guest.c 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/guest.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

22
#include <linux/bits.h>
23 24
#include <linux/errno.h>
#include <linux/err.h>
25
#include <linux/nospec.h>
26 27
#include <linux/kvm_host.h>
#include <linux/module.h>
28
#include <linux/stddef.h>
29
#include <linux/string.h>
30 31
#include <linux/vmalloc.h>
#include <linux/fs.h>
32
#include <kvm/arm_psci.h>
33
#include <asm/cputype.h>
34
#include <linux/uaccess.h>
35
#include <asm/fpsimd.h>
36 37 38
#include <asm/kvm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
39 40
#include <asm/kvm_host.h>
#include <asm/sigcontext.h>
41

42 43
#include "trace.h"

44 45 46
#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }

47
struct kvm_stats_debugfs_item debugfs_entries[] = {
48 49 50 51 52 53
	VCPU_STAT(hvc_exit_stat),
	VCPU_STAT(wfe_exit_stat),
	VCPU_STAT(wfi_exit_stat),
	VCPU_STAT(mmio_exit_user),
	VCPU_STAT(mmio_exit_kernel),
	VCPU_STAT(exits),
54 55 56 57 58 59 60 61
	{ NULL }
};

int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return 0;
}

62 63 64 65 66 67
static bool core_reg_offset_is_vreg(u64 off)
{
	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
}

68 69 70 71 72
static u64 core_reg_offset_from_id(u64 id)
{
	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
}

73 74
static int validate_core_offset(const struct kvm_vcpu *vcpu,
				const struct kvm_one_reg *reg)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
{
	u64 off = core_reg_offset_from_id(reg->id);
	int size;

	switch (off) {
	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
	case KVM_REG_ARM_CORE_REG(regs.sp):
	case KVM_REG_ARM_CORE_REG(regs.pc):
	case KVM_REG_ARM_CORE_REG(regs.pstate):
	case KVM_REG_ARM_CORE_REG(sp_el1):
	case KVM_REG_ARM_CORE_REG(elr_el1):
	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
		size = sizeof(__u64);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
		size = sizeof(__uint128_t);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
		size = sizeof(__u32);
		break;

	default:
		return -EINVAL;
	}

106 107 108
	if (KVM_REG_SIZE(reg->id) != size ||
	    !IS_ALIGNED(off, size / sizeof(__u32)))
		return -EINVAL;
109

110 111 112 113 114 115 116 117 118
	/*
	 * The KVM_REG_ARM64_SVE regs must be used instead of
	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
	 * SVE-enabled vcpus:
	 */
	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
		return -EINVAL;

	return 0;
119 120
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/*
	 * Because the kvm_regs structure is a mix of 32, 64 and
	 * 128bit fields, we index it as if it was a 32bit
	 * array. Hence below, nr_regs is the number of entries, and
	 * off the index in the "array".
	 */
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
	int nr_regs = sizeof(*regs) / sizeof(__u32);
	u32 off;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

140
	if (validate_core_offset(vcpu, reg))
141 142
		return -EINVAL;

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	return 0;
}

static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
	int nr_regs = sizeof(*regs) / sizeof(__u32);
	__uint128_t tmp;
	void *valp = &tmp;
	u64 off;
	int err = 0;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

165
	if (validate_core_offset(vcpu, reg))
166 167
		return -EINVAL;

168 169 170 171 172 173 174 175 176
	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
		err = -EFAULT;
		goto out;
	}

	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
177
		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
178
		switch (mode) {
M
Mark Rutland 已提交
179
		case PSR_AA32_MODE_USR:
180 181 182
			if (!system_supports_32bit_el0())
				return -EINVAL;
			break;
M
Mark Rutland 已提交
183 184 185 186 187
		case PSR_AA32_MODE_FIQ:
		case PSR_AA32_MODE_IRQ:
		case PSR_AA32_MODE_SVC:
		case PSR_AA32_MODE_ABT:
		case PSR_AA32_MODE_UND:
188 189 190
			if (!vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
			break;
191 192 193
		case PSR_MODE_EL0t:
		case PSR_MODE_EL1t:
		case PSR_MODE_EL1h:
194 195
			if (vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
196 197 198 199 200 201 202 203 204 205 206 207
			break;
		default:
			err = -EINVAL;
			goto out;
		}
	}

	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
out:
	return err;
}

208 209 210 211
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)

static bool vq_present(
212
	const u64 (*const vqs)[KVM_ARM64_SVE_VLS_WORDS],
213 214 215 216 217 218 219 220
	unsigned int vq)
{
	return (*vqs)[vq_word(vq)] & vq_mask(vq);
}

static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	unsigned int max_vq, vq;
221
	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
222

