guest.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/guest.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

22
#include <linux/bits.h>
23 24
#include <linux/errno.h>
#include <linux/err.h>
25 26
#include <linux/nospec.h>
#include <linux/kernel.h>
27 28
#include <linux/kvm_host.h>
#include <linux/module.h>
29
#include <linux/stddef.h>
30
#include <linux/string.h>
31 32
#include <linux/vmalloc.h>
#include <linux/fs.h>
33
#include <kvm/arm_psci.h>
34
#include <asm/cputype.h>
35
#include <linux/uaccess.h>
36
#include <asm/fpsimd.h>
37 38 39
#include <asm/kvm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
40 41
#include <asm/kvm_host.h>
#include <asm/sigcontext.h>
42

43 44
#include "trace.h"

45 46 47
#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }

48
struct kvm_stats_debugfs_item debugfs_entries[] = {
49 50 51 52 53 54
	VCPU_STAT(hvc_exit_stat),
	VCPU_STAT(wfe_exit_stat),
	VCPU_STAT(wfi_exit_stat),
	VCPU_STAT(mmio_exit_user),
	VCPU_STAT(mmio_exit_kernel),
	VCPU_STAT(exits),
55 56 57 58 59 60 61 62
	{ NULL }
};

int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return 0;
}

63 64 65 66 67 68
static bool core_reg_offset_is_vreg(u64 off)
{
	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
}

69 70 71 72 73
static u64 core_reg_offset_from_id(u64 id)
{
	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
}

74 75
static int validate_core_offset(const struct kvm_vcpu *vcpu,
				const struct kvm_one_reg *reg)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
{
	u64 off = core_reg_offset_from_id(reg->id);
	int size;

	switch (off) {
	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
	case KVM_REG_ARM_CORE_REG(regs.sp):
	case KVM_REG_ARM_CORE_REG(regs.pc):
	case KVM_REG_ARM_CORE_REG(regs.pstate):
	case KVM_REG_ARM_CORE_REG(sp_el1):
	case KVM_REG_ARM_CORE_REG(elr_el1):
	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
		size = sizeof(__u64);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
		size = sizeof(__uint128_t);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
		size = sizeof(__u32);
		break;

	default:
		return -EINVAL;
	}

107 108 109
	if (KVM_REG_SIZE(reg->id) != size ||
	    !IS_ALIGNED(off, size / sizeof(__u32)))
		return -EINVAL;
110

111 112 113 114 115 116 117 118 119
	/*
	 * The KVM_REG_ARM64_SVE regs must be used instead of
	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
	 * SVE-enabled vcpus:
	 */
	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
		return -EINVAL;

	return 0;
120 121
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/*
	 * Because the kvm_regs structure is a mix of 32, 64 and
	 * 128bit fields, we index it as if it was a 32bit
	 * array. Hence below, nr_regs is the number of entries, and
	 * off the index in the "array".
	 */
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
	int nr_regs = sizeof(*regs) / sizeof(__u32);
	u32 off;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

141
	if (validate_core_offset(vcpu, reg))
142 143
		return -EINVAL;

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	return 0;
}

static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
	int nr_regs = sizeof(*regs) / sizeof(__u32);
	__uint128_t tmp;
	void *valp = &tmp;
	u64 off;
	int err = 0;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

166
	if (validate_core_offset(vcpu, reg))
167 168
		return -EINVAL;

169 170 171 172 173 174 175 176 177
	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
		err = -EFAULT;
		goto out;
	}

	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178
		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179
		switch (mode) {
M
Mark Rutland 已提交
180
		case PSR_AA32_MODE_USR:
181 182 183
			if (!system_supports_32bit_el0())
				return -EINVAL;
			break;
M
Mark Rutland 已提交
184 185 186 187 188
		case PSR_AA32_MODE_FIQ:
		case PSR_AA32_MODE_IRQ:
		case PSR_AA32_MODE_SVC:
		case PSR_AA32_MODE_ABT:
		case PSR_AA32_MODE_UND:
189 190 191
			if (!vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
			break;
192 193 194
		case PSR_MODE_EL0t:
		case PSR_MODE_EL1t:
		case PSR_MODE_EL1h:
195 196
			if (vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
197 198 199 200 201 202 203 204 205 206 207 208
			break;
		default:
			err = -EINVAL;
			goto out;
		}
	}

	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
out:
	return err;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#define SVE_REG_SLICE_SHIFT	0
#define SVE_REG_SLICE_BITS	5
#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
#define SVE_REG_ID_BITS		5

#define SVE_REG_SLICE_MASK					\
	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
		SVE_REG_SLICE_SHIFT)
#define SVE_REG_ID_MASK							\
	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)

#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)

#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))

225 226 227 228 229 230 231
/*
 * number of register slices required to cover each whole SVE register on vcpu
 * NOTE: If you are tempted to modify this, you must also to rework
 * sve_reg_to_region() to match:
 */
#define vcpu_sve_slices(vcpu) 1

