fpu-internal.h 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

#ifndef _FPU_INTERNAL_H
#define _FPU_INTERNAL_H

#include <linux/kernel_stat.h>
#include <linux/regset.h>
15
#include <linux/compat.h>
16 17 18 19 20 21 22 23
#include <linux/slab.h>
#include <asm/asm.h>
#include <asm/cpufeature.h>
#include <asm/processor.h>
#include <asm/sigcontext.h>
#include <asm/user.h>
#include <asm/uaccess.h>
#include <asm/xsave.h>
24
#include <asm/smap.h>
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#ifdef CONFIG_X86_64
# include <asm/sigcontext32.h>
# include <asm/user32.h>
int ia32_setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
			compat_sigset_t *set, struct pt_regs *regs);
int ia32_setup_frame(int sig, struct k_sigaction *ka,
		     compat_sigset_t *set, struct pt_regs *regs);
#else
# define user_i387_ia32_struct	user_i387_struct
# define user32_fxsr_struct	user_fxsr_struct
# define ia32_setup_frame	__setup_frame
# define ia32_setup_rt_frame	__setup_rt_frame
#endif

extern unsigned int mxcsr_feature_mask;
41
extern void fpu_init(void);
42
extern void eager_fpu_init(void);
43 44 45

DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);

46 47 48 49 50
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
			      struct task_struct *tsk);
extern void convert_to_fxsr(struct task_struct *tsk,
			    const struct user_i387_ia32_struct *env);

51 52 53 54 55 56 57 58 59 60 61 62 63
extern user_regset_active_fn fpregs_active, xfpregs_active;
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
				xstateregs_get;
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
				 xstateregs_set;

/*
 * xstateregs_active == fpregs_active. Please refer to the comment
 * at the definition of fpregs_active.
 */
#define xstateregs_active	fpregs_active

#ifdef CONFIG_MATH_EMULATION
64
# define HAVE_HWFP		(boot_cpu_data.hard_math)
65 66
extern void finit_soft_fpu(struct i387_soft_struct *soft);
#else
67
# define HAVE_HWFP		1
68 69 70
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
#endif

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static inline int is_ia32_compat_frame(void)
{
	return config_enabled(CONFIG_IA32_EMULATION) &&
	       test_thread_flag(TIF_IA32);
}

static inline int is_ia32_frame(void)
{
	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
}

static inline int is_x32_frame(void)
{
	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
}

87 88
#define X87_FSW_ES (1 << 7)	/* Exception Summary */

89 90 91 92 93
static __always_inline __pure bool use_eager_fpu(void)
{
	return static_cpu_has(X86_FEATURE_EAGER_FPU);
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
static __always_inline __pure bool use_xsaveopt(void)
{
	return static_cpu_has(X86_FEATURE_XSAVEOPT);
}

static __always_inline __pure bool use_xsave(void)
{
	return static_cpu_has(X86_FEATURE_XSAVE);
}

static __always_inline __pure bool use_fxsr(void)
{
        return static_cpu_has(X86_FEATURE_FXSR);
}

109 110 111 112
static inline void fx_finit(struct i387_fxsave_struct *fx)
{
	memset(fx, 0, xstate_size);
	fx->cwd = 0x37f;
113
	fx->mxcsr = MXCSR_DEFAULT;
114 115
}

116 117 118 119 120 121 122 123 124
extern void __sanitize_i387_state(struct task_struct *);

static inline void sanitize_i387_state(struct task_struct *tsk)
{
	if (!use_xsaveopt())
		return;
	__sanitize_i387_state(tsk);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

static inline int fsave_user(struct i387_fsave_struct __user *fx)
157
{
158
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
159 160 161 162
}

static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
{
163
	if (config_enabled(CONFIG_X86_32))
164
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
165
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
166
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
167

168
	/* See comment in fpu_fxsave() below. */
169
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
170 171
}

172
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
173
{
174 175 176 177
	if (config_enabled(CONFIG_X86_32))
		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
178

179 180 181
	/* See comment in fpu_fxsave() below. */
	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
182 183
}

184
static inline int frstor_checking(struct i387_fsave_struct *fx)
185
{
186
	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
187 188 189 190
}

static inline void fpu_fxsave(struct fpu *fpu)
{
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	if (config_enabled(CONFIG_X86_32))
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
			     : "=m" (fpu->state->fxsave)
			     : [fx] "R" (&fpu->state->fxsave));
	}
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
}