223 224 225
	if (!vcpu_has_sve(vcpu))
		return -ENOENT;

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
		return -EINVAL;

	memset(vqs, 0, sizeof(vqs));

	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
		if (sve_vq_available(vq))
			vqs[vq_word(vq)] |= vq_mask(vq);

	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
		return -EFAULT;

	return 0;
}

static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	unsigned int max_vq, vq;
245
	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
246

247 248 249
	if (!vcpu_has_sve(vcpu))
		return -ENOENT;

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	if (kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM; /* too late! */

	if (WARN_ON(vcpu->arch.sve_state))
		return -EINVAL;

	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
		return -EFAULT;

	max_vq = 0;
	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
		if (vq_present(&vqs, vq))
			max_vq = vq;

	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
		return -EINVAL;

267 268 269 270 271 272 273
	/*
	 * Vector lengths supported by the host can't currently be
	 * hidden from the guest individually: instead we can only set a
	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
	 * lengths match the set requested exactly up to the requested
	 * maximum:
	 */
274 275 276 277 278 279 280 281 282 283 284 285 286 287
	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
		if (vq_present(&vqs, vq) != sve_vq_available(vq))
			return -EINVAL;

	/* Can't run with no vector lengths at all: */
	if (max_vq < SVE_VQ_MIN)
		return -EINVAL;

	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);

	return 0;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
#define SVE_REG_SLICE_SHIFT	0
#define SVE_REG_SLICE_BITS	5
#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
#define SVE_REG_ID_BITS		5

#define SVE_REG_SLICE_MASK					\
	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
		SVE_REG_SLICE_SHIFT)
#define SVE_REG_ID_MASK							\
	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)

#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)

#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))

304
/*
305 306 307 308
 * Number of register slices required to cover each whole SVE register.
 * NOTE: Only the first slice every exists, for now.
 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 * to match:
309 310 311
 */
#define vcpu_sve_slices(vcpu) 1

312 313 314 315 316 317 318
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
struct sve_state_reg_region {
	unsigned int koffset;	/* offset into sve_state in kernel memory */
	unsigned int klen;	/* length in kernel memory */
	unsigned int upad;	/* extra trailing padding in user memory */
};

319 320 321 322
/*
 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 * register copy
 */
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static int sve_reg_to_region(struct sve_state_reg_region *region,
			     struct kvm_vcpu *vcpu,
			     const struct kvm_one_reg *reg)
{
	/* reg ID ranges for Z- registers */
	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
						       SVE_NUM_SLICES - 1);

	/* reg ID ranges for P- registers and FFR (which are contiguous) */
	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);

	unsigned int vq;
	unsigned int reg_num;

	unsigned int reqoffset, reqlen; /* User-requested offset and length */
	unsigned int maxlen; /* Maxmimum permitted length */

	size_t sve_state_size;

344 345 346 347 348 349 350 351 352
	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
							SVE_NUM_SLICES - 1);

	/* Verify that the P-regs and FFR really do have contiguous IDs: */
	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);

	/* Verify that we match the UAPI header: */
	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);

353 354 355
	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;

	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
356 357 358 359 360
		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
			return -ENOENT;

		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

361 362 363 364 365
		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_ZREG_SIZE;
		maxlen = SVE_SIG_ZREG_SIZE(vq);
	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
366 367 368 369 370
		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
			return -ENOENT;

		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

371 372 373 374 375
		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_PREG_SIZE;
		maxlen = SVE_SIG_PREG_SIZE(vq);
	} else {
376
		return -EINVAL;
377 378 379
	}

	sve_state_size = vcpu_sve_state_size(vcpu);
380
	if (WARN_ON(!sve_state_size))
381 382 383 384 385 386 387 388 389 390 391
		return -EINVAL;

	region->koffset = array_index_nospec(reqoffset, sve_state_size);
	region->klen = min(maxlen, reqlen);
	region->upad = reqlen - region->klen;

	return 0;
}

static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
392
	int ret;
393 394 395
	struct sve_state_reg_region region;
	char __user *uptr = (char __user *)reg->addr;

396 397 398 399
	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
	if (reg->id == KVM_REG_ARM64_SVE_VLS)
		return get_sve_vls(vcpu, reg);

400 401 402 403
	/* Try to interpret reg ID as an architectural SVE register... */
	ret = sve_reg_to_region(&region, vcpu, reg);
	if (ret)
		return ret;
404 405 406 407

	if (!kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM;

408 409 410 411 412 413 414 415 416 417
	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
			 region.klen) ||
	    clear_user(uptr + region.klen, region.upad))
		return -EFAULT;

	return 0;
}

static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
418
	int ret;
419 420 421
	struct sve_state_reg_region region;
	const char __user *uptr = (const char __user *)reg->addr;

422 423 424 425
	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
	if (reg->id == KVM_REG_ARM64_SVE_VLS)
		return set_sve_vls(vcpu, reg);

426 427 428 429
	/* Try to interpret reg ID as an architectural SVE register... */
	ret = sve_reg_to_region(&region, vcpu, reg);
	if (ret)
		return ret;
430 431 432 433

	if (!kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM;

434 435 436 437 438 439 440
	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
			   region.klen))
		return -EFAULT;

	return 0;
}

441 442 443 444 445 446 447 448 449 450
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

451 452
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
				 u64 __user *uindices)
453 454 455 456 457 458
{
	unsigned int i;
	int n = 0;
	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;

	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
459 460 461 462 463 464 465 466
		/*
		 * The KVM_REG_ARM64_SVE regs must be used instead of
		 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
		 * SVE-enabled vcpus:
		 */
		if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(i))
			continue;

467 468 469 470 471 472 473 474 475 476 477 478
		if (uindices) {
			if (put_user(core_reg | i, uindices))
				return -EFAULT;
			uindices++;
		}

		n++;
	}

	return n;
}

479
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
480
{
481
	return copy_core_reg_indices(vcpu, NULL);
482 483
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/**
 * ARM64 versions of the TIMER registers, always available on arm64
 */

#define NUM_TIMER_REGS 3

static bool is_timer_reg(u64 index)
{
	switch (index) {
	case KVM_REG_ARM_TIMER_CTL:
	case KVM_REG_ARM_TIMER_CNT:
	case KVM_REG_ARM_TIMER_CVAL:
		return true;
	}
	return false;
}

static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
		return -EFAULT;

	return 0;
}

static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int ret;

	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
	if (ret != 0)
523
		return -EFAULT;
524 525 526 527 528 529 530 531 532 533

	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
}

static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;

	val = kvm_arm_timer_get_reg(vcpu, reg->id);
534
	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
535 536
}

537 538 539 540 541 542 543
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
{
	const unsigned int slices = vcpu_sve_slices(vcpu);

	if (!vcpu_has_sve(vcpu))
		return 0;

544 545 546 547 548
	/* Policed by KVM_GET_REG_LIST: */
	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));

	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
		+ 1; /* KVM_REG_ARM64_SVE_VLS */
549 550 551 552 553 554 555 556 557 558 559 560 561
}

static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
				u64 __user *uindices)
{
	const unsigned int slices = vcpu_sve_slices(vcpu);
	u64 reg;
	unsigned int i, n;
	int num_regs = 0;

	if (!vcpu_has_sve(vcpu))
		return 0;

562 563 564 565 566 567 568 569 570 571 572 573
	/* Policed by KVM_GET_REG_LIST: */
	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));

	/*
	 * Enumerate this first, so that userspace can save/restore in
	 * the order reported by KVM_GET_REG_LIST:
	 */
	reg = KVM_REG_ARM64_SVE_VLS;
	if (put_user(reg, uindices++))
		return -EFAULT;
	++num_regs;

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	for (i = 0; i < slices; i++) {
		for (n = 0; n < SVE_NUM_ZREGS; n++) {
			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;
			num_regs++;
		}

		for (n = 0; n < SVE_NUM_PREGS; n++) {
			reg = KVM_REG_ARM64_SVE_PREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;
			num_regs++;
		}

		reg = KVM_REG_ARM64_SVE_FFR(i);
		if (put_user(reg, uindices++))
			return -EFAULT;
		num_regs++;
	}

	return num_regs;
}

598 599 600 601 602 603 604
/**
 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 *
 * This is for all registers.
 */
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
{
605 606
	unsigned long res = 0;

607
	res += num_core_regs(vcpu);
608
	res += num_sve_regs(vcpu);
609 610 611 612 613
	res += kvm_arm_num_sys_reg_descs(vcpu);
	res += kvm_arm_get_fw_num_regs(vcpu);
	res += NUM_TIMER_REGS;

	return res;
614 615 616 617 618
}

/**
 * kvm_arm_copy_reg_indices - get indices of all registers.
 *
A
Andrea Gelmini 已提交
619
 * We do core registers right here, then we append system regs.
620 621 622
 */
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
623
	int ret;
624

625
	ret = copy_core_reg_indices(vcpu, uindices);
626
	if (ret < 0)
627 628
		return ret;
	uindices += ret;
629

