i915_gem_execbuffer.c 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
35
#include <linux/dma_remapping.h>
36 37 38 39 40

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
41
	uint32_t flips;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

191 192 193
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

194 195 196 197 198 199 200 201 202 203 204 205
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
206
		cd->flush_rings |= intel_ring_flag(obj->ring);
207
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208
		cd->flush_rings |= intel_ring_flag(ring);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

269 270
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271
				   struct eb_objects *eb,
272 273 274 275 276 277 278
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

279 280 281
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
282 283 284 285 286 287 288
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
289
	if (unlikely(target_offset == 0)) {
290 291
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
292
		return ret;
293 294 295
	}

	/* Validate that the target is in a valid r/w GPU domain */
296
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297 298 299 300 301 302 303
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
304
		return ret;
305
	}
306 307 308
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
		DRM_ERROR("reloc with read/write non-GPU domains: "
309 310 311 312 313 314
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
315
		return ret;
316
	}
317 318
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
319 320 321 322 323 324 325
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
326
		return ret;
327 328 329 330 331 332 333 334 335
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
336
		return 0;
337 338

	/* Check that the relocation address is valid... */
339
	if (unlikely(reloc->offset > obj->base.size - 4)) {
340 341 342 343 344
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
345
		return ret;
346
	}
347
	if (unlikely(reloc->offset & 3)) {
348 349 350 351
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
352
		return ret;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

368 369 370 371
		/* We can't wait for rendering with pagefaults disabled */
		if (obj->active && in_atomic())
			return -EFAULT;

372 373
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
374
			return ret;
375 376 377 378 379 380 381 382 383 384 385 386 387 388

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

389
	return 0;
390 391 392 393
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
394
				    struct eb_objects *eb)
395 396
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
397
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
398 399 400 401 402 403 404 405 406 407 408
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

409
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
410 411 412 413 414 415 416 417 418 419 420 421 422 423
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
424
					 struct eb_objects *eb,
425 426
					 struct drm_i915_gem_relocation_entry *relocs)
{
427
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
428 429 430
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
431
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
432 433 434 435 436 437 438 439 440
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
441
			     struct eb_objects *eb,
442
			     struct list_head *objects)
443
{
444
	struct drm_i915_gem_object *obj;
445 446 447 448 449 450 451 452 453 454
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
455
	list_for_each_entry(obj, objects, exec_list) {
456
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
457
		if (ret)
458
			break;
459
	}
460
	pagefault_enable();
461

462
	return ret;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
	need_mappable =
		entry->relocation_count ? true : need_fence;

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
			if (obj->tiling_mode) {
				ret = i915_gem_object_get_fence(obj, ring);
				if (ret)
					goto err_unpin;

				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
				i915_gem_object_pin_fence(obj);
			} else {
				ret = i915_gem_object_put_fence(obj);
				if (ret)
					goto err_unpin;
			}
		}
		obj->pending_fenced_gpu_access = need_fence;
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

513
static int
514
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
515
			    struct drm_file *file,
516
			    struct list_head *objects)
517
{
518 519
	struct drm_i915_gem_object *obj;
	int ret, retry;
520
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
		need_mappable =
			entry->relocation_count ? true : need_fence;

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
544 545 546

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
547 548
	}
	list_splice(&ordered_objects, objects);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
567
		list_for_each_entry(obj, objects, exec_list) {
568
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
569
			bool need_fence, need_mappable;
570

571
			if (!obj->gtt_space)
572 573 574
				continue;

			need_fence =
575
				has_fenced_gpu_access &&
576 577 578 579 580 581 582 583 584
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
585
				ret = pin_and_fence_object(obj, ring);
586
			if (ret)
587 588 589 590
				goto err;
		}

		/* Bind fresh objects */
591
		list_for_each_entry(obj, objects, exec_list) {
592 593
			if (obj->gtt_space)
				continue;
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
609 610 611
			}
		}

