bio.c 47.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
22
#include <linux/xarray.h>
L
Linus Torvalds 已提交
23

24
#include <trace/events/block.h>
25
#include "blk.h"
J
Josef Bacik 已提交
26
#include "blk-rq-qos.h"
27

28 29 30 31 32
struct bio_alloc_cache {
	struct bio_list		free_list;
	unsigned int		nr;
};

33
static struct biovec_slab {
34 35 36
	int nr_vecs;
	char *name;
	struct kmem_cache *slab;
37 38 39 40
} bvec_slabs[] __read_mostly = {
	{ .nr_vecs = 16, .name = "biovec-16" },
	{ .nr_vecs = 64, .name = "biovec-64" },
	{ .nr_vecs = 128, .name = "biovec-128" },
41
	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
L
Linus Torvalds 已提交
42
};
43

44 45 46 47 48 49 50 51 52 53
static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
{
	switch (nr_vecs) {
	/* smaller bios use inline vecs */
	case 5 ... 16:
		return &bvec_slabs[0];
	case 17 ... 64:
		return &bvec_slabs[1];
	case 65 ... 128:
		return &bvec_slabs[2];
54
	case 129 ... BIO_MAX_VECS:
55 56 57 58 59 60
		return &bvec_slabs[3];
	default:
		BUG();
		return NULL;
	}
}
L
Linus Torvalds 已提交
61 62 63 64 65

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
66
struct bio_set fs_bio_set;
67
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
68

69 70 71 72 73 74 75 76 77 78
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
79
static DEFINE_XARRAY(bio_slabs);
80

81
static struct bio_slab *create_bio_slab(unsigned int size)
82
{
83
	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84

85 86
	if (!bslab)
		return NULL;
87

88 89 90 91 92
	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
	bslab->slab = kmem_cache_create(bslab->name, size,
			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
	if (!bslab->slab)
		goto fail_alloc_slab;
93

94 95
	bslab->slab_ref = 1;
	bslab->slab_size = size;
96

97 98
	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
		return bslab;
99

100
	kmem_cache_destroy(bslab->slab);
101

102 103 104 105
fail_alloc_slab:
	kfree(bslab);
	return NULL;
}
106

107 108
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
109
	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110
}
111

112 113 114 115
static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
	unsigned int size = bs_bio_slab_size(bs);
	struct bio_slab *bslab;
116

117 118 119 120 121 122
	mutex_lock(&bio_slab_lock);
	bslab = xa_load(&bio_slabs, size);
	if (bslab)
		bslab->slab_ref++;
	else
		bslab = create_bio_slab(size);
123
	mutex_unlock(&bio_slab_lock);
124 125 126 127

	if (bslab)
		return bslab->slab;
	return NULL;
128 129 130 131 132
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
133
	unsigned int slab_size = bs_bio_slab_size(bs);
134 135 136

	mutex_lock(&bio_slab_lock);

137
	bslab = xa_load(&bio_slabs, slab_size);
138 139 140
	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

141 142
	WARN_ON_ONCE(bslab->slab != bs->bio_slab);

143 144 145 146 147
	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

148 149
	xa_erase(&bio_slabs, slab_size);

150
	kmem_cache_destroy(bslab->slab);
151
	kfree(bslab);
152 153 154 155 156

out:
	mutex_unlock(&bio_slab_lock);
}

157
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158
{
C
Christoph Hellwig 已提交
159
	BUG_ON(nr_vecs > BIO_MAX_VECS);
160

161
	if (nr_vecs == BIO_MAX_VECS)
162
		mempool_free(bv, pool);
163 164
	else if (nr_vecs > BIO_INLINE_VECS)
		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 166
}

167 168 169 170 171 172 173 174
/*
 * Make the first allocation restricted and don't dump info on allocation
 * failures, since we'll fall back to the mempool in case of failure.
 */
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
{
	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 176
}

177 178
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
		gfp_t gfp_mask)
L
Linus Torvalds 已提交
179
{
180
	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
L
Linus Torvalds 已提交
181

182
	if (WARN_ON_ONCE(!bvs))
183 184 185
		return NULL;

	/*
186 187
	 * Upgrade the nr_vecs request to take full advantage of the allocation.
	 * We also rely on this in the bvec_free path.
188
	 */
189
	*nr_vecs = bvs->nr_vecs;
190 191

	/*
C
Christoph Hellwig 已提交
192 193
	 * Try a slab allocation first for all smaller allocations.  If that
	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194
	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195
	 */
196
	if (*nr_vecs < BIO_MAX_VECS) {
C
Christoph Hellwig 已提交
197
		struct bio_vec *bvl;
L
Linus Torvalds 已提交
198

199
		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200
		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
C
Christoph Hellwig 已提交
201
			return bvl;
202
		*nr_vecs = BIO_MAX_VECS;
203 204
	}

C
Christoph Hellwig 已提交
205
	return mempool_alloc(pool, gfp_mask);
L
Linus Torvalds 已提交
206 207
}

208
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
209
{
210 211 212 213 214 215
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
216 217
	if (bio_integrity(bio))
		bio_integrity_free(bio);
218 219

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
220
}
221
EXPORT_SYMBOL(bio_uninit);
222

K
Kent Overstreet 已提交
223 224 225 226 227
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

228
	bio_uninit(bio);
K
Kent Overstreet 已提交
229 230

	if (bs) {
231
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
K
Kent Overstreet 已提交
232 233 234 235 236

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
237 238
		p -= bs->front_pad;

239
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
240 241 242 243
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
244 245
}

246 247 248 249 250
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
251 252
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
253
{
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	bio->bi_next = NULL;
	bio->bi_bdev = NULL;
	bio->bi_opf = 0;
	bio->bi_flags = 0;
	bio->bi_ioprio = 0;
	bio->bi_write_hint = 0;
	bio->bi_status = 0;
	bio->bi_iter.bi_sector = 0;
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_idx = 0;
	bio->bi_iter.bi_bvec_done = 0;
	bio->bi_end_io = NULL;
	bio->bi_private = NULL;
#ifdef CONFIG_BLK_CGROUP
	bio->bi_blkg = NULL;
	bio->bi_issue.value = 0;
#ifdef CONFIG_BLK_CGROUP_IOCOST
	bio->bi_iocost_cost = 0;
#endif
#endif
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
	bio->bi_crypt_context = NULL;
#endif
#ifdef CONFIG_BLK_DEV_INTEGRITY
	bio->bi_integrity = NULL;
#endif
	bio->bi_vcnt = 0;

282
	atomic_set(&bio->__bi_remaining, 1);
283
	atomic_set(&bio->__bi_cnt, 1);
284 285

	bio->bi_max_vecs = max_vecs;
286 287
	bio->bi_io_vec = table;
	bio->bi_pool = NULL;
L
Linus Torvalds 已提交
288
}
289
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
290

K
Kent Overstreet 已提交
291 292 293 294 295 296 297 298 299 300 301 302
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
303
	bio_uninit(bio);
K
Kent Overstreet 已提交
304
	memset(bio, 0, BIO_RESET_BYTES);
305
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
306 307 308
}
EXPORT_SYMBOL(bio_reset);

309
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
310
{
311 312
	struct bio *parent = bio->bi_private;

313
	if (bio->bi_status && !parent->bi_status)
314
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
315
	bio_put(bio);
316 317 318 319 320 321
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
322 323 324 325
}

/**
 * bio_chain - chain bio completions
326
 * @bio: the target bio
327
 * @parent: the parent bio of @bio
K
Kent Overstreet 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
341
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
342 343 344
}
EXPORT_SYMBOL(bio_chain);

345 346 347 348 349 350 351 352 353 354 355 356 357
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

358
		submit_bio_noacct(bio);
359 360 361 362 363 364 365 366
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

367 368
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
369 370 371 372 373 374 375 376 377 378 379 380 381 382
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

383
	while ((bio = bio_list_pop(&current->bio_list[0])))
384
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385
	current->bio_list[0] = nopunt;
386

387 388 389 390
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
391 392 393 394 395 396 397 398

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
399 400
/**
 * bio_alloc_bioset - allocate a bio for I/O
401
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
402
 * @nr_iovecs:	number of iovecs to pre-allocate
403
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
404
 *
405
 * Allocate a bio from the mempools in @bs.
406
 *
407 408 409 410 411 412
 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 * callers must never allocate more than 1 bio at a time from the general pool.
 * Callers that need to allocate more than 1 bio must always submit the
 * previously allocated bio for IO before attempting to allocate a new one.
 * Failure to do so can cause deadlocks under memory pressure.
413
 *
414 415 416 417
 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 * bios are not submitted until after you return - see the code in
 * submit_bio_noacct() that converts recursion into iteration, to prevent
 * stack overflows.
418
 *
419 420 421 422
 * This would normally mean allocating multiple bios under submit_bio_noacct()
 * would be susceptible to deadlocks, but we have
 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 * thread.
423
 *
424 425 426 427
 * However, we do not guarantee forward progress for allocations from other
 * mempools. Doing multiple allocations from the same mempool under
 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 * for per bio allocations.
428
 *
429
 * Returns: Pointer to new bio on success, NULL on failure.
430
 */
431
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432
			     struct bio_set *bs)
L
Linus Torvalds 已提交
433
{
434
	gfp_t saved_gfp = gfp_mask;
T
Tejun Heo 已提交
435 436 437
	struct bio *bio;
	void *p;

438 439 440
	/* should not use nobvec bioset for nr_iovecs > 0 */
	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
		return NULL;
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/*
	 * submit_bio_noacct() converts recursion to iteration; this means if
	 * we're running beneath it, any bios we allocate and submit will not be
	 * submitted (and thus freed) until after we return.
	 *
	 * This exposes us to a potential deadlock if we allocate multiple bios
	 * from the same bio_set() while running underneath submit_bio_noacct().
	 * If we were to allocate multiple bios (say a stacking block driver
	 * that was splitting bios), we would deadlock if we exhausted the
	 * mempool's reserve.
	 *
	 * We solve this, and guarantee forward progress, with a rescuer
	 * workqueue per bio_set. If we go to allocate and there are bios on
	 * current->bio_list, we first try the allocation without
	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
	 * blocking to the rescuer workqueue before we retry with the original
	 * gfp_flags.
	 */
	if (current->bio_list &&
	    (!bio_list_empty(&current->bio_list[0]) ||
	     !bio_list_empty(&current->bio_list[1])) &&
	    bs->rescue_workqueue)
		gfp_mask &= ~__GFP_DIRECT_RECLAIM;

	p = mempool_alloc(&bs->bio_pool, gfp_mask);
	if (!p && gfp_mask != saved_gfp) {
		punt_bios_to_rescuer(bs);
		gfp_mask = saved_gfp;
470
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
471
	}
T
Tejun Heo 已提交
472 473
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
474

475 476 477
	bio = p + bs->front_pad;
	if (nr_iovecs > BIO_INLINE_VECS) {
		struct bio_vec *bvl = NULL;
I
Ingo Molnar 已提交
478

479
		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 481 482
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
483
			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484
		}
I
Ingo Molnar 已提交
485 486
		if (unlikely(!bvl))
			goto err_free;
487

488
		bio_init(bio, bvl, nr_iovecs);
489
	} else if (nr_iovecs) {
490 491 492
		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
	} else {
		bio_init(bio, NULL, 0);
L
Linus Torvalds 已提交
493
	}
494 495

	bio->bi_pool = bs;
L
Linus Torvalds 已提交
496
	return bio;
I
Ingo Molnar 已提交
497 498

err_free:
499
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
500
	return NULL;
L
Linus Torvalds 已提交
501
}
502
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
503

504 505 506 507 508 509 510 511 512
/**
 * bio_kmalloc - kmalloc a bio for I/O
 * @gfp_mask:   the GFP_* mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 *
 * Use kmalloc to allocate and initialize a bio.
 *
 * Returns: Pointer to new bio on success, NULL on failure.
 */
513
struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	struct bio *bio;

	if (nr_iovecs > UIO_MAXIOV)
		return NULL;

	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
	if (unlikely(!bio))
		return NULL;
	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
	bio->bi_pool = NULL;
	return bio;
}
EXPORT_SYMBOL(bio_kmalloc);

529
void zero_fill_bio(struct bio *bio)
L
Linus Torvalds 已提交
530
{
531 532
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
533

534 535
	bio_for_each_segment(bv, bio, iter)
		memzero_bvec(&bv);
L
Linus Torvalds 已提交
536
}
537
EXPORT_SYMBOL(zero_fill_bio);
L
Linus Torvalds 已提交
538

539 540 541 542 543 544 545 546 547 548
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
549
static void bio_truncate(struct bio *bio, unsigned new_size)
550 551 552 553 554 555 556 557 558
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

559
	if (bio_op(bio) != REQ_OP_READ)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
602
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
#define ALLOC_CACHE_MAX		512
#define ALLOC_CACHE_SLACK	 64

static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
				  unsigned int nr)
{
	unsigned int i = 0;
	struct bio *bio;

	while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
		cache->nr--;
		bio_free(bio);
		if (++i == nr)
			break;
	}
}

static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
	struct bio_set *bs;

	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
	if (bs->cache) {
		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);

		bio_alloc_cache_prune(cache, -1U);
	}
	return 0;
}

static void bio_alloc_cache_destroy(struct bio_set *bs)
{
	int cpu;

	if (!bs->cache)
		return;

	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
	for_each_possible_cpu(cpu) {
		struct bio_alloc_cache *cache;

		cache = per_cpu_ptr(bs->cache, cpu);
		bio_alloc_cache_prune(cache, -1U);
	}
	free_percpu(bs->cache);
}

L
Linus Torvalds 已提交
669 670 671 672 673 674
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
675
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
676 677 678
 **/
void bio_put(struct bio *bio)
{
679
	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
C
Christoph Hellwig 已提交
680
		BUG_ON(!atomic_read(&bio->__bi_cnt));
681 682 683
		if (!atomic_dec_and_test(&bio->__bi_cnt))
			return;
	}
684

685 686 687 688 689 690 691 692 693 694 695
	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
		struct bio_alloc_cache *cache;

		bio_uninit(bio);
		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
		bio_list_add_head(&cache->free_list, bio);
		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
		put_cpu();
	} else {
		bio_free(bio);
696
	}
L
Linus Torvalds 已提交
697
}
698
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
699

K
Kent Overstreet 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
713
	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
K
Kent Overstreet 已提交
714 715

	/*
716
	 * most users will be overriding ->bi_bdev with a new target,
K
Kent Overstreet 已提交
717 718
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
719
	bio->bi_bdev = bio_src->bi_bdev;
720
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
721 722
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
723 724
	if (bio_flagged(bio_src, BIO_REMAPPED))
		bio_set_flag(bio, BIO_REMAPPED);
J
Jens Axboe 已提交
725
	bio->bi_opf = bio_src->bi_opf;
726
	bio->bi_ioprio = bio_src->bi_ioprio;
727
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
728 729
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
730

731
	bio_clone_blkg_association(bio, bio_src);
732
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

754 755
	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
		goto err_put;
756

757 758 759
	if (bio_integrity(bio) &&
	    bio_integrity_clone(b, bio, gfp_mask) < 0)
		goto err_put;
K
Kent Overstreet 已提交
760 761

	return b;
762 763 764 765

err_put:
	bio_put(b);
	return NULL;
K
Kent Overstreet 已提交
766 767 768
}
EXPORT_SYMBOL(bio_clone_fast);

769 770
const char *bio_devname(struct bio *bio, char *buf)
{
771
	return bdevname(bio->bi_bdev, buf);
772 773 774
}
EXPORT_SYMBOL(bio_devname);

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/**
 * bio_full - check if the bio is full
 * @bio:	bio to check
 * @len:	length of one segment to be added
 *
 * Return true if @bio is full and one segment with @len bytes can't be
 * added to the bio, otherwise return false
 */
static inline bool bio_full(struct bio *bio, unsigned len)
{
	if (bio->bi_vcnt >= bio->bi_max_vecs)
		return true;
	if (bio->bi_iter.bi_size > UINT_MAX - len)
		return true;
	return false;
}

792 793
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
794
		bool *same_page)
795
{
796 797
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
798 799 800 801 802 803
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
804

805
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
806 807 808
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
809 810
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
 * @page: start page to add
 * @len: length of the data to add
 * @off: offset of the data relative to @page
 * @same_page: return if the segment has been merged inside the same page
 *
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 * useful optimisation for file systems with a block size smaller than the
 * page size.
 *
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
 * Return %true on success or %false on failure.
 */
static bool __bio_try_merge_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off, bool *same_page)
{
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
		return false;

	if (bio->bi_vcnt > 0) {
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page_is_mergeable(bv, page, len, off, same_page)) {
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
				return false;
			}
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
	}
	return false;
}

849 850 851 852 853 854 855 856
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
857
{
858
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
859 860 861 862 863 864 865 866
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
867
	return __bio_try_merge_page(bio, page, len, offset, same_page);
868 869
}

L
Linus Torvalds 已提交
870
/**
871 872 873 874 875 876 877 878
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
879
 *
880 881
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
882
 */
883
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
884
		struct page *page, unsigned int len, unsigned int offset,
885
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
886 887 888
{
	struct bio_vec *bvec;

889
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
890 891
		return 0;

892
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
893 894
		return 0;

895
	if (bio->bi_vcnt > 0) {
896
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
897
			return len;
898 899 900 901 902

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
903
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
904 905
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
906 907
	}

M
Ming Lei 已提交
908
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
909 910
		return 0;

911
	if (bio->bi_vcnt >= queue_max_segments(q))
912 913
		return 0;

914 915 916 917 918
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
919
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
920 921
	return len;
}
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
938 939 940
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
941
	bool same_page = false;
942 943
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
944
}
945
EXPORT_SYMBOL(bio_add_pc_page);
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * bio_add_zone_append_page - attempt to add page to zone-append bio
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
 * for a zone-append request. This can fail for a number of reasons, such as the
 * bio being full or the target block device is not a zoned block device or
 * other limitations of the target block device. The target block device must
 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
 * to an empty bio.
 *
 * Returns: number of bytes added to the bio, or 0 in case of a failure.
 */
int bio_add_zone_append_page(struct bio *bio, struct page *page,
			     unsigned int len, unsigned int offset)
{
966
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
967 968 969 970 971 972 973 974 975 976 977 978 979
	bool same_page = false;

	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
		return 0;

	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
		return 0;

	return bio_add_hw_page(q, bio, page, len, offset,
			       queue_max_zone_append_sectors(q), &same_page);
}
EXPORT_SYMBOL_GPL(bio_add_zone_append_page);

980
/**
981
 * __bio_add_page - add page(s) to a bio in a new segment
982
 * @bio: destination bio
983 984 985
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
986 987 988 989 990 991 992 993
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
994

995
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
996
	WARN_ON_ONCE(bio_full(bio, len));
997 998 999 1000

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
1001 1002

	bio->bi_iter.bi_size += len;
1003
	bio->bi_vcnt++;
1004 1005 1006

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
1007 1008 1009 1010
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
1011
 *	bio_add_page	-	attempt to add page(s) to bio
1012
 *	@bio: destination bio
1013 1014 1015
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
1016
 *
1017
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1018 1019 1020 1021 1022
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
1023 1024 1025
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
1026
		if (bio_full(bio, len))
1027 1028 1029
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
1030
	return len;
L
Linus Torvalds 已提交
1031
}
1032
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
1033

1034
void bio_release_pages(struct bio *bio, bool mark_dirty)
1035 1036 1037 1038
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

1039 1040 1041
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

1042 1043 1044
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
1045
		put_page(bvec->bv_page);
1046
	}
1047
}
1048
EXPORT_SYMBOL_GPL(bio_release_pages);
1049