630
	ret = copy_sve_reg_indices(vcpu, uindices);
631
	if (ret < 0)
632 633 634
		return ret;
	uindices += ret;

635
	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
636
	if (ret < 0)
637 638 639
		return ret;
	uindices += kvm_arm_get_fw_num_regs(vcpu);

640
	ret = copy_timer_indices(vcpu, uindices);
641
	if (ret < 0)
642 643 644
		return ret;
	uindices += NUM_TIMER_REGS;

645 646 647 648 649 650 651 652 653
	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
}

int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

654 655 656 657 658
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
	}
659

660 661 662
	if (is_timer_reg(reg->id))
		return get_timer_reg(vcpu, reg);

663 664 665 666 667 668 669 670 671
	return kvm_arm_sys_reg_get_reg(vcpu, reg);
}

int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

672 673 674 675 676
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
	}
677

678 679 680
	if (is_timer_reg(reg->id))
		return set_timer_reg(vcpu, reg);

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	return kvm_arm_sys_reg_set_reg(vcpu, reg);
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

696 697
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
698 699 700 701 702 703 704 705 706 707
{
	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);

	if (events->exception.serror_pending && events->exception.serror_has_esr)
		events->exception.serror_esr = vcpu_get_vsesr(vcpu);

	return 0;
}

708 709
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
{
	bool serror_pending = events->exception.serror_pending;
	bool has_esr = events->exception.serror_has_esr;

	if (serror_pending && has_esr) {
		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
			return -EINVAL;

		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
		else
			return -EINVAL;
	} else if (serror_pending) {
		kvm_inject_vabt(vcpu);
	}

	return 0;
}

729 730 731 732 733
int __attribute_const__ kvm_target_cpu(void)
{
	unsigned long implementor = read_cpuid_implementor();
	unsigned long part_number = read_cpuid_part_number();

734 735 736 737 738 739 740
	switch (implementor) {
	case ARM_CPU_IMP_ARM:
		switch (part_number) {
		case ARM_CPU_PART_AEM_V8:
			return KVM_ARM_TARGET_AEM_V8;
		case ARM_CPU_PART_FOUNDATION:
			return KVM_ARM_TARGET_FOUNDATION_V8;
741 742
		case ARM_CPU_PART_CORTEX_A53:
			return KVM_ARM_TARGET_CORTEX_A53;
743 744
		case ARM_CPU_PART_CORTEX_A57:
			return KVM_ARM_TARGET_CORTEX_A57;
745
		}
746 747 748 749 750
		break;
	case ARM_CPU_IMP_APM:
		switch (part_number) {
		case APM_CPU_PART_POTENZA:
			return KVM_ARM_TARGET_XGENE_POTENZA;
751
		}
752
		break;
753
	}
754

755 756
	/* Return a default generic target */
	return KVM_ARM_TARGET_GENERIC_V8;
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
{
	int target = kvm_target_cpu();

	if (target < 0)
		return -ENODEV;

	memset(init, 0, sizeof(*init));

	/*
	 * For now, we don't return any features.
	 * In future, we might use features to return target
	 * specific features available for the preferred
	 * target type.
	 */
	init->target = (__u32)target;

	return 0;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL;
}
794

795 796
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
			    KVM_GUESTDBG_USE_SW_BP | \
797
			    KVM_GUESTDBG_USE_HW | \
798
			    KVM_GUESTDBG_SINGLESTEP)
799 800 801 802 803 804 805 806 807 808 809 810 811 812

/**
 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 * @kvm:	pointer to the KVM struct
 * @kvm_guest_debug: the ioctl data buffer
 *
 * This sets up and enables the VM for guest debugging. Userspace
 * passes in a control flag to enable different debug types and
 * potentially other architecture specific information in the rest of
 * the structure.
 */
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
813 814
	int ret = 0;

815 816
	trace_kvm_set_guest_debug(vcpu, dbg->control);

817 818 819 820
	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
		ret = -EINVAL;
		goto out;
	}
821 822 823

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
824 825 826 827 828 829

		/* Hardware assisted Break and Watch points */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
			vcpu->arch.external_debug_state = dbg->arch;
		}

830 831 832 833
	} else {
		/* If not enabled clear all flags */
		vcpu->guest_debug = 0;
	}
834 835 836

out:
	return ret;
837
}
838 839 840 841 842 843 844 845 846 847

int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
		break;
848 849 850
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_set_attr(vcpu, attr);
		break;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
		break;
868 869 870
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_get_attr(vcpu, attr);
		break;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
		break;
888 889 890
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_has_attr(vcpu, attr);
		break;
891 892 893 894 895 896 897
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}