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
struct sve_state_reg_region {
	unsigned int koffset;	/* offset into sve_state in kernel memory */
	unsigned int klen;	/* length in kernel memory */
	unsigned int upad;	/* extra trailing padding in user memory */
};

/* Get sanitised bounds for user/kernel SVE register copy */
static int sve_reg_to_region(struct sve_state_reg_region *region,
			     struct kvm_vcpu *vcpu,
			     const struct kvm_one_reg *reg)
{
	/* reg ID ranges for Z- registers */
	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
						       SVE_NUM_SLICES - 1);

	/* reg ID ranges for P- registers and FFR (which are contiguous) */
	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);

	unsigned int vq;
	unsigned int reg_num;

	unsigned int reqoffset, reqlen; /* User-requested offset and length */
	unsigned int maxlen; /* Maxmimum permitted length */

	size_t sve_state_size;

	/* Only the first slice ever exists, for now: */
	if ((reg->id & SVE_REG_SLICE_MASK) != 0)
		return -ENOENT;

	vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;

	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_ZREG_SIZE;
		maxlen = SVE_SIG_ZREG_SIZE(vq);
	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_PREG_SIZE;
		maxlen = SVE_SIG_PREG_SIZE(vq);
	} else {
		return -ENOENT;
	}

	sve_state_size = vcpu_sve_state_size(vcpu);
	if (!sve_state_size)
		return -EINVAL;

	region->koffset = array_index_nospec(reqoffset, sve_state_size);
	region->klen = min(maxlen, reqlen);
	region->upad = reqlen - region->klen;

	return 0;
}

static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	struct sve_state_reg_region region;
	char __user *uptr = (char __user *)reg->addr;

	if (!vcpu_has_sve(vcpu) || sve_reg_to_region(&region, vcpu, reg))
		return -ENOENT;

	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
			 region.klen) ||
	    clear_user(uptr + region.klen, region.upad))
		return -EFAULT;

	return 0;
}

static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	struct sve_state_reg_region region;
	const char __user *uptr = (const char __user *)reg->addr;

	if (!vcpu_has_sve(vcpu) || sve_reg_to_region(&region, vcpu, reg))
		return -ENOENT;

	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
			   region.klen))
		return -EFAULT;

	return 0;
}

325 326 327 328 329 330 331 332 333 334
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

335 336
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
				 u64 __user *uindices)
337 338 339 340 341 342
{
	unsigned int i;
	int n = 0;
	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;

	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
343 344 345 346 347 348 349 350
		/*
		 * The KVM_REG_ARM64_SVE regs must be used instead of
		 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
		 * SVE-enabled vcpus:
		 */
		if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(i))
			continue;

351 352 353 354 355 356 357 358 359 360 361 362
		if (uindices) {
			if (put_user(core_reg | i, uindices))
				return -EFAULT;
			uindices++;
		}

		n++;
	}

	return n;
}

363
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
364
{
365
	return copy_core_reg_indices(vcpu, NULL);
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/**
 * ARM64 versions of the TIMER registers, always available on arm64
 */

#define NUM_TIMER_REGS 3

static bool is_timer_reg(u64 index)
{
	switch (index) {
	case KVM_REG_ARM_TIMER_CTL:
	case KVM_REG_ARM_TIMER_CNT:
	case KVM_REG_ARM_TIMER_CVAL:
		return true;
	}
	return false;
}

static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
		return -EFAULT;

	return 0;
}

static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int ret;

	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
	if (ret != 0)
407
		return -EFAULT;
408 409 410 411 412 413 414 415 416 417

	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
}

static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;

	val = kvm_arm_timer_get_reg(vcpu, reg->id);
418
	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
{
	/* Only the first slice ever exists, for now */
	const unsigned int slices = vcpu_sve_slices(vcpu);

	if (!vcpu_has_sve(vcpu))
		return 0;

	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */);
}

static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
				u64 __user *uindices)
{
	/* Only the first slice ever exists, for now */
	const unsigned int slices = vcpu_sve_slices(vcpu);
	u64 reg;
	unsigned int i, n;
	int num_regs = 0;

	if (!vcpu_has_sve(vcpu))
		return 0;

	for (i = 0; i < slices; i++) {
		for (n = 0; n < SVE_NUM_ZREGS; n++) {
			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;

			num_regs++;
		}

		for (n = 0; n < SVE_NUM_PREGS; n++) {
			reg = KVM_REG_ARM64_SVE_PREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;

			num_regs++;
		}

		reg = KVM_REG_ARM64_SVE_FFR(i);
		if (put_user(reg, uindices++))
			return -EFAULT;

		num_regs++;
	}

	return num_regs;
}

471 472 473 474 475 476 477
/**
 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 *
 * This is for all registers.
 */
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
{
478 479
	unsigned long res = 0;

480
	res += num_core_regs(vcpu);
481
	res += num_sve_regs(vcpu);
482 483 484 485 486
	res += kvm_arm_num_sys_reg_descs(vcpu);
	res += kvm_arm_get_fw_num_regs(vcpu);
	res += NUM_TIMER_REGS;

	return res;
487 488 489 490 491
}

/**
 * kvm_arm_copy_reg_indices - get indices of all registers.
 *
A
Andrea Gelmini 已提交
492
 * We do core registers right here, then we append system regs.
493 494 495
 */
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
496
	int ret;
497