1050
static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1051
{
1052
	WARN_ON_ONCE(bio->bi_max_vecs);
1053 1054 1055 1056 1057

	bio->bi_vcnt = iter->nr_segs;
	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
	bio->bi_iter.bi_bvec_done = iter->iov_offset;
	bio->bi_iter.bi_size = iter->count;
1058
	bio_set_flag(bio, BIO_NO_PAGE_REF);
1059
	bio_set_flag(bio, BIO_CLONED);
1060
}
1061

1062 1063 1064
static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
{
	__bio_iov_bvec_set(bio, iter);
1065
	iov_iter_advance(iter, iter->count);
1066
	return 0;
1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
{
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
	struct iov_iter i = *iter;

	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
	__bio_iov_bvec_set(bio, &i);
	iov_iter_advance(iter, i.count);
	return 0;
}

1080 1081 1082 1083 1084 1085 1086 1087
static void bio_put_pages(struct page **pages, size_t size, size_t off)
{
	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);

	for (i = 0; i < nr; i++)
		put_page(pages[i]);
}

1088 1089
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

1090
/**
1091
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1092 1093 1094
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
1095
 * Pins pages from *iter and appends them to @bio's bvec array. The
1096
 * pages will have to be released using put_page() when done.
1097
 * For multi-segment *iter, this function only adds pages from the
1098
 * next non-empty segment of the iov iterator.
1099
 */
1100
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1101
{
1102 1103
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1104 1105
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
1106
	bool same_page = false;
1107 1108
	ssize_t size, left;
	unsigned len, i;
1109
	size_t offset;
1110 1111 1112 1113 1114 1115 1116 1117

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1118

J
Jens Axboe 已提交
1119
	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1120 1121 1122
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

1123 1124
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
1125

1126
		len = min_t(size_t, PAGE_SIZE - offset, left);
1127 1128 1129 1130 1131

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
1132 1133 1134 1135
			if (WARN_ON_ONCE(bio_full(bio, len))) {
				bio_put_pages(pages + i, left, offset);
				return -EINVAL;
			}
1136 1137
			__bio_add_page(bio, page, len, offset);
		}
1138
		offset = 0;
1139 1140 1141 1142 1143
	}

	iov_iter_advance(iter, size);
	return 0;
}
1144

1145 1146 1147 1148
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1149
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1150 1151 1152 1153 1154 1155
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;
1156
	int ret = 0;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
1179
				max_append_sectors, &same_page) != len) {
1180
			bio_put_pages(pages + i, left, offset);
1181 1182 1183
			ret = -EINVAL;
			break;
		}
1184 1185 1186 1187 1188
		if (same_page)
			put_page(page);
		offset = 0;
	}

1189 1190
	iov_iter_advance(iter, size - left);
	return ret;
1191 1192
}

1193
/**
1194
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1195
 * @bio: bio to add pages to
1196 1197 1198 1199 1200
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
1201 1202 1203 1204 1205 1206
 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
 * to ensure the bvecs and pages stay referenced until the submitted I/O is
 * completed by a call to ->ki_complete() or returns with an error other than
 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
 * on IO completion. If it isn't, then pages should be released.
1207 1208
 *
 * The function tries, but does not guarantee, to pin as many pages as
1209
 * fit into the bio, or are requested in @iter, whatever is smaller. If
1210 1211
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1212 1213 1214
 *
 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
 * responsible for setting BIO_WORKINGSET if necessary.
1215 1216 1217
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1218
	int ret = 0;
1219

1220
	if (iov_iter_is_bvec(iter)) {
1221 1222
		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
			return bio_iov_bvec_set_append(bio, iter);
1223
		return bio_iov_bvec_set(bio, iter);
1224
	}
1225 1226

	do {
1227
		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1228
			ret = __bio_iov_append_get_pages(bio, iter);
1229 1230
		else
			ret = __bio_iov_iter_get_pages(bio, iter);
M
Ming Lei 已提交
1231
	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1232

1233 1234
	/* don't account direct I/O as memory stall */
	bio_clear_flag(bio, BIO_WORKINGSET);
1235
	return bio->bi_vcnt ? 0 : ret;
1236
}
1237
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1238

