guest.c 23.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/guest.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

11
#include <linux/bits.h>
12 13
#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/nospec.h>
15 16
#include <linux/kvm_host.h>
#include <linux/module.h>
17
#include <linux/stddef.h>
18
#include <linux/string.h>
19 20
#include <linux/vmalloc.h>
#include <linux/fs.h>
21
#include <kvm/arm_psci.h>
22
#include <asm/cputype.h>
23
#include <linux/uaccess.h>
24
#include <asm/fpsimd.h>
25 26 27
#include <asm/kvm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
28
#include <asm/sigcontext.h>
29

30 31
#include "trace.h"

32
struct kvm_stats_debugfs_item debugfs_entries[] = {
33 34 35 36 37 38 39 40 41 42
	VCPU_STAT("halt_successful_poll", halt_successful_poll),
	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
	VCPU_STAT("halt_wakeup", halt_wakeup),
	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
	VCPU_STAT("mmio_exit_user", mmio_exit_user),
	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
	VCPU_STAT("exits", exits),
43 44
	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
45 46 47
	{ NULL }
};

48 49 50 51 52 53
static bool core_reg_offset_is_vreg(u64 off)
{
	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
}

54 55 56 57 58
static u64 core_reg_offset_from_id(u64 id)
{
	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
}

59
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
{
	int size;

	switch (off) {
	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
	case KVM_REG_ARM_CORE_REG(regs.sp):
	case KVM_REG_ARM_CORE_REG(regs.pc):
	case KVM_REG_ARM_CORE_REG(regs.pstate):
	case KVM_REG_ARM_CORE_REG(sp_el1):
	case KVM_REG_ARM_CORE_REG(elr_el1):
	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
		size = sizeof(__u64);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
		size = sizeof(__uint128_t);
		break;

	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
		size = sizeof(__u32);
		break;

	default:
		return -EINVAL;
	}

90
	if (!IS_ALIGNED(off, size / sizeof(__u32)))
91
		return -EINVAL;
92

93 94 95 96 97 98 99 100
	/*
	 * The KVM_REG_ARM64_SVE regs must be used instead of
	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
	 * SVE-enabled vcpus:
	 */
	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
		return -EINVAL;

101 102 103
	return size;
}

104
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
105 106 107 108 109
{
	u64 off = core_reg_offset_from_id(reg->id);
	int size = core_reg_size_from_offset(vcpu, off);

	if (size < 0)
110
		return NULL;
111 112

	if (KVM_REG_SIZE(reg->id) != size)
113
		return NULL;
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	switch (off) {
	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
		off /= 2;
		return &vcpu->arch.ctxt.regs.regs[off];

	case KVM_REG_ARM_CORE_REG(regs.sp):
		return &vcpu->arch.ctxt.regs.sp;

	case KVM_REG_ARM_CORE_REG(regs.pc):
		return &vcpu->arch.ctxt.regs.pc;

	case KVM_REG_ARM_CORE_REG(regs.pstate):
		return &vcpu->arch.ctxt.regs.pstate;

	case KVM_REG_ARM_CORE_REG(sp_el1):
		return &vcpu->arch.ctxt.sp_el1;

	case KVM_REG_ARM_CORE_REG(elr_el1):
		return &vcpu->arch.ctxt.elr_el1;

	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
		off -= KVM_REG_ARM_CORE_REG(spsr[0]);
		off /= 2;
		return &vcpu->arch.ctxt.spsr[off];

	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
		off /= 4;
		return &vcpu->arch.ctxt.fp_regs.vregs[off];

	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
		return &vcpu->arch.ctxt.fp_regs.fpsr;

	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
		return &vcpu->arch.ctxt.fp_regs.fpcr;

	default:
		return NULL;
	}
158 159
}

160 161 162 163 164 165 166 167 168
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/*
	 * Because the kvm_regs structure is a mix of 32, 64 and
	 * 128bit fields, we index it as if it was a 32bit
	 * array. Hence below, nr_regs is the number of entries, and
	 * off the index in the "array".
	 */
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
169 170
	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
	void *addr;
171 172 173 174 175 176 177 178
	u32 off;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

179 180
	addr = core_reg_addr(vcpu, reg);
	if (!addr)
181 182
		return -EINVAL;