/*
 * These must be called with preempt disabled. Returns
 * 'true' if the FPU state is still intact.
 */
static inline int fpu_save_init(struct fpu *fpu)
{
	if (use_xsave()) {
		fpu_xsave(fpu);

		/*
		 * xsave header may indicate the init state of the FP.
		 */
		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
			return 1;
	} else if (use_fxsr()) {
		fpu_fxsave(fpu);
	} else {
		asm volatile("fnsave %[fx]; fwait"
			     : [fx] "=m" (fpu->state->fsave));
		return 0;
	}

	/*
	 * If exceptions are pending, we need to clear them so
	 * that we don't randomly get exceptions later.
	 *
	 * FIXME! Is this perhaps only true for the old-style
	 * irq13 case? Maybe we could leave the x87 state
	 * intact otherwise?
	 */
	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
		asm volatile("fnclex");
		return 0;
	}
	return 1;
}

static inline int __save_init_fpu(struct task_struct *tsk)
{
	return fpu_save_init(&tsk->thread.fpu);
}

static inline int fpu_restore_checking(struct fpu *fpu)
{
	if (use_xsave())
268 269 270
		return fpu_xrstor_checking(&fpu->state->xsave);
	else if (use_fxsr())
		return fxrstor_checking(&fpu->state->fxsave);
271
	else
272
		return frstor_checking(&fpu->state->fsave);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
}

static inline int restore_fpu_checking(struct task_struct *tsk)
{
	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
	   is pending.  Clear the x87 state here by setting it to fixed
	   values. "m" is a random variable that should be in L1 */
	alternative_input(
		ASM_NOP8 ASM_NOP2,
		"emms\n\t"		/* clear stack tags */
		"fildl %P[addr]",	/* set F?P to defined value */
		X86_FEATURE_FXSAVE_LEAK,
		[addr] "m" (tsk->thread.fpu.has_fpu));

	return fpu_restore_checking(&tsk->thread.fpu);
}

/*
 * Software FPU state helpers. Careful: these need to
 * be preemption protection *and* they need to be
 * properly paired with the CR0.TS changes!
 */
static inline int __thread_has_fpu(struct task_struct *tsk)
{
	return tsk->thread.fpu.has_fpu;
}

/* Must be paired with an 'stts' after! */
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 0;
304
	this_cpu_write(fpu_owner_task, NULL);
305 306 307 308 309 310
}

/* Must be paired with a 'clts' before! */
static inline void __thread_set_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 1;
311
	this_cpu_write(fpu_owner_task, tsk);
312 313 314 315 316 317 318 319 320 321 322 323
}

/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
static inline void __thread_fpu_end(struct task_struct *tsk)
{
	__thread_clear_has_fpu(tsk);
324
	if (!use_eager_fpu())
325
		stts();
326 327 328 329
}

static inline void __thread_fpu_begin(struct task_struct *tsk)
{
330
	if (!use_eager_fpu())
331
		clts();
332 333 334
	__thread_set_has_fpu(tsk);
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
static inline void __drop_fpu(struct task_struct *tsk)
{
	if (__thread_has_fpu(tsk)) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		__thread_fpu_end(tsk);
	}
}

static inline void drop_fpu(struct task_struct *tsk)
{
	/*
	 * Forget coprocessor state..
	 */
	preempt_disable();
	tsk->fpu_counter = 0;
	__drop_fpu(tsk);
	clear_used_math();
	preempt_enable();
}

static inline void drop_init_fpu(struct task_struct *tsk)
{
360
	if (!use_eager_fpu())
361
		drop_fpu(tsk);
362 363 364 365 366 367
	else {
		if (use_xsave())
			xrstor_state(init_xstate_buf, -1);
		else
			fxrstor_checking(&init_xstate_buf->i387);
	}
368 369
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

/*
 * FIXME! We could do a totally lazy restore, but we need to
 * add a per-cpu "this was the task that last touched the FPU
 * on this CPU" variable, and the task needs to have a "I last
 * touched the FPU on this CPU" and check them.
 *
 * We don't do that yet, so "fpu_lazy_restore()" always returns
 * false, but some day..
 */
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
{
395
	return new == this_cpu_read_stable(fpu_owner_task) &&
396 397 398 399 400 401 402
		cpu == new->thread.fpu.last_cpu;
}

static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
{
	fpu_switch_t fpu;

