blk-mq.c 67.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
43

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87
void blk_freeze_queue_start(struct request_queue *q)
88
{
89
	int freeze_depth;
90

91 92
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
93
		percpu_ref_kill(&q->q_usage_counter);
94
		blk_mq_run_hw_queues(q, false);
95
	}
96
}
97
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
98

99
void blk_mq_freeze_queue_wait(struct request_queue *q)
100
{
101
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
102
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
104

105 106 107 108 109 110 111 112
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
113

114 115 116 117
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
118
void blk_freeze_queue(struct request_queue *q)
119
{
120 121 122 123 124 125 126
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
127
	blk_freeze_queue_start(q);
128 129
	blk_mq_freeze_queue_wait(q);
}
130 131 132 133 134 135 136 137 138

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
140

141
void blk_mq_unfreeze_queue(struct request_queue *q)
142
{
143
	int freeze_depth;
144

145 146 147
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
148
		percpu_ref_reinit(&q->q_usage_counter);
149
		wake_up_all(&q->mq_freeze_wq);
150
	}
151
}
152
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

168
	__blk_mq_stop_hw_queues(q, true);
169 170 171 172 173 174 175 176 177 178 179 180

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

181 182 183 184 185 186 187 188
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
189 190 191 192 193 194 195

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
196 197
}

198 199 200 201 202 203
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

204 205
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
206
{
207 208 209
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
210
	rq->mq_ctx = ctx;
211
	rq->cmd_flags = op;
212 213
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
214 215 216 217 218 219
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
220
	rq->start_time = jiffies;
221 222
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
223
	set_start_time_ns(rq);
224 225 226 227 228 229 230 231 232 233 234
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
235 236
	rq->timeout = 0;

237 238 239 240
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

241
	ctx->rq_dispatched[op_is_sync(op)]++;
242
}
243
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
244

245 246
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
247 248 249 250
{
	struct request *rq;
	unsigned int tag;

251
	tag = blk_mq_get_tag(data);
252
	if (tag != BLK_MQ_TAG_FAIL) {
253 254 255
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
256

257 258 259 260
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
261 262 263 264
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
265 266
			rq->tag = tag;
			rq->internal_tag = -1;
267
			data->hctx->tags->rqs[rq->tag] = rq;
268 269
		}

270
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
271 272 273 274 275
		return rq;
	}

	return NULL;
}
276
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
277

278 279
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
280
{
281
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
282
	struct request *rq;
283
	int ret;
284

285
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
286 287
	if (ret)
		return ERR_PTR(ret);
288

289
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
290

291 292 293 294
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
295
		return ERR_PTR(-EWOULDBLOCK);
296 297 298 299

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
300 301
	return rq;
}
302
EXPORT_SYMBOL(blk_mq_alloc_request);
303

M
Ming Lin 已提交
304 305 306
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
307
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
308
	struct request *rq;
309
	unsigned int cpu;
M
Ming Lin 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

328 329 330 331
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
332 333 334 335
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
336
	}
337 338
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
339

340
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
341 342

	blk_queue_exit(q);
343 344 345 346 347

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
348 349 350
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

351 352
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
353
{
354
	const int sched_tag = rq->internal_tag;
355 356
	struct request_queue *q = rq->q;

357
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
358
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
359 360

	wbt_done(q->rq_wb, &rq->issue_stat);
361
	rq->rq_flags = 0;
362

363
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
364
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
365 366 367
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
368
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
369
	blk_mq_sched_restart(hctx);
370
	blk_queue_exit(q);
371 372
}

373
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
374
				     struct request *rq)
375 376 377 378
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
379 380 381 382 383 384
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
385
}
O
Omar Sandoval 已提交
386
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
387 388 389

void blk_mq_free_request(struct request *rq)
{
390
	blk_mq_sched_put_request(rq);
391
}
J
Jens Axboe 已提交
392
EXPORT_SYMBOL_GPL(blk_mq_free_request);
393