612 613
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
614 615 616 617 618 619 620 621 622 623 624 625
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
626 627 628 629 630 631 632 633
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
634
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
635 636 637 638 639
		if (ret)
			return ret;

		retry++;
	} while (1);
640 641

err:
642 643 644 645 646 647 648 649 650 651 652
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
653

654
		i915_gem_object_unpin(obj);
655 656 657
	}

	return ret;
658 659 660 661 662
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
663
				  struct intel_ring_buffer *ring,
664
				  struct list_head *objects,
665
				  struct eb_objects *eb,
666
				  struct drm_i915_gem_exec_object2 *exec,
667 668 669
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
670
	struct drm_i915_gem_object *obj;
671
	int *reloc_offset;
672 673
	int i, total, ret;

674
	/* We may process another execbuffer during the unlock... */
675
	while (!list_empty(objects)) {
676 677 678 679 680 681 682
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

683 684 685 686
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
687
		total += exec[i].relocation_count;
688

689
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
690
	reloc = drm_malloc_ab(total, sizeof(*reloc));
691 692 693
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
694 695 696 697 698 699 700 701
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

702
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
703 704

		if (copy_from_user(reloc+total, user_relocs,
705
				   exec[i].relocation_count * sizeof(*reloc))) {
706 707 708 709 710
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

711
		reloc_offset[i] = total;
712
		total += exec[i].relocation_count;
713 714 715 716 717 718 719 720
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

721 722 723 724 725
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
726
		if (&obj->base == NULL) {
727 728 729 730 731 732 733 734
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
735
		obj->exec_entry = &exec[i];
736 737 738
		eb_add_object(eb, obj);
	}

739
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
740 741 742
	if (ret)
		goto err;

743
	list_for_each_entry(obj, objects, exec_list) {
744
		int offset = obj->exec_entry - exec;
745
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
746
							       reloc + reloc_offset[offset]);
747 748 749 750 751 752 753 754 755 756 757 758
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
759
	drm_free_large(reloc_offset);
760 761 762
	return ret;
}

763
static int
764 765 766 767 768 769
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
770
	int i, ret;
771 772 773 774

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

775 776 777
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

778
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
779
		for (i = 0; i < I915_NUM_RINGS; i++)
780
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
781
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
782 783 784 785 786
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
787
	}
788 789

	return 0;
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static bool
intel_enable_semaphores(struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen < 6)
		return 0;

	if (i915_semaphores >= 0)
		return i915_semaphores;

	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev)->gen == 6)
		return !intel_iommu_enabled;

	return 1;
}

808 809 810 811 812 813 814 815 816 817 818
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

819
	/* XXX gpu semaphores are implicated in various hard hangs on SNB */
820
	if (!intel_enable_semaphores(obj->base.dev))
821
		return i915_gem_object_wait_rendering(obj);
822 823 824 825 826 827 828 829 830 831 832 833 834 835

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

C
Chris Wilson 已提交
836
		ret = i915_add_request(from, NULL, request);
837 838 839 840 841 842 843 844 845
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
846 847

	return to->sync_to(to, from, seqno - 1);
848
}
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


883
static int
884 885
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
886
{
887
	struct drm_i915_gem_object *obj;
888
	struct change_domains cd;
889
	int ret;
890

891
	memset(&cd, 0, sizeof(cd));
892 893
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
894 895

	if (cd.invalidate_domains | cd.flush_domains) {
896 897 898 899 900 901
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
902 903
	}

904 905 906 907 908 909
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

910
	list_for_each_entry(obj, objects, exec_list) {
911 912 913
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
914 915 916 917 918
	}

	return 0;
}

919 920
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
921
{
922
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

956 957
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
958 959
				   struct intel_ring_buffer *ring,
				   u32 seqno)
960 961 962 963
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
964 965 966 967
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


968 969 970 971
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

972
		i915_gem_object_move_to_active(obj, ring, seqno);
973 974
		if (obj->base.write_domain) {
			obj->dirty = 1;
975
			obj->pending_gpu_write = true;
976 977 978 979 980
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
981
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
982 983 984
	}
}

985 986
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
987
				    struct drm_file *file,
988 989
				    struct intel_ring_buffer *ring)
{
990
	struct drm_i915_gem_request *request;
991
	u32 invalidate;
992

993 994 995 996 997 998
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
999
	invalidate = I915_GEM_DOMAIN_COMMAND;
1000
	if (INTEL_INFO(dev)->gen >= 4)
1001 1002
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
1003
		i915_gem_next_request_seqno(ring);
1004 1005
		return;
	}
1006

1007 1008
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
1009 1010
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
1011 1012 1013
		kfree(request);
	}
}
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1040 1041 1042 1043
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1044
		       struct drm_i915_gem_exec_object2 *exec)
1045 1046
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1047
	struct list_head objects;
1048
	struct eb_objects *eb;
1049 1050 1051
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1052
	u32 exec_start, exec_len;
1053
	u32 seqno;
1054
	u32 mask;
1055
	int ret, mode, i;
1056

1057 1058 1059 1060 1061 1062
	if (!i915_gem_check_execbuffer(args)) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1063 1064 1065 1066 1067 1068
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1069
		ring = &dev_priv->ring[RCS];
1070 1071 1072 1073 1074 1075
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
			return -EINVAL;
		}
1076
		ring = &dev_priv->ring[VCS];
1077 1078 1079 1080 1081 1082
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
1083
		ring = &dev_priv->ring[BCS];
1084 1085 1086 1087 1088 1089 1090
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1091
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1092
	mask = I915_EXEC_CONSTANTS_MASK;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1105 1106 1107 1108

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1109 1110 1111 1112 1113 1114 1115
		}
		break;
	default:
		DRM_ERROR("execbuf with unknown constants: %d\n", mode);
		return -EINVAL;
	}

1116 1117 1118 1119 1120 1121
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1122
		if (ring != &dev_priv->ring[RCS]) {
1123 1124 1125 1126
			DRM_ERROR("clip rectangles are only valid with the render ring\n");
			return -EINVAL;
		}

1127
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1128 1129 1130 1131 1132 1133
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1134 1135 1136 1137
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1153 1154 1155 1156 1157 1158 1159
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1160
	/* Look up object handles */
1161
	INIT_LIST_HEAD(&objects);
1162 1163 1164
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1165 1166
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1167
		if (&obj->base == NULL) {
1168
			DRM_ERROR("Invalid object handle %d at index %d\n",
1169
				   exec[i].handle, i);
1170 1171 1172 1173 1174
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1175 1176 1177
		if (!list_empty(&obj->exec_list)) {
			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
				   obj, exec[i].handle, i);
1178 1179 1180
			ret = -EINVAL;
			goto err;
		}
1181 1182

		list_add_tail(&obj->exec_list, &objects);
1183
		obj->exec_handle = exec[i].handle;
1184
		obj->exec_entry = &exec[i];
1185
		eb_add_object(eb, obj);
1186 1187
	}

1188 1189 1190 1191 1192
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1193
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1194
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1195 1196 1197 1198
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1199
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1200 1201
	if (ret) {
		if (ret == -EFAULT) {
1202
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1203 1204
								&objects, eb,
								exec,
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1220 1221
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1222 1223
		goto err;

C
Chris Wilson 已提交
1224
	seqno = i915_gem_next_request_seqno(ring);
1225
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1226 1227 1228 1229 1230
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1231
			ret = i915_gpu_idle(dev, true);
1232 1233 1234 1235 1236 1237 1238
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1248
		intel_ring_emit(ring, mask << 16 | mode);
1249 1250 1251 1252 1253
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1254 1255 1256 1257 1258 1259
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1260 1261
	trace_i915_gem_ring_dispatch(ring, seqno);

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1281

1282
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1283
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1284 1285

err:
1286
	eb_destroy(eb);
1287 1288 1289 1290 1291 1292 1293 1294
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

1403 1404 1405 1406 1407
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}