183
	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
184 185 186 187 188 189 190 191
		return -EFAULT;

	return 0;
}

static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
192
	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
193
	__uint128_t tmp;
194
	void *valp = &tmp, *addr;
195 196 197 198 199 200 201 202 203
	u64 off;
	int err = 0;

	/* Our ID is an index into the kvm_regs struct. */
	off = core_reg_offset_from_id(reg->id);
	if (off >= nr_regs ||
	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
		return -ENOENT;

204 205
	addr = core_reg_addr(vcpu, reg);
	if (!addr)
206 207
		return -EINVAL;

208 209 210 211 212 213 214 215 216
	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
		err = -EFAULT;
		goto out;
	}

	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
217
		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
218
		switch (mode) {
M
Mark Rutland 已提交
219
		case PSR_AA32_MODE_USR:
220 221 222
			if (!system_supports_32bit_el0())
				return -EINVAL;
			break;
M
Mark Rutland 已提交
223 224 225 226 227
		case PSR_AA32_MODE_FIQ:
		case PSR_AA32_MODE_IRQ:
		case PSR_AA32_MODE_SVC:
		case PSR_AA32_MODE_ABT:
		case PSR_AA32_MODE_UND:
228 229 230
			if (!vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
			break;
231 232 233
		case PSR_MODE_EL0t:
		case PSR_MODE_EL1t:
		case PSR_MODE_EL1h:
234 235
			if (vcpu_el1_is_32bit(vcpu))
				return -EINVAL;
236 237 238 239 240 241 242
			break;
		default:
			err = -EINVAL;
			goto out;
		}
	}

243
	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
244 245 246 247 248 249 250

	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
		int i;

		for (i = 0; i < 16; i++)
			*vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
	}
251 252 253 254
out:
	return err;
}

255 256
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
257
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
258 259 260 261

static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	unsigned int max_vq, vq;
262
	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
263

264 265 266
	if (!vcpu_has_sve(vcpu))
		return -ENOENT;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
		return -EINVAL;

	memset(vqs, 0, sizeof(vqs));

	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
		if (sve_vq_available(vq))
			vqs[vq_word(vq)] |= vq_mask(vq);

	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
		return -EFAULT;

	return 0;
}

static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	unsigned int max_vq, vq;
286
	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
287

288 289 290
	if (!vcpu_has_sve(vcpu))
		return -ENOENT;

291 292 293 294 295 296 297 298 299 300 301
	if (kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM; /* too late! */

	if (WARN_ON(vcpu->arch.sve_state))
		return -EINVAL;

	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
		return -EFAULT;

	max_vq = 0;
	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
302
		if (vq_present(vqs, vq))
303 304 305 306 307
			max_vq = vq;

	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
		return -EINVAL;

308 309 310
	/*
	 * Vector lengths supported by the host can't currently be
	 * hidden from the guest individually: instead we can only set a
F
Fuad Tabba 已提交
311
	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
312 313 314
	 * lengths match the set requested exactly up to the requested
	 * maximum:
	 */
315
	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
316
		if (vq_present(vqs, vq) != sve_vq_available(vq))
317 318 319 320 321 322 323 324 325 326 327 328
			return -EINVAL;

	/* Can't run with no vector lengths at all: */
	if (max_vq < SVE_VQ_MIN)
		return -EINVAL;

	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);

	return 0;
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
#define SVE_REG_SLICE_SHIFT	0
#define SVE_REG_SLICE_BITS	5
#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
#define SVE_REG_ID_BITS		5

#define SVE_REG_SLICE_MASK					\
	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
		SVE_REG_SLICE_SHIFT)
#define SVE_REG_ID_MASK							\
	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)

#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)

#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))

345
/*
346 347 348 349
 * Number of register slices required to cover each whole SVE register.
 * NOTE: Only the first slice every exists, for now.
 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 * to match:
350 351 352
 */
#define vcpu_sve_slices(vcpu) 1

353 354 355 356 357 358 359
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
struct sve_state_reg_region {
	unsigned int koffset;	/* offset into sve_state in kernel memory */
	unsigned int klen;	/* length in kernel memory */
	unsigned int upad;	/* extra trailing padding in user memory */
};

360 361 362 363
/*
 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 * register copy
 */
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static int sve_reg_to_region(struct sve_state_reg_region *region,
			     struct kvm_vcpu *vcpu,
			     const struct kvm_one_reg *reg)
{
	/* reg ID ranges for Z- registers */
	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
						       SVE_NUM_SLICES - 1);