394
inline void __blk_mq_end_request(struct request *rq, int error)
395
{
M
Ming Lei 已提交
396 397
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
398
	if (rq->end_io) {
J
Jens Axboe 已提交
399
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
400
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
401 402 403
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
404
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
405
	}
406
}
407
EXPORT_SYMBOL(__blk_mq_end_request);
408

409
void blk_mq_end_request(struct request *rq, int error)
410 411 412
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
413
	__blk_mq_end_request(rq, error);
414
}
415
EXPORT_SYMBOL(blk_mq_end_request);
416

417
static void __blk_mq_complete_request_remote(void *data)
418
{
419
	struct request *rq = data;
420

421
	rq->q->softirq_done_fn(rq);
422 423
}

424
static void __blk_mq_complete_request(struct request *rq)
425 426
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
427
	bool shared = false;
428 429
	int cpu;

430 431 432 433 434 435 436
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
437
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
438 439 440
		rq->q->softirq_done_fn(rq);
		return;
	}
441 442

	cpu = get_cpu();
C
Christoph Hellwig 已提交
443 444 445 446
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
447
		rq->csd.func = __blk_mq_complete_request_remote;
448 449
		rq->csd.info = rq;
		rq->csd.flags = 0;
450
		smp_call_function_single_async(ctx->cpu, &rq->csd);
451
	} else {
452
		rq->q->softirq_done_fn(rq);
453
	}
454 455
	put_cpu();
}
456 457 458 459 460 461 462 463 464

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
465
void blk_mq_complete_request(struct request *rq)
466
{
467 468 469
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
470
		return;
471
	if (!blk_mark_rq_complete(rq))
472
		__blk_mq_complete_request(rq);
473 474
}
EXPORT_SYMBOL(blk_mq_complete_request);
475

476 477 478 479 480 481
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

482
void blk_mq_start_request(struct request *rq)
483 484 485
{
	struct request_queue *q = rq->q;

486 487
	blk_mq_sched_started_request(rq);

488 489
	trace_block_rq_issue(q, rq);

490
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
493
		wbt_issue(q->rq_wb, &rq->issue_stat);
494 495
	}

496
	blk_add_timer(rq);
497

498 499 500 501 502 503
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

504 505 506 507 508 509
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
510 511 512 513
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514 515 516 517 518 519 520 521 522

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
523
}
524
EXPORT_SYMBOL(blk_mq_start_request);
525

526 527
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528
 * flag isn't set yet, so there may be race with timeout handler,
529 530 531 532 533 534
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
535
static void __blk_mq_requeue_request(struct request *rq)
536 537 538 539
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
540
	wbt_requeue(q->rq_wb, &rq->issue_stat);
541
	blk_mq_sched_requeue_request(rq);
542

543 544 545 546
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
547 548
}

549
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550 551 552 553
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
554
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555 556 557
}
EXPORT_SYMBOL(blk_mq_requeue_request);

558 559 560
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
561
		container_of(work, struct request_queue, requeue_work.work);
562 563 564 565 566 567 568 569 570
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
572 573
			continue;

574
		rq->rq_flags &= ~RQF_SOFTBARRIER;
575
		list_del_init(&rq->queuelist);
576
		blk_mq_sched_insert_request(rq, true, false, false, true);
577 578 579 580 581
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
582
		blk_mq_sched_insert_request(rq, false, false, false, true);
583 584
	}

585
	blk_mq_run_hw_queues(q, false);
586 587
}

588 589
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
590 591 592 593 594 595 596 597
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
598
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599 600 601

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
602
		rq->rq_flags |= RQF_SOFTBARRIER;
603 604 605 606 607
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
608 609 610

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
611 612 613 614 615
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
616
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
617 618 619
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

620 621 622 623 624 625 626 627
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

628 629
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
630 631
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
632
		return tags->rqs[tag];
633
	}
634 635

	return NULL;
636 637 638
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

639
struct blk_mq_timeout_data {
640 641
	unsigned long next;
	unsigned int next_set;
642 643
};

644
void blk_mq_rq_timed_out(struct request *req, bool reserved)
645
{
J
Jens Axboe 已提交
646
	const struct blk_mq_ops *ops = req->q->mq_ops;
647
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
648 649 650 651 652 653 654

