fpu-internal.h 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

#ifndef _FPU_INTERNAL_H
#define _FPU_INTERNAL_H

#include <linux/regset.h>
14
#include <linux/compat.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/i387.h>
19 20
#include <asm/xsave.h>

21 22 23
#ifdef CONFIG_X86_64
# include <asm/sigcontext32.h>
# include <asm/user32.h>
A
Al Viro 已提交
24 25
struct ksignal;
int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
26
			compat_sigset_t *set, struct pt_regs *regs);
A
Al Viro 已提交
27
int ia32_setup_frame(int sig, struct ksignal *ksig,
28 29 30 31 32 33 34 35 36
		     compat_sigset_t *set, struct pt_regs *regs);
#else
# define user_i387_ia32_struct	user_i387_struct
# define user32_fxsr_struct	user_fxsr_struct
# define ia32_setup_frame	__setup_frame
# define ia32_setup_rt_frame	__setup_rt_frame
#endif

extern unsigned int mxcsr_feature_mask;
37
extern void fpu__cpu_init(void);
38
extern void eager_fpu_init(void);
39 40 41

DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);

42 43 44 45 46
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
			      struct task_struct *tsk);
extern void convert_to_fxsr(struct task_struct *tsk,
			    const struct user_i387_ia32_struct *env);

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
extern user_regset_active_fn fpregs_active, xfpregs_active;
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
				xstateregs_get;
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
				 xstateregs_set;

/*
 * xstateregs_active == fpregs_active. Please refer to the comment
 * at the definition of fpregs_active.
 */
#define xstateregs_active	fpregs_active

#ifdef CONFIG_MATH_EMULATION
extern void finit_soft_fpu(struct i387_soft_struct *soft);
#else
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
#endif

65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Must be run with preemption disabled: this clears the fpu_owner_task,
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_owner_task, cpu) = NULL;
}

77 78 79 80 81 82 83 84 85 86
/*
 * Used to indicate that the FPU state in memory is newer than the FPU
 * state in registers, and the FPU state should be reloaded next time the
 * task is run. Only safe on the current task, or non-running tasks.
 */
static inline void task_disable_lazy_fpu_restore(struct task_struct *tsk)
{
	tsk->thread.fpu.last_cpu = ~0;
}

87 88 89 90 91 92
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
{
	return new == this_cpu_read_stable(fpu_owner_task) &&
		cpu == new->thread.fpu.last_cpu;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
static inline int is_ia32_compat_frame(void)
{
	return config_enabled(CONFIG_IA32_EMULATION) &&
	       test_thread_flag(TIF_IA32);
}

static inline int is_ia32_frame(void)
{
	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
}

static inline int is_x32_frame(void)
{
	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
}

109 110
#define X87_FSW_ES (1 << 7)	/* Exception Summary */

111 112
static __always_inline __pure bool use_eager_fpu(void)
{
113
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
114 115
}

116 117
static __always_inline __pure bool use_xsaveopt(void)
{
118
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
119 120 121 122
}

static __always_inline __pure bool use_xsave(void)
{
123
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
124 125 126 127
}

static __always_inline __pure bool use_fxsr(void)
{
128
	return static_cpu_has_safe(X86_FEATURE_FXSR);
129 130
}

131 132 133
static inline void fx_finit(struct i387_fxsave_struct *fx)
{
	fx->cwd = 0x37f;
134
	fx->mxcsr = MXCSR_DEFAULT;
135 136
}

137 138 139 140 141 142 143 144 145
extern void __sanitize_i387_state(struct task_struct *);

static inline void sanitize_i387_state(struct task_struct *tsk)
{
	if (!use_xsaveopt())
		return;
	__sanitize_i387_state(tsk);
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

static inline int fsave_user(struct i387_fsave_struct __user *fx)
178
{
179
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
180 181 182 183
}

static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
{
184
	if (config_enabled(CONFIG_X86_32))
185
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
186
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
187
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
188

189
	/* See comment in fpu_fxsave() below. */
190
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
191 192
}

193
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
194
{
195 196 197 198
	if (config_enabled(CONFIG_X86_32))
		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
199

200 201 202
	/* See comment in fpu_fxsave() below. */
	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216
static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

	/* See comment in fpu_fxsave() below. */
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