	/* reg ID ranges for P- registers and FFR (which are contiguous) */
	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);

	unsigned int vq;
	unsigned int reg_num;

	unsigned int reqoffset, reqlen; /* User-requested offset and length */
F
Fuad Tabba 已提交
381
	unsigned int maxlen; /* Maximum permitted length */
382 383 384

	size_t sve_state_size;

385 386 387 388 389 390 391 392 393
	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
							SVE_NUM_SLICES - 1);

	/* Verify that the P-regs and FFR really do have contiguous IDs: */
	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);

	/* Verify that we match the UAPI header: */
	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);

394 395 396
	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;

	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
397 398 399 400 401
		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
			return -ENOENT;

		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

402 403 404 405 406
		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_ZREG_SIZE;
		maxlen = SVE_SIG_ZREG_SIZE(vq);
	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
407 408 409 410 411
		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
			return -ENOENT;

		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);

412 413 414 415 416
		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
				SVE_SIG_REGS_OFFSET;
		reqlen = KVM_SVE_PREG_SIZE;
		maxlen = SVE_SIG_PREG_SIZE(vq);
	} else {
417
		return -EINVAL;
418 419 420
	}

	sve_state_size = vcpu_sve_state_size(vcpu);
421
	if (WARN_ON(!sve_state_size))
422 423 424 425 426 427 428 429 430 431 432
		return -EINVAL;

	region->koffset = array_index_nospec(reqoffset, sve_state_size);
	region->klen = min(maxlen, reqlen);
	region->upad = reqlen - region->klen;

	return 0;
}

static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
433
	int ret;
434 435 436
	struct sve_state_reg_region region;
	char __user *uptr = (char __user *)reg->addr;

437 438 439 440
	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
	if (reg->id == KVM_REG_ARM64_SVE_VLS)
		return get_sve_vls(vcpu, reg);

441 442 443 444
	/* Try to interpret reg ID as an architectural SVE register... */
	ret = sve_reg_to_region(&region, vcpu, reg);
	if (ret)
		return ret;
445 446 447 448

	if (!kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM;

449 450 451 452 453 454 455 456 457 458
	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
			 region.klen) ||
	    clear_user(uptr + region.klen, region.upad))
		return -EFAULT;

	return 0;
}

static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
459
	int ret;
460 461 462
	struct sve_state_reg_region region;
	const char __user *uptr = (const char __user *)reg->addr;

463 464 465 466
	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
	if (reg->id == KVM_REG_ARM64_SVE_VLS)
		return set_sve_vls(vcpu, reg);

467 468 469 470
	/* Try to interpret reg ID as an architectural SVE register... */
	ret = sve_reg_to_region(&region, vcpu, reg);
	if (ret)
		return ret;
471 472 473 474

	if (!kvm_arm_vcpu_sve_finalized(vcpu))
		return -EPERM;

475 476 477 478 479 480 481
	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
			   region.klen))
		return -EFAULT;

	return 0;
}

482 483 484 485 486 487 488 489 490 491
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	return -EINVAL;
}

492 493
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
				 u64 __user *uindices)
494 495 496 497 498
{
	unsigned int i;
	int n = 0;

	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
		int size = core_reg_size_from_offset(vcpu, i);

		if (size < 0)
			continue;

		switch (size) {
		case sizeof(__u32):
			reg |= KVM_REG_SIZE_U32;
			break;

		case sizeof(__u64):
			reg |= KVM_REG_SIZE_U64;
			break;

		case sizeof(__uint128_t):
			reg |= KVM_REG_SIZE_U128;
			break;

		default:
			WARN_ON(1);
520
			continue;
521
		}
522

523
		if (uindices) {
524
			if (put_user(reg, uindices))
525 526 527 528 529 530 531 532 533 534
				return -EFAULT;
			uindices++;
		}

		n++;
	}

	return n;
}

535
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
536
{
537
	return copy_core_reg_indices(vcpu, NULL);
538 539
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/**
 * ARM64 versions of the TIMER registers, always available on arm64
 */

#define NUM_TIMER_REGS 3

static bool is_timer_reg(u64 index)
{
	switch (index) {
	case KVM_REG_ARM_TIMER_CTL:
	case KVM_REG_ARM_TIMER_CNT:
	case KVM_REG_ARM_TIMER_CVAL:
		return true;
	}
	return false;
}

static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
		return -EFAULT;
	uindices++;
	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
		return -EFAULT;

	return 0;
}

static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int ret;