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
655
	 * both flags will get cleared. So check here again, and ignore
656 657
	 * a timeout event with a request that isn't active.
	 */
658 659
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
660

661
	if (ops->timeout)
662
		ret = ops->timeout(req, reserved);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
678
}
679

680 681 682 683
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
684

685
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
686
		return;
687

688 689 690 691 692 693 694 695 696 697 698 699 700
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
701 702
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
703
			blk_mq_rq_timed_out(rq, reserved);
704 705 706 707
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
708 709
}

710
static void blk_mq_timeout_work(struct work_struct *work)
711
{
712 713
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
714 715 716 717 718
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
719

720 721 722 723 724 725 726 727 728
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
729
	 * blk_freeze_queue_start, and the moment the last request is
730 731 732 733
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
734 735
		return;

736
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
737

738 739 740
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
741
	} else {
742 743
		struct blk_mq_hw_ctx *hctx;

744 745 746 747 748
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
749
	}
750
	blk_queue_exit(q);
751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
765
		bool merged = false;
766 767 768 769 770 771 772

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

773 774 775 776
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
777
			break;
778 779 780
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
781
			break;
782 783
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
784
			break;
785 786
		default:
			continue;
787
		}
788 789 790 791

		if (merged)
			ctx->rq_merged++;
		return merged;
792 793 794 795 796
	}

	return false;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

815 816 817 818
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
819
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
820
{
821 822 823 824
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
825

826
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
827
}
828
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
829

830 831 832 833
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
834

835
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
836 837
}

838 839
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
840 841 842 843 844 845 846
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

847 848
	might_sleep_if(wait);

849 850
	if (rq->tag != -1)
		goto done;
851

852 853 854
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

855 856
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
857 858 859 860
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
861 862 863
		data.hctx->tags->rqs[rq->tag] = rq;
	}

864 865 866 867
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
868 869
}

870 871
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
872 873 874 875 876 877 878 879 880 881
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

964
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
965
{
966
	struct blk_mq_hw_ctx *hctx;
967
	struct request *rq;
968
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
969

970 971 972
	if (list_empty(list))
		return false;

973 974 975
	/*
	 * Now process all the entries, sending them to the driver.
	 */
976
	errors = queued = 0;
977
	do {
978
		struct blk_mq_queue_data bd;
979

980
		rq = list_first_entry(list, struct request, queuelist);
981 982 983
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
984 985

			/*
986 987
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
988
			 */
989 990 991 992 993 994 995 996 997
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
998
				break;
999
		}
1000

1001 1002
		list_del_init(&rq->queuelist);

1003
		bd.rq = rq;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1017 1018

		ret = q->mq_ops->queue_rq(hctx, &bd);
1019 1020 1021
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1022
			break;
1023
		case BLK_MQ_RQ_QUEUE_BUSY:
1024
			blk_mq_put_driver_tag_hctx(hctx, rq);
1025
			list_add(&rq->queuelist, list);
1026
			__blk_mq_requeue_request(rq);
1027 1028 1029 1030
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1031
			errors++;
1032
			blk_mq_end_request(rq, -EIO);
1033 1034 1035 1036 1037
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1038
	} while (!list_empty(list));
1039

1040
	hctx->dispatched[queued_to_index(queued)]++;
1041 1042 1043 1044 1045

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1046
	if (!list_empty(list)) {
1047
		/*
1048 1049
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1050 1051 1052 1053
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1054
		spin_lock(&hctx->lock);
1055
		list_splice_init(list, &hctx->dispatch);
1056
		spin_unlock(&hctx->lock);
1057

1058
		/*
1059 1060 1061
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1062
		 *
1063 1064 1065 1066
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1067
		 *
1068 1069 1070 1071 1072 1073 1074 1075 1076
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1077
		 */
1078 1079
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1080
			blk_mq_run_hw_queue(hctx, true);
1081
	}
1082

1083
	return (queued + errors) != 0;
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093 1094
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1095
		blk_mq_sched_dispatch_requests(hctