fpu-internal.h 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

#ifndef _FPU_INTERNAL_H
#define _FPU_INTERNAL_H

#include <linux/kernel_stat.h>
#include <linux/regset.h>
15
#include <linux/compat.h>
16 17 18 19 20 21 22 23
#include <linux/slab.h>
#include <asm/asm.h>
#include <asm/cpufeature.h>
#include <asm/processor.h>
#include <asm/sigcontext.h>
#include <asm/user.h>
#include <asm/uaccess.h>
#include <asm/xsave.h>
24
#include <asm/smap.h>
25

26 27 28
#ifdef CONFIG_X86_64
# include <asm/sigcontext32.h>
# include <asm/user32.h>
A
Al Viro 已提交
29 30
struct ksignal;
int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
31
			compat_sigset_t *set, struct pt_regs *regs);
A
Al Viro 已提交
32
int ia32_setup_frame(int sig, struct ksignal *ksig,
33 34 35 36 37 38 39 40 41
		     compat_sigset_t *set, struct pt_regs *regs);
#else
# define user_i387_ia32_struct	user_i387_struct
# define user32_fxsr_struct	user_fxsr_struct
# define ia32_setup_frame	__setup_frame
# define ia32_setup_rt_frame	__setup_rt_frame
#endif

extern unsigned int mxcsr_feature_mask;
42
extern void fpu_init(void);
43
extern void eager_fpu_init(void);
44 45 46

DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);

47 48 49 50 51
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
			      struct task_struct *tsk);
extern void convert_to_fxsr(struct task_struct *tsk,
			    const struct user_i387_ia32_struct *env);

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
extern user_regset_active_fn fpregs_active, xfpregs_active;
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
				xstateregs_get;
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
				 xstateregs_set;

/*
 * xstateregs_active == fpregs_active. Please refer to the comment
 * at the definition of fpregs_active.
 */
#define xstateregs_active	fpregs_active

#ifdef CONFIG_MATH_EMULATION
extern void finit_soft_fpu(struct i387_soft_struct *soft);
#else
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
#endif

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static inline int is_ia32_compat_frame(void)
{
	return config_enabled(CONFIG_IA32_EMULATION) &&
	       test_thread_flag(TIF_IA32);
}

static inline int is_ia32_frame(void)
{
	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
}

static inline int is_x32_frame(void)
{
	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
}

86 87
#define X87_FSW_ES (1 << 7)	/* Exception Summary */

88 89 90 91 92
static __always_inline __pure bool use_eager_fpu(void)
{
	return static_cpu_has(X86_FEATURE_EAGER_FPU);
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
static __always_inline __pure bool use_xsaveopt(void)
{
	return static_cpu_has(X86_FEATURE_XSAVEOPT);
}

static __always_inline __pure bool use_xsave(void)
{
	return static_cpu_has(X86_FEATURE_XSAVE);
}

static __always_inline __pure bool use_fxsr(void)
{
        return static_cpu_has(X86_FEATURE_FXSR);
}

108 109 110 111
static inline void fx_finit(struct i387_fxsave_struct *fx)
{
	memset(fx, 0, xstate_size);
	fx->cwd = 0x37f;
112
	fx->mxcsr = MXCSR_DEFAULT;
113 114
}

115 116 117 118 119 120 121 122 123
extern void __sanitize_i387_state(struct task_struct *);

static inline void sanitize_i387_state(struct task_struct *tsk)
{
	if (!use_xsaveopt())
		return;
	__sanitize_i387_state(tsk);
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

static inline int fsave_user(struct i387_fsave_struct __user *fx)
156
{
157
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
158 159 160 161
}

static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
{
162
	if (config_enabled(CONFIG_X86_32))
163
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
164
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
165
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
166

167
	/* See comment in fpu_fxsave() below. */
168
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
169 170
}

171
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
172
{
173 174 175 176
	if (config_enabled(CONFIG_X86_32))
		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
177

178 179 180
	/* See comment in fpu_fxsave() below. */
	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
181 182
}

183 184 185 186 187 188 189 190 191 192 193 194
static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

	/* See comment in fpu_fxsave() below. */
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

195
static inline int frstor_checking(struct i387_fsave_struct *fx)
196
{
197
	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
198 199 200 201 202
}

static inline int frstor_user(struct i387_fsave_struct __user *fx)
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
203 204 205 206
}

static inline void fpu_fxsave(struct fpu *fpu)
{
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	if (config_enabled(CONFIG_X86_32))
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
			     : "=m" (fpu->state->fxsave)
			     : [fx] "R" (&fpu->state->fxsave));
	}
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

/*
 * These must be called with preempt disabled. Returns
 * 'true' if the FPU state is still intact.
 */
static inline int fpu_save_init(struct fpu *fpu)
{
	if (use_xsave()) {
		fpu_xsave(fpu);

		/*
		 * xsave header may indicate the init state of the FP.
		 */
		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
			return 1;
	} else if (use_fxsr()) {
		fpu_fxsave(fpu);
	} else {
		asm volatile("fnsave %[fx]; fwait"
			     : [fx] "=m" (fpu->state->fsave));
		return 0;
	}

	/*
	 * If exceptions are pending, we need to clear them so
	 * that we don't randomly get exceptions later.
	 *
	 * FIXME! Is this perhaps only true for the old-style
	 * irq13 case? Maybe we could leave the x87 state
	 * intact otherwise?
	 */
	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
		asm volatile("fnclex");
		return 0;
	}
	return 1;
}

static inline int __save_init_fpu(struct task_struct *tsk)
{
	return fpu_save_init(&tsk->thread.fpu);
}

static inline int fpu_restore_checking(struct fpu *fpu)
{
	if (use_xsave())
284 285 286
		return fpu_xrstor_checking(&fpu->state->xsave);
	else if (use_fxsr())
		return fxrstor_checking(&fpu->state->fxsave);
287
	else
288
		return frstor_checking(&fpu->state->fsave);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
}

static inline int restore_fpu_checking(struct task_struct *tsk)
{
	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
	   is pending.  Clear the x87 state here by setting it to fixed
	   values. "m" is a random variable that should be in L1 */
	alternative_input(
		ASM_NOP8 ASM_NOP2,
		"emms\n\t"		/* clear stack tags */
		"fildl %P[addr]",	/* set F?P to defined value */
		X86_FEATURE_FXSAVE_LEAK,
		[addr] "m" (tsk->thread.fpu.has_fpu));

	return fpu_restore_checking(&tsk->thread.fpu);
}

/*
 * Software FPU state helpers. Careful: these need to
 * be preemption protection *and* they need to be
 * properly paired with the CR0.TS changes!
 */
static inline int __thread_has_fpu(struct task_struct *tsk)
{
	return tsk->thread.fpu.has_fpu;
}

/* Must be paired with an 'stts' after! */
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 0;
320
	this_cpu_write(fpu_owner_task, NULL);
321 322 323 324 325 326
}

/* Must be paired with a 'clts' before! */
static inline void __thread_set_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 1;
327
	this_cpu_write(fpu_owner_task, tsk);
328 329 330 331 332 333 334 335 336 337 338 339
}

/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
static inline void __thread_fpu_end(struct task_struct *tsk)
{
	__thread_clear_has_fpu(tsk);
340
	if (!use_eager_fpu())
341
		stts();
342 343 344 345
}

static inline void __thread_fpu_begin(struct task_struct *tsk)
{
346
	if (!static_cpu_has_safe(X86_FEATURE_EAGER_FPU))
347
		clts();
348 349 350
	__thread_set_has_fpu(tsk);
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static inline void __drop_fpu(struct task_struct *tsk)
{
	if (__thread_has_fpu(tsk)) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		__thread_fpu_end(tsk);
	}
}

static inline void drop_fpu(struct task_struct *tsk)
{
	/*
	 * Forget coprocessor state..
	 */
	preempt_disable();
368
	tsk->thread.fpu_counter = 0;
369 370 371 372 373 374 375
	__drop_fpu(tsk);
	clear_used_math();
	preempt_enable();
}

static inline void drop_init_fpu(struct task_struct *tsk)
{
376
	if (!use_eager_fpu())
377
		drop_fpu(tsk);
378 379 380 381 382 383
	else {
		if (use_xsave())
			xrstor_state(init_xstate_buf, -1);
		else
			fxrstor_checking(&init_xstate_buf->i387);
	}
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

/*
401 402
 * Must be run with preemption disabled: this clears the fpu_owner_task,
 * on this CPU.
403
 *
404 405
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
406
 */
407 408 409 410 411
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_owner_task, cpu) = NULL;
}

412 413
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
{
414
	return new == this_cpu_read_stable(fpu_owner_task) &&
415 416 417 418 419 420 421
		cpu == new->thread.fpu.last_cpu;
}

static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
{
	fpu_switch_t fpu;

422 423 424 425
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
426
	fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
427
					     new->thread.fpu_counter > 5);
428 429 430 431 432 433 434 435
	if (__thread_has_fpu(old)) {
		if (!__save_init_fpu(old))
			cpu = ~0;
		old->thread.fpu.last_cpu = cpu;
		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
436
			new->thread.fpu_counter++;
437 438
			__thread_set_has_fpu(new);
			prefetch(new->thread.fpu.state);
439
		} else if (!use_eager_fpu())
440 441
			stts();
	} else {
442
		old->thread.fpu_counter = 0;
443 444
		old->thread.fpu.last_cpu = ~0;
		if (fpu.preload) {
445
			new->thread.fpu_counter++;
446
			if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
				fpu.preload = 0;
			else
				prefetch(new->thread.fpu.state);
			__thread_fpu_begin(new);
		}
	}
	return fpu;
}

/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
{
	if (fpu.preload) {
		if (unlikely(restore_fpu_checking(new)))
466
			drop_init_fpu(new);
467 468 469 470 471 472
	}
}

/*
 * Signal frame handlers...
 */
473 474
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
475

476
static inline int xstate_sigframe_size(void)
477
{
478 479 480 481 482 483 484 485 486 487 488
	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
}

static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
{
	void __user *buf_fx = buf;
	int size = xstate_sigframe_size();

	if (ia32_frame && use_fxsr()) {
		buf_fx = buf + sizeof(struct i387_fsave_struct);
		size += sizeof(struct i387_fsave_struct);
489
	}
490 491

	return __restore_xstate_sig(buf, buf_fx, size);
492 493 494
}

/*
495
 * Need to be preemption-safe.
496
 *
497 498
 * NOTE! user_fpu_begin() must be used only immediately before restoring
 * it. This function does not do any save/restore on their own.
499 500 501 502 503 504 505 506 507
 */
static inline void user_fpu_begin(void)
{
	preempt_disable();
	if (!user_has_fpu())
		__thread_fpu_begin(current);
	preempt_enable();
}

508 509 510 511 512 513 514 515
static inline void __save_fpu(struct task_struct *tsk)
{
	if (use_xsave())
		xsave_state(&tsk->thread.fpu.state->xsave, -1);
	else
		fpu_fxsave(&tsk->thread.fpu);
}

516 517 518 519 520 521
/*
 * These disable preemption on their own and are safe
 */
static inline void save_init_fpu(struct task_struct *tsk)
{
	WARN_ON_ONCE(!__thread_has_fpu(tsk));
522

523 524
	if (use_eager_fpu()) {
		__save_fpu(tsk);
525 526 527
		return;
	}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	preempt_disable();
	__save_init_fpu(tsk);
	__thread_fpu_end(tsk);
	preempt_enable();
}

/*
 * i387 state interaction
 */
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.cwd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
	}
}

static inline unsigned short get_fpu_swd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.swd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
	}
}

static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
{
	if (cpu_has_xmm) {
		return tsk->thread.fpu.state->fxsave.mxcsr;
	} else {
		return MXCSR_DEFAULT;
	}
}

static bool fpu_allocated(struct fpu *fpu)
{
	return fpu->state != NULL;
}

static inline int fpu_alloc(struct fpu *fpu)
{
	if (fpu_allocated(fpu))
		return 0;
	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
	if (!fpu->state)
		return -ENOMEM;
	WARN_ON((unsigned long)fpu->state & 15);
	return 0;
}

static inline void fpu_free(struct fpu *fpu)
{
	if (fpu->state) {
		kmem_cache_free(task_xstate_cachep, fpu->state);
		fpu->state = NULL;
	}
}

588
static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
589
{
590 591 592
	if (use_eager_fpu()) {
		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
		__save_fpu(dst);
593 594 595 596 597 598 599
	} else {
		struct fpu *dfpu = &dst->thread.fpu;
		struct fpu *sfpu = &src->thread.fpu;

		unlazy_fpu(src);
		memcpy(dfpu->state, sfpu->state, xstate_size);
	}
600 601
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static inline unsigned long
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
		unsigned long *size)
{
	unsigned long frame_size = xstate_sigframe_size();

	*buf_fx = sp = round_down(sp - frame_size, 64);
	if (ia32_frame && use_fxsr()) {
		frame_size += sizeof(struct i387_fsave_struct);
		sp -= sizeof(struct i387_fsave_struct);
	}

	*size = frame_size;
	return sp;
}
617 618

#endif