	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
	if (ret != 0)
579
		return -EFAULT;
580 581 582 583 584 585 586 587 588 589

	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
}

static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;

	val = kvm_arm_timer_get_reg(vcpu, reg->id);
590
	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
591 592
}

593 594 595 596 597 598 599
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
{
	const unsigned int slices = vcpu_sve_slices(vcpu);

	if (!vcpu_has_sve(vcpu))
		return 0;

600 601 602 603 604
	/* Policed by KVM_GET_REG_LIST: */
	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));

	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
		+ 1; /* KVM_REG_ARM64_SVE_VLS */
605 606 607 608 609 610 611 612 613 614 615 616 617
}

static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
				u64 __user *uindices)
{
	const unsigned int slices = vcpu_sve_slices(vcpu);
	u64 reg;
	unsigned int i, n;
	int num_regs = 0;

	if (!vcpu_has_sve(vcpu))
		return 0;

618 619 620 621 622 623 624 625 626 627 628 629
	/* Policed by KVM_GET_REG_LIST: */
	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));

	/*
	 * Enumerate this first, so that userspace can save/restore in
	 * the order reported by KVM_GET_REG_LIST:
	 */
	reg = KVM_REG_ARM64_SVE_VLS;
	if (put_user(reg, uindices++))
		return -EFAULT;
	++num_regs;

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	for (i = 0; i < slices; i++) {
		for (n = 0; n < SVE_NUM_ZREGS; n++) {
			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;
			num_regs++;
		}

		for (n = 0; n < SVE_NUM_PREGS; n++) {
			reg = KVM_REG_ARM64_SVE_PREG(n, i);
			if (put_user(reg, uindices++))
				return -EFAULT;
			num_regs++;
		}

		reg = KVM_REG_ARM64_SVE_FFR(i);
		if (put_user(reg, uindices++))
			return -EFAULT;
		num_regs++;
	}

	return num_regs;
}

654 655 656 657 658 659 660
/**
 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 *
 * This is for all registers.
 */
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
{
661 662
	unsigned long res = 0;

663
	res += num_core_regs(vcpu);
664
	res += num_sve_regs(vcpu);
665 666 667 668 669
	res += kvm_arm_num_sys_reg_descs(vcpu);
	res += kvm_arm_get_fw_num_regs(vcpu);
	res += NUM_TIMER_REGS;

	return res;
670 671 672 673 674
}

/**
 * kvm_arm_copy_reg_indices - get indices of all registers.
 *
A
Andrea Gelmini 已提交
675
 * We do core registers right here, then we append system regs.
676 677 678
 */
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
679
	int ret;
680

681
	ret = copy_core_reg_indices(vcpu, uindices);
682
	if (ret < 0)
683 684
		return ret;
	uindices += ret;
685

686
	ret = copy_sve_reg_indices(vcpu, uindices);
687
	if (ret < 0)
688 689 690
		return ret;
	uindices += ret;

691
	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
692
	if (ret < 0)
693 694 695
		return ret;
	uindices += kvm_arm_get_fw_num_regs(vcpu);

696
	ret = copy_timer_indices(vcpu, uindices);
697
	if (ret < 0)
698 699 700
		return ret;
	uindices += NUM_TIMER_REGS;

701 702 703 704 705 706 707 708 709
	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
}

int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

710 711 712 713 714
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
	}
715

716 717 718
	if (is_timer_reg(reg->id))
		return get_timer_reg(vcpu, reg);

719 720 721 722 723 724 725 726 727
	return kvm_arm_sys_reg_get_reg(vcpu, reg);
}

int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	/* We currently use nothing arch-specific in upper 32 bits */
	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
		return -EINVAL;

728 729 730 731 732
	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
	}
733

734 735 736
	if (is_timer_reg(reg->id))
		return set_timer_reg(vcpu, reg);

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	return kvm_arm_sys_reg_set_reg(vcpu, reg);
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	return -EINVAL;
}

752 753
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
754 755 756 757 758 759 760
{
	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);

	if (events->exception.serror_pending && events->exception.serror_has_esr)
		events->exception.serror_esr = vcpu_get_vsesr(vcpu);