1239
static void submit_bio_wait_endio(struct bio *bio)
1240
{
1241
	complete(bio->bi_private);
1242 1243 1244 1245 1246 1247 1248 1249
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1250 1251 1252 1253
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1254
 */
1255
int submit_bio_wait(struct bio *bio)
1256
{
1257 1258
	DECLARE_COMPLETION_ONSTACK_MAP(done,
			bio->bi_bdev->bd_disk->lockdep_map);
1259
	unsigned long hang_check;
1260

1261
	bio->bi_private = &done;
1262
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1263
	bio->bi_opf |= REQ_SYNC;
1264
	submit_bio(bio);
1265 1266 1267 1268 1269 1270 1271 1272 1273

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1274

1275
	return blk_status_to_errno(bio->bi_status);
1276 1277 1278
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1295
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1296
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1297 1298 1299
}
EXPORT_SYMBOL(bio_advance);

1300 1301
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1302
{
1303
	while (src_iter->bi_size && dst_iter->bi_size) {
1304 1305 1306 1307 1308 1309 1310 1311
		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
		void *src_buf;

		src_buf = bvec_kmap_local(&src_bv);
		memcpy_to_bvec(&dst_bv, src_buf);
		kunmap_local(src_buf);
1312

P
Pavel Begunkov 已提交
1313 1314
		bio_advance_iter_single(src, src_iter, bytes);
		bio_advance_iter_single(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1315 1316
	}
}
1317 1318 1319
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1320 1321 1322
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1323 1324 1325 1326 1327 1328
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1329 1330 1331 1332
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1333
}
K
Kent Overstreet 已提交
1334 1335
EXPORT_SYMBOL(bio_copy_data);

1336
void bio_free_pages(struct bio *bio)
1337 1338
{
	struct bio_vec *bvec;
1339
	struct bvec_iter_all iter_all;
1340

1341
	bio_for_each_segment_all(bvec, bio, iter_all)
1342 1343
		__free_page(bvec->bv_page);
}
1344
EXPORT_SYMBOL(bio_free_pages);
1345

L
Linus Torvalds 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1365
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1377
	struct bio_vec *bvec;
1378
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1379

1380
	bio_for_each_segment_all(bvec, bio, iter_all) {
1381 1382
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1390
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1391 1392
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1393 1394
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1395 1396
 */

1397
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1398

1399
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1406
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1407
{
1408
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1409

1410 1411
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1412
	bio_dirty_list = NULL;
1413
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1414

1415 1416
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1417

1418
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1425
	struct bio_vec *bvec;
1426
	unsigned long flags;
1427
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1428

1429
	bio_for_each_segment_all(bvec, bio, iter_all) {
1430 1431
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1432 1433
	}

1434
	bio_release_pages(bio, false);
1435 1436 1437 1438 1439 1440 1441 1442
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1456
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1457
		bio_clear_flag(bio, BIO_CHAIN);
1458
		return true;
1459
	}
1460 1461 1462 1463

	return false;
}

L
Linus Torvalds 已提交
1464 1465 1466 1467 1468
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1469 1470 1471
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1472 1473 1474
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
1475
 *   last time.
L
Linus Torvalds 已提交
1476
 **/
1477
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1478
{
C
Christoph Hellwig 已提交
1479
again:
1480
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1481
		return;
1482 1483
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1484

1485
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1486
		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
J
Josef Bacik 已提交
1487

1488 1489 1490 1491 1492
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

C
Christoph Hellwig 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1504
	}
C
Christoph Hellwig 已提交
1505

1506
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1507 1508
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1509 1510
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1511
}
1512
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1513

K
Kent Overstreet 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1524
 * Unless this is a discard request the newly allocated bio will point
1525 1526
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1527 1528 1529 1530
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1531
	struct bio *split;
K
Kent Overstreet 已提交
1532 1533 1534 1535

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1536 1537 1538 1539
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1540
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1541 1542 1543 1544 1545 1546
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1547
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1548 1549 1550

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1551
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1552
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1553

