to the requested
	 * maximum:
	 */
337
	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
338
		if (vq_present(vqs, vq) != sve_vq_available(vq))
339 340 341 342 343 344 345 346 347 348 349 350
			return -EINVAL;

	/* Can't run with no vector lengths at all: */
	if (max_vq < SVE_VQ_MIN)
		return -EINVAL;

	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);

	return 0;
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#define SVE_REG_SLICE_SHIFT	0
#define SVE_REG_SLICE_BITS	5
#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
#define SVE_REG_ID_BITS		5

#define SVE_REG_SLICE_MASK					\
	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
		SVE_REG_SLICE_SHIFT)
#define SVE_REG_ID_MASK							\
	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)

#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)

#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))

367
/*
368 369 370 371
 * Number of register slices required to cover each whole SVE register.
 * NOTE: Only the first slice every exists, for now.
 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 * to match:
372 373 374
 */
#define vcpu_sve_slices(vcpu) 1

375 376 377 378 379 380 381
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
struct sve_state_reg_region {
	unsigned int koffset;	/* offset into sve_state in kernel memory */
	unsigned int klen;	/* length in kernel memory */
	unsigned int upad;	/* extra trailing padding in user memory */
};

382 383 384 385
/*
 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 * register copy
 */
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static int sve_reg_to_region(struct sve_state_reg_region *region,
			     struct kvm_vcpu *vcpu,
			     const struct kvm_one_reg *reg)
{
	/* reg ID ranges for Z- registers */
	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
						       SVE_NUM_SLICES - 1);

	/* reg ID ranges for P- registers and FFR (which are contiguous) */
	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);

	unsigned int vq;
	unsigned int reg_num;

	unsigned int reqoffset, reqlen; /* User-requested offset and length */
F
Fuad Tabba 已提交
403
	unsigned int maxlen; /* Maximum permitted length */
404 405 406

	size_t sve_state_size;

407 408 409 410 411 412 413 414 415
	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
							SVE_NUM_SLICES - 1);

	/* Verify that the P-regs and FFR really do have contiguous IDs: */
	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);

	/* Verify that we match the UAPI header: */
	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);

416 417 418
	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;

	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
419 420 421 422 423
		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
			return -ENOENT;

		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

424 425 426 427 428
		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_ZREG_SIZE;
		maxlen = SVE_SIG_ZREG_SIZE(vq);
	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
429 430 431 432 433
		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
			return -ENOENT;

		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

434 435 436 437 438
		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_PREG_SIZE;
		maxlen = SVE_SIG_PREG_SIZE(vq);
	} else {
439
		return -EINVAL;
440 441 442
	}

	sve_state_size = vcpu_sve_state_size(vcpu);
443
	if (WARN_ON(!sve_state_size))
444 445 446 447 448 449 450 451 452 453 454
		return -EINVAL;

	region->koffset = array_index_nospec(reqoffset, sve_state_size);
	region->klen = min(maxlen, reqlen);
	region->upad = reqlen - region->klen;

	return 0;
}

static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
455
	int ret;
456 457 458
	struct sve_state_reg_region region;
	char __user *uptr = (char __user *)reg->addr;

459 460 461 462
	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
	if (reg->id == KVM_REG_ARM64_SVE_VLS)
		return get_sve_vls(vcpu, reg);

463 464 465 466
	/* Try to interpret reg ID as an architectural SVE register... */
	ret = sve_reg_to_region(&region, vcpu, reg);
	if (ret)
		return ret;
467 468 469 470

	if (!kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM;

471 472 473 474 475 476 477 478 479 480
	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
			 region.klen) ||
	    clear_user(uptr + region.klen, region.upad))
		return -EFAULT;

	return 0;
}

static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
481
	int ret;
482 483 484
	struct sve_state_reg_region region;
	const char __user *uptr = (const char __user *)reg->addr;

485 486 487 488
	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
	if (reg->id == KVM_REG_ARM64_SVE_VLS)
		return set_sve_vls(vcpu, reg);

489 490 491 492
	/* Try to interpret reg ID as an architectural SVE register... */
	ret = sve_reg_to_region(&region, vcpu, reg);
	if (ret)
		return ret;
493 494 495 496

	if (!kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM;

497 498 499 500 501 502 503
	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
			   region.klen))
		return -EFAULT;

	return 0;
}

504 505 506 507 508 509 510 511 512 513
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

514 515
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
				 u64 __user *uindices)
516 517 518 519 520
{
	unsigned int i;
	int n = 0;