403 404 405 406
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
407
	fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
408
					     new->fpu_counter > 5);
409 410 411 412 413 414 415 416 417 418 419
	if (__thread_has_fpu(old)) {
		if (!__save_init_fpu(old))
			cpu = ~0;
		old->thread.fpu.last_cpu = cpu;
		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
			new->fpu_counter++;
			__thread_set_has_fpu(new);
			prefetch(new->thread.fpu.state);
420
		} else if (!use_eager_fpu())
421 422 423 424 425 426
			stts();
	} else {
		old->fpu_counter = 0;
		old->thread.fpu.last_cpu = ~0;
		if (fpu.preload) {
			new->fpu_counter++;
427
			if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
				fpu.preload = 0;
			else
				prefetch(new->thread.fpu.state);
			__thread_fpu_begin(new);
		}
	}
	return fpu;
}

/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
{
	if (fpu.preload) {
		if (unlikely(restore_fpu_checking(new)))
447
			drop_init_fpu(new);
448 449 450 451 452 453
	}
}

/*
 * Signal frame handlers...
 */
454 455
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
456

457
static inline int xstate_sigframe_size(void)
458
{
459 460 461 462 463 464 465 466 467 468 469
	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
}

static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
{
	void __user *buf_fx = buf;
	int size = xstate_sigframe_size();

	if (ia32_frame && use_fxsr()) {
		buf_fx = buf + sizeof(struct i387_fsave_struct);
		size += sizeof(struct i387_fsave_struct);
470
	}
471 472

	return __restore_xstate_sig(buf, buf_fx, size);
473 474 475
}

/*
476
 * Need to be preemption-safe.
477
 *
478 479
 * NOTE! user_fpu_begin() must be used only immediately before restoring
 * it. This function does not do any save/restore on their own.
480 481 482 483 484 485 486 487 488
 */
static inline void user_fpu_begin(void)
{
	preempt_disable();
	if (!user_has_fpu())
		__thread_fpu_begin(current);
	preempt_enable();
}

489 490 491 492 493 494 495 496
static inline void __save_fpu(struct task_struct *tsk)
{
	if (use_xsave())
		xsave_state(&tsk->thread.fpu.state->xsave, -1);
	else
		fpu_fxsave(&tsk->thread.fpu);
}

497 498 499 500 501 502
/*
 * These disable preemption on their own and are safe
 */
static inline void save_init_fpu(struct task_struct *tsk)
{
	WARN_ON_ONCE(!__thread_has_fpu(tsk));
503

504 505
	if (use_eager_fpu()) {
		__save_fpu(tsk);
506 507 508
		return;
	}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	preempt_disable();
	__save_init_fpu(tsk);
	__thread_fpu_end(tsk);
	preempt_enable();
}

/*
 * i387 state interaction
 */
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.cwd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
	}
}

static inline unsigned short get_fpu_swd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.swd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
	}
}

static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
{
	if (cpu_has_xmm) {
		return tsk->thread.fpu.state->fxsave.mxcsr;
	} else {
		return MXCSR_DEFAULT;
	}
}

static bool fpu_allocated(struct fpu *fpu)
{
	return fpu->state != NULL;
}

static inline int fpu_alloc(struct fpu *fpu)
{
	if (fpu_allocated(fpu))
		return 0;
	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
	if (!fpu->state)
		return -ENOMEM;
	WARN_ON((unsigned long)fpu->state & 15);
	return 0;
}

static inline void fpu_free(struct fpu *fpu)
{
	if (fpu->state) {
		kmem_cache_free(task_xstate_cachep, fpu->state);
		fpu->state = NULL;
	}
}

569
static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
570
{
571 572 573
	if (use_eager_fpu()) {
		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
		__save_fpu(dst);
574 575 576 577 578 579 580
	} else {
		struct fpu *dfpu = &dst->thread.fpu;
		struct fpu *sfpu = &src->thread.fpu;

		unlazy_fpu(src);
		memcpy(dfpu->state, sfpu->state, xstate_size);
	}
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static inline unsigned long
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
		unsigned long *size)
{
	unsigned long frame_size = xstate_sigframe_size();

	*buf_fx = sp = round_down(sp - frame_size, 64);
	if (ia32_frame && use_fxsr()) {
		frame_size += sizeof(struct i387_fsave_struct);
		sp -= sizeof(struct i387_fsave_struct);
	}

	*size = frame_size;
	return sp;
}
598 599

#endif