K
Kent Overstreet 已提交
1554 1555 1556 1557
	return split;
}
EXPORT_SYMBOL(bio_split);

1558 1559 1560 1561 1562
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
1563 1564 1565
 *
 * This function is typically used for bios that are cloned and submitted
 * to the underlying device in parts.
1566
 */
1567
void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1568
{
1569 1570 1571
	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
			 offset + size > bio->bi_iter.bi_size))
		return;
1572 1573

	size <<= 9;
1574
	if (offset == 0 && size == bio->bi_iter.bi_size)
1575 1576 1577
		return;

	bio_advance(bio, offset << 9);
1578
	bio->bi_iter.bi_size = size;
1579 1580

	if (bio_integrity(bio))
1581
		bio_integrity_trim(bio);
1582 1583 1584
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1585 1586 1587 1588
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1589
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1590
{
1591
	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
L
Linus Torvalds 已提交
1592

1593
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1594 1595
}

1596 1597 1598 1599 1600 1601 1602
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1603
{
1604
	bio_alloc_cache_destroy(bs);
1605 1606
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1607
	bs->rescue_workqueue = NULL;
1608

1609 1610
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1611

1612
	bioset_integrity_free(bs);
1613 1614 1615 1616 1617
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1618

1619 1620
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1621
 * @bs:		pool to initialize
1622 1623 1624 1625 1626
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1639 1640 1641 1642 1643 1644 1645
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	bs->front_pad = front_pad;
1646 1647 1648 1649
	if (flags & BIOSET_NEED_BVECS)
		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	else
		bs->back_pad = 0;
1650 1651 1652 1653 1654

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1655
	bs->bio_slab = bio_find_or_create_slab(bs);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	if (flags & BIOSET_NEED_RESCUER) {
		bs->rescue_workqueue = alloc_workqueue("bioset",
							WQ_MEM_RECLAIM, 0);
		if (!bs->rescue_workqueue)
			goto bad;
	}
	if (flags & BIOSET_PERCPU_CACHE) {
		bs->cache = alloc_percpu(struct bio_alloc_cache);
		if (!bs->cache)
			goto bad;
		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
	}
1678 1679 1680 1681 1682 1683 1684 1685

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

1704 1705 1706
/**
 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
 * @kiocb:	kiocb describing the IO
1707
 * @nr_vecs:	number of iovecs to pre-allocate
1708 1709 1710 1711 1712
 * @bs:		bio_set to allocate from
 *
 * Description:
 *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
 *    used to check if we should dip into the per-cpu bio_set allocation
1713 1714 1715
 *    cache. The allocation uses GFP_KERNEL internally. On return, the
 *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
 *    MUST be done from process context, not hard/soft IRQ.
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
 *
 */
struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
			    struct bio_set *bs)
{
	struct bio_alloc_cache *cache;
	struct bio *bio;

	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);

	cache = per_cpu_ptr(bs->cache, get_cpu());
	bio = bio_list_pop(&cache->free_list);
	if (bio) {
		cache->nr--;
		put_cpu();
		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
		bio->bi_pool = bs;
		bio_set_flag(bio, BIO_PERCPU_CACHE);
		return bio;
	}
	put_cpu();
	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
	bio_set_flag(bio, BIO_PERCPU_CACHE);
	return bio;
}
EXPORT_SYMBOL_GPL(bio_alloc_kiocb);

1744
static int __init init_bio(void)
L
Linus Torvalds 已提交
1745 1746 1747
{
	int i;

1748
	bio_integrity_init();
L
Linus Torvalds 已提交
1749

1750 1751
	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
		struct biovec_slab *bvs = bvec_slabs + i;
1752

1753 1754 1755
		bvs->slab = kmem_cache_create(bvs->name,
				bvs->nr_vecs * sizeof(struct bio_vec), 0,
				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1756 1757
	}

1758 1759 1760
	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
					bio_cpu_dead);

1761
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1762 1763
		panic("bio: can't allocate bios\n");

1764
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1765 1766
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1767 1768 1769
	return 0;
}
subsys_initcall(init_bio);