	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
		int size = core_reg_size_from_offset(vcpu, i);

		if (size < 0)
			continue;

		switch (size) {
		case sizeof(__u32):
			reg |= KVM_REG_SIZE_U32;
			break;

		case sizeof(__u64):
			reg |= KVM_REG_SIZE_U64;
			break;

		case sizeof(__uint128_t):
			reg |= KVM_REG_SIZE_U128;
			break;

		default:
			WARN_ON(1);
542
			continue;
543
		}
544

545
		if (uindices) {
546
			if (put_user(reg, uindices))
547 548 549 550 551 552 553 554 555 556
				return -EFAULT;
			uindices++;
		}

		n++;
	}

	return n;
}

557
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
558
{
559
	return copy_core_reg_indices(vcpu, NULL);
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/**
 * ARM64 versions of the TIMER registers, always available on arm64
 */

#define NUM_TIMER_REGS 3

static bool is_timer_reg(u64 index)
{
	switch (index) {
	case KVM_REG_ARM_TIMER_CTL:
	case KVM_REG_ARM_TIMER_CNT:
	case KVM_REG_ARM_TIMER_CVAL:
		return true;
	}
	return false;
}

static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
		return -EFAULT;

	return 0;
}

static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int ret;

	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
	if (ret != 0)
601
		return -EFAULT;
602 603 604 605 606 607 608 609 610 611

	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
}

static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;

	val = kvm_arm_timer_get_reg(vcpu, reg->id);
612
	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
613 614
}

615 616 617 618 619 620 621
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
{
	const unsigned int slices = vcpu_sve_slices(vcpu);

	if (!vcpu_has_sve(vcpu))
		return 0;

622 623 624 625 626
	/* Policed by KVM_GET_REG_LIST: */
	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));

	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
		+ 1; /* KVM_REG_ARM64_SVE_VLS */
627 628 629 630 631 632 633 634 635 636 637 638 639
}

static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
				u64 __user *uindices)
{
	const unsigned int slices = vcpu_sve_slices(vcpu);
	u64 reg;
	unsigned int i, n;
	int num_regs = 0;

	if (!vcpu_has_sve(vcpu))
		return 0;

640 641 642 643 644 645 646 647 648 649 650 651
	/* Policed by KVM_GET_REG_LIST: */
	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));

	/*
	 * Enumerate this first, so that userspace can save/restore in
	 * the order reported by KVM_GET_REG_LIST:
	 */
	reg = KVM_REG_ARM64_SVE_VLS;
	if (put_user(reg, uindices++))
		return -EFAULT;
	++num_regs;

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	for (i = 0; i < slices; i++) {
		for (n = 0; n < SVE_NUM_ZREGS; n++) {
			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;
			num_regs++;
		}

		for (n = 0; n < SVE_NUM_PREGS; n++) {
			reg = KVM_REG_ARM64_SVE_PREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;
			num_regs++;
		}

		reg = KVM_REG_ARM64_SVE_FFR(i);
		if (put_user(reg, uindices++))
			return -EFAULT;
		num_regs++;
	}

	return num_regs;
}

676 677 678 679 680 681 682
/**
 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 *
 * This is for all registers.
 */
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
{
683 684
	unsigned long res = 0;

685
	res += num_core_regs(vcpu);
686
	res += num_sve_regs(vcpu);
687 688 689 690 691
	res += kvm_arm_num_sys_reg_descs(vcpu);
	res += kvm_arm_get_fw_num_regs(vcpu);
	res += NUM_TIMER_REGS;

	return res;
692 693 694 695 696
}

/**
 * kvm_arm_copy_reg_indices - get indices of all registers.
 *
A
Andrea Gelmini 已提交
697
 * We do core registers right here, then we append system regs.
698 699 700
 */
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
701
	int ret;
702

703
	ret = copy_core_reg_indices(vcpu, uindices);
704
	if (ret < 0)
705 706
		return ret;
	uindices += ret;
707

708
	ret = copy_sve_reg_indices(vcpu, uindices);
709
	if (ret < 0)
710 711 712
		return ret;
	uindices += ret;

713
	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
714
	if (ret < 0)
715 716 717
		return ret;
	uindices += kvm_arm_get_fw_num_regs(vcpu);

718
	ret = copy_timer_indices(vcpu, uindices);
719
	if (ret < 0)
720 721 722
		return ret;
	uindices += NUM_TIMER_REGS;

723 724 725 726 727 728 729 730 731
	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
}

int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

732 733 734 735 736
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
	}
737

738 739 740
	if (is_timer_reg(reg->id))
		return get_timer_reg(vcpu, reg);

741 742 743 744 745 746 747 748 749
	return kvm_arm_sys_reg_get_reg(vcpu, reg);
}

int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

750 751 752 753 754
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
	}
755

756 757 758
	if (is_timer_reg(reg->id))
		return set_timer_reg(vcpu, reg);

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	return kvm_arm_sys_reg_set_reg(vcpu, reg);
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

774 775
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
776 777 778 779 780 781 782
{
	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);

	if (events->exception.serror_pending && events->exception.serror_has_esr)
		events->exception.serror_esr = vcpu_get_vsesr(vcpu);

783 784 785 786 787 788
	/*
	 * We never return a pending ext_dabt here because we deliver it to
	 * the virtual CPU directly when setting the event and it's no longer
	 * 'pending' at this point.
	 */

789 790 791
	return 0;
}

792 793
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
794 795 796
{
	bool serror_pending = events->exception.serror_pending;
	bool has_esr = events->exception.serror_has_esr;
797
	bool ext_dabt_pending = events->exception.ext_dabt_pending;
798 799 800 801 802 803 804 805 806 807 808 809 810

	if (serror_pending && has_esr) {
		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
			return -EINVAL;

		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
		else
			return -EINVAL;
	} else if (serror_pending) {
		kvm_inject_vabt(vcpu);
	}

811 812 813
	if (ext_dabt_pending)
		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));

814 815 816
	return 0;
}

817 818 819 820 821
int __attribute_const__ kvm_target_cpu(void)
{
	unsigned long implementor = read_cpuid_implementor();
	unsigned long part_number = read_cpuid_part_number();

822 823 824 825 826 827 828
	switch (implementor) {
	case ARM_CPU_IMP_ARM:
		switch (part_number) {
		case ARM_CPU_PART_AEM_V8:
			return KVM_ARM_TARGET_AEM_V8;
		case ARM_CPU_PART_FOUNDATION:
			return KVM_ARM_TARGET_FOUNDATION_V8;
829 830
		case ARM_CPU_PART_CORTEX_A53:
			return KVM_ARM_TARGET_CORTEX_A53;
831 832
		case ARM_CPU_PART_CORTEX_A57:
			return KVM_ARM_TARGET_CORTEX_A57;
833
		}
834 835 836 837 838
		break;
	case ARM_CPU_IMP_APM:
		switch (part_number) {
		case APM_CPU_PART_POTENZA:
			return KVM_ARM_TARGET_XGENE_POTENZA;
839
		}
840
		break;
841
	}
842

843 844
	/* Return a default generic target */
	return KVM_ARM_TARGET_GENERIC_V8;
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
{
	int target = kvm_target_cpu();

	if (target < 0)
		return -ENODEV;

	memset(init, 0, sizeof(*init));

	/*
	 * For now, we don't return any features.
	 * In future, we might use features to return target
	 * specific features available for the preferred
	 * target type.
	 */
	init->target = (__u32)target;

	return 0;
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL;
}
882

883 884
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
			    KVM_GUESTDBG_USE_SW_BP | \
885
			    KVM_GUESTDBG_USE_HW | \
886
			    KVM_GUESTDBG_SINGLESTEP)
887 888 889 890 891 892 893 894 895 896 897 898 899 900

/**
 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 * @kvm:	pointer to the KVM struct
 * @kvm_guest_debug: the ioctl data buffer
 *
 * This sets up and enables the VM for guest debugging. Userspace
 * passes in a control flag to enable different debug types and
 * potentially other architecture specific information in the rest of
 * the structure.
 */
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
901 902
	int ret = 0;

903 904
	trace_kvm_set_guest_debug(vcpu, dbg->control);

905 906 907 908
	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
		ret = -EINVAL;
		goto out;
	}
909 910 911

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
912 913 914 915 916 917

		/* Hardware assisted Break and Watch points */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
			vcpu->arch.external_debug_state = dbg->arch;
		}

918 919 920 921
	} else {
		/* If not enabled clear all flags */
		vcpu->guest_debug = 0;
	}
922 923 924

out:
	return ret;
925
}
926 927 928 929 930 931 932 933 934 935

int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
		break;
936 937 938
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_set_attr(vcpu, attr);
		break;
939 940 941
	case KVM_ARM_VCPU_PVTIME_CTRL:
		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
		break;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
		break;
959 960 961
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_get_attr(vcpu, attr);
		break;
962 963 964
	case KVM_ARM_VCPU_PVTIME_CTRL:
		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
		break;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
		break;
982 983 984
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_has_attr(vcpu, attr);
		break;
985 986 987
	case KVM_ARM_VCPU_PVTIME_CTRL:
		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
		break;
988 989 990 991 992 993 994
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}