217
static inline int frstor_checking(struct i387_fsave_struct *fx)
218
{
219
	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
220 221 222 223 224
}

static inline int frstor_user(struct i387_fsave_struct __user *fx)
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
225 226 227 228
}

static inline void fpu_fxsave(struct fpu *fpu)
{
229 230 231
	if (config_enabled(CONFIG_X86_32))
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
232
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave));
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
			     : "=m" (fpu->state->fxsave)
			     : [fx] "R" (&fpu->state->fxsave));
	}
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
}

/*
 * These must be called with preempt disabled. Returns
 * 'true' if the FPU state is still intact.
 */
static inline int fpu_save_init(struct fpu *fpu)
{
	if (use_xsave()) {
		fpu_xsave(fpu);

		/*
		 * xsave header may indicate the init state of the FP.
		 */
		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
			return 1;
	} else if (use_fxsr()) {
		fpu_fxsave(fpu);
	} else {
		asm volatile("fnsave %[fx]; fwait"
			     : [fx] "=m" (fpu->state->fsave));
		return 0;
	}

	/*
	 * If exceptions are pending, we need to clear them so
	 * that we don't randomly get exceptions later.
	 *
	 * FIXME! Is this perhaps only true for the old-style
	 * irq13 case? Maybe we could leave the x87 state
	 * intact otherwise?
	 */
	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
		asm volatile("fnclex");
		return 0;
	}
	return 1;
}

static inline int __save_init_fpu(struct task_struct *tsk)
{
	return fpu_save_init(&tsk->thread.fpu);
}

static inline int fpu_restore_checking(struct fpu *fpu)
{
	if (use_xsave())
306 307 308
		return fpu_xrstor_checking(&fpu->state->xsave);
	else if (use_fxsr())
		return fxrstor_checking(&fpu->state->fxsave);
309
	else
310
		return frstor_checking(&fpu->state->fsave);
311 312 313 314
}

static inline int restore_fpu_checking(struct task_struct *tsk)
{
315 316 317 318 319
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
320
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
321 322 323 324 325 326
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
			: : [addr] "m" (tsk->thread.fpu.has_fpu));
	}
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	return fpu_restore_checking(&tsk->thread.fpu);
}

/*
 * Software FPU state helpers. Careful: these need to
 * be preemption protection *and* they need to be
 * properly paired with the CR0.TS changes!
 */
static inline int __thread_has_fpu(struct task_struct *tsk)
{
	return tsk->thread.fpu.has_fpu;
}

/* Must be paired with an 'stts' after! */
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 0;
345
	this_cpu_write(fpu_owner_task, NULL);
346 347 348 349 350 351
}

/* Must be paired with a 'clts' before! */
static inline void __thread_set_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 1;
352
	this_cpu_write(fpu_owner_task, tsk);
353 354 355 356 357 358 359 360 361 362 363 364
}

/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
static inline void __thread_fpu_end(struct task_struct *tsk)
{
	__thread_clear_has_fpu(tsk);
365
	if (!use_eager_fpu())
366
		stts();
367 368 369 370
}

static inline void __thread_fpu_begin(struct task_struct *tsk)
{
371
	if (!use_eager_fpu())
372
		clts();
373 374 375
	__thread_set_has_fpu(tsk);
}

376
static inline void drop_fpu(struct task_struct *tsk)
377
{
378 379 380 381
	/*
	 * Forget coprocessor state..
	 */
	preempt_disable();
382
	tsk->thread.fpu.counter = 0;
383

384 385 386 387 388 389 390 391
	if (__thread_has_fpu(tsk)) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		__thread_fpu_end(tsk);
	}

392
	clear_stopped_child_used_math(tsk);
393 394 395
	preempt_enable();
}

396 397 398 399 400 401 402 403
static inline void restore_init_xstate(void)
{
	if (use_xsave())
		xrstor_state(init_xstate_buf, -1);
	else
		fxrstor_checking(&init_xstate_buf->i387);
}

404 405 406 407 408
/*
 * Reset the FPU state in the eager case and drop it in the lazy case (later use
 * will reinit it).
 */
static inline void fpu_reset_state(struct task_struct *tsk)
409
{
410
	if (!use_eager_fpu())
411
		drop_fpu(tsk);
412 413
	else
		restore_init_xstate();
414 415
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
{
	fpu_switch_t fpu;

434 435 436 437
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
438
	fpu.preload = tsk_used_math(new) &&
439
		      (use_eager_fpu() || new->thread.fpu.counter > 5);
440

441 442
	if (__thread_has_fpu(old)) {
		if (!__save_init_fpu(old))
443
			task_disable_lazy_fpu_restore(old);
444 445 446 447 448
		else
			old->thread.fpu.last_cpu = cpu;

		/* But leave fpu_owner_task! */
		old->thread.fpu.has_fpu = 0;
449 450 451

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
452
			new->thread.fpu.counter++;
453 454
			__thread_set_has_fpu(new);
			prefetch(new->thread.fpu.state);
455
		} else if (!use_eager_fpu())
456 457
			stts();
	} else {
458
		old->thread.fpu.counter = 0;
459
		task_disable_lazy_fpu_restore(old);
460
		if (fpu.preload) {
461
			new->thread.fpu.counter++;
462
			if (fpu_lazy_restore(new, cpu))
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
				fpu.preload = 0;
			else
				prefetch(new->thread.fpu.state);
			__thread_fpu_begin(new);
		}
	}
	return fpu;
}

/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
{
	if (fpu.preload) {
		if (unlikely(restore_fpu_checking(new)))
482
			fpu_reset_state(new);
483 484 485 486 487 488
	}
}

/*
 * Signal frame handlers...
 */
489 490
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
491

492
static inline int xstate_sigframe_size(void)
493
{
494 495 496 497 498 499 500 501 502 503 504
	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
}

static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
{
	void __user *buf_fx = buf;
	int size = xstate_sigframe_size();

	if (ia32_frame && use_fxsr()) {
		buf_fx = buf + sizeof(struct i387_fsave_struct);
		size += sizeof(struct i387_fsave_struct);
505
	}
506 507

	return __restore_xstate_sig(buf, buf_fx, size);
508 509 510
}

/*
511
 * Needs to be preemption-safe.
512
 *
513
 * NOTE! user_fpu_begin() must be used only immediately before restoring
514 515 516
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
517 518 519 520 521 522 523 524 525
 */
static inline void user_fpu_begin(void)
{
	preempt_disable();
	if (!user_has_fpu())
		__thread_fpu_begin(current);
	preempt_enable();
}

526 527
static inline void __save_fpu(struct task_struct *tsk)
{
528 529 530 531 532 533
	if (use_xsave()) {
		if (unlikely(system_state == SYSTEM_BOOTING))
			xsave_state_booting(&tsk->thread.fpu.state->xsave, -1);
		else
			xsave_state(&tsk->thread.fpu.state->xsave, -1);
	} else
534 535 536
		fpu_fxsave(&tsk->thread.fpu);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * i387 state interaction
 */
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.cwd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
	}
}

static inline unsigned short get_fpu_swd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.swd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
	}
}

static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
{
	if (cpu_has_xmm) {
		return tsk->thread.fpu.state->fxsave.mxcsr;
	} else {
		return MXCSR_DEFAULT;
	}
}

567
extern int fpstate_alloc(struct fpu *fpu);
568

569
static inline void fpstate_free(struct fpu *fpu)
570 571 572 573 574 575 576
{
	if (fpu->state) {
		kmem_cache_free(task_xstate_cachep, fpu->state);
		fpu->state = NULL;
	}
}

577
static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
578
{
579 580 581
	if (use_eager_fpu()) {
		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
		__save_fpu(dst);
582 583 584 585
	} else {
		struct fpu *dfpu = &dst->thread.fpu;
		struct fpu *sfpu = &src->thread.fpu;

586
		fpu__save(src);
587 588
		memcpy(dfpu->state, sfpu->state, xstate_size);
	}
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static inline unsigned long
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
		unsigned long *size)
{
	unsigned long frame_size = xstate_sigframe_size();

	*buf_fx = sp = round_down(sp - frame_size, 64);
	if (ia32_frame && use_fxsr()) {
		frame_size += sizeof(struct i387_fsave_struct);
		sp -= sizeof(struct i387_fsave_struct);
	}

	*size = frame_size;
	return sp;
}
606 607

#endif