498
	ret = copy_core_reg_indices(vcpu, uindices);
499 500 501
	if (ret)
		return ret;
	uindices += ret;
502

503 504 505 506 507
	ret = copy_sve_reg_indices(vcpu, uindices);
	if (ret)
		return ret;
	uindices += ret;

508 509 510 511 512
	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
	if (ret)
		return ret;
	uindices += kvm_arm_get_fw_num_regs(vcpu);

513 514 515 516 517
	ret = copy_timer_indices(vcpu, uindices);
	if (ret)
		return ret;
	uindices += NUM_TIMER_REGS;

518 519 520 521 522 523 524 525 526
	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
}

int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

527 528 529 530 531 532
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
	default: break; /* fall through */
	}
533

534 535 536
	if (is_timer_reg(reg->id))
		return get_timer_reg(vcpu, reg);

537 538 539 540 541 542 543 544 545
	return kvm_arm_sys_reg_get_reg(vcpu, reg);
}

int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

546 547 548 549 550 551
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
	default: break; /* fall through */
	}
552

553 554 555
	if (is_timer_reg(reg->id))
		return set_timer_reg(vcpu, reg);

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	return kvm_arm_sys_reg_set_reg(vcpu, reg);
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

571 572
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
573 574 575 576 577 578 579 580 581 582
{
	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);

	if (events->exception.serror_pending && events->exception.serror_has_esr)
		events->exception.serror_esr = vcpu_get_vsesr(vcpu);

	return 0;
}

583 584
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
{
	bool serror_pending = events->exception.serror_pending;
	bool has_esr = events->exception.serror_has_esr;

	if (serror_pending && has_esr) {
		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
			return -EINVAL;

		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
		else
			return -EINVAL;
	} else if (serror_pending) {
		kvm_inject_vabt(vcpu);
	}

	return 0;
}

604 605 606 607 608
int __attribute_const__ kvm_target_cpu(void)
{
	unsigned long implementor = read_cpuid_implementor();
	unsigned long part_number = read_cpuid_part_number();

609 610 611 612 613 614 615
	switch (implementor) {
	case ARM_CPU_IMP_ARM:
		switch (part_number) {
		case ARM_CPU_PART_AEM_V8:
			return KVM_ARM_TARGET_AEM_V8;
		case ARM_CPU_PART_FOUNDATION:
			return KVM_ARM_TARGET_FOUNDATION_V8;
616 617
		case ARM_CPU_PART_CORTEX_A53:
			return KVM_ARM_TARGET_CORTEX_A53;
618 619
		case ARM_CPU_PART_CORTEX_A57:
			return KVM_ARM_TARGET_CORTEX_A57;
620
		}
621 622 623 624 625
		break;
	case ARM_CPU_IMP_APM:
		switch (part_number) {
		case APM_CPU_PART_POTENZA:
			return KVM_ARM_TARGET_XGENE_POTENZA;
626
		}
627
		break;
628
	}
629

630 631
	/* Return a default generic target */
	return KVM_ARM_TARGET_GENERIC_V8;
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
{
	int target = kvm_target_cpu();

	if (target < 0)
		return -ENODEV;

	memset(init, 0, sizeof(*init));

	/*
	 * For now, we don't return any features.
	 * In future, we might use features to return target
	 * specific features available for the preferred
	 * target type.
	 */
	init->target = (__u32)target;

	return 0;
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL;
}
669

670 671
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
			    KVM_GUESTDBG_USE_SW_BP | \
672
			    KVM_GUESTDBG_USE_HW | \
673
			    KVM_GUESTDBG_SINGLESTEP)
674 675 676 677 678 679 680 681 682 683 684 685 686 687

/**
 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 * @kvm:	pointer to the KVM struct
 * @kvm_guest_debug: the ioctl data buffer
 *
 * This sets up and enables the VM for guest debugging. Userspace
 * passes in a control flag to enable different debug types and
 * potentially other architecture specific information in the rest of
 * the structure.
 */
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
688 689
	int ret = 0;

690 691
	trace_kvm_set_guest_debug(vcpu, dbg->control);

692 693 694 695
	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
		ret = -EINVAL;
		goto out;
	}
696 697 698

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
699 700 701 702 703 704

		/* Hardware assisted Break and Watch points */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
			vcpu->arch.external_debug_state = dbg->arch;
		}

705 706 707 708
	} else {
		/* If not enabled clear all flags */
		vcpu->guest_debug = 0;
	}
709 710 711

out:
	return ret;
712
}
713 714 715 716 717 718 719 720 721 722

int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
		break;
723 724 725
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_set_attr(vcpu, attr);
		break;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
		break;
743 744 745
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_get_attr(vcpu, attr);
		break;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
		break;
763 764 765
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_has_attr(vcpu, attr);
		break;
766 767 768 769 770 771 772
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}