761 762 763 764 765 766
	/*
	 * We never return a pending ext_dabt here because we deliver it to
	 * the virtual CPU directly when setting the event and it's no longer
	 * 'pending' at this point.
	 */

767 768 769
	return 0;
}

770 771
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events)
772 773 774
{
	bool serror_pending = events->exception.serror_pending;
	bool has_esr = events->exception.serror_has_esr;
775
	bool ext_dabt_pending = events->exception.ext_dabt_pending;
776 777 778 779 780 781 782 783 784 785 786 787 788

	if (serror_pending && has_esr) {
		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
			return -EINVAL;

		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
		else
			return -EINVAL;
	} else if (serror_pending) {
		kvm_inject_vabt(vcpu);
	}

789 790 791
	if (ext_dabt_pending)
		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));

792 793 794
	return 0;
}

795 796 797 798 799
int __attribute_const__ kvm_target_cpu(void)
{
	unsigned long implementor = read_cpuid_implementor();
	unsigned long part_number = read_cpuid_part_number();

800 801 802 803 804 805 806
	switch (implementor) {
	case ARM_CPU_IMP_ARM:
		switch (part_number) {
		case ARM_CPU_PART_AEM_V8:
			return KVM_ARM_TARGET_AEM_V8;
		case ARM_CPU_PART_FOUNDATION:
			return KVM_ARM_TARGET_FOUNDATION_V8;
807 808
		case ARM_CPU_PART_CORTEX_A53:
			return KVM_ARM_TARGET_CORTEX_A53;
809 810
		case ARM_CPU_PART_CORTEX_A57:
			return KVM_ARM_TARGET_CORTEX_A57;
811
		}
812 813 814 815 816
		break;
	case ARM_CPU_IMP_APM:
		switch (part_number) {
		case APM_CPU_PART_POTENZA:
			return KVM_ARM_TARGET_XGENE_POTENZA;
817
		}
818
		break;
819
	}
820

821 822
	/* Return a default generic target */
	return KVM_ARM_TARGET_GENERIC_V8;
823 824
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
{
	int target = kvm_target_cpu();

	if (target < 0)
		return -ENODEV;

	memset(init, 0, sizeof(*init));

	/*
	 * For now, we don't return any features.
	 * In future, we might use features to return target
	 * specific features available for the preferred
	 * target type.
	 */
	init->target = (__u32)target;

	return 0;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL;
}
860

861 862
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
			    KVM_GUESTDBG_USE_SW_BP | \
863
			    KVM_GUESTDBG_USE_HW | \
864
			    KVM_GUESTDBG_SINGLESTEP)
865 866 867 868 869 870 871 872 873 874 875 876 877 878

/**
 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 * @kvm:	pointer to the KVM struct
 * @kvm_guest_debug: the ioctl data buffer
 *
 * This sets up and enables the VM for guest debugging. Userspace
 * passes in a control flag to enable different debug types and
 * potentially other architecture specific information in the rest of
 * the structure.
 */
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
879 880
	int ret = 0;

881 882
	trace_kvm_set_guest_debug(vcpu, dbg->control);

883 884 885 886
	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
		ret = -EINVAL;
		goto out;
	}
887 888 889

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
890 891 892 893 894 895

		/* Hardware assisted Break and Watch points */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
			vcpu->arch.external_debug_state = dbg->arch;
		}

896 897 898 899
	} else {
		/* If not enabled clear all flags */
		vcpu->guest_debug = 0;
	}
900 901 902

out:
	return ret;
903
}
904 905 906 907 908 909 910 911 912 913

int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
		break;
914 915 916
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_set_attr(vcpu, attr);
		break;
917 918 919
	case KVM_ARM_VCPU_PVTIME_CTRL:
		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
		break;
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
		break;
937 938 939
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_get_attr(vcpu, attr);
		break;
940 941 942
	case KVM_ARM_VCPU_PVTIME_CTRL:
		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
		break;
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
	case KVM_ARM_VCPU_PMU_V3_CTRL:
		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
		break;
960 961 962
	case KVM_ARM_VCPU_TIMER_CTRL:
		ret = kvm_arm_timer_has_attr(vcpu, attr);
		break;
963 964 965
	case KVM_ARM_VCPU_PVTIME_CTRL:
		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
		break;
966 967 968 969 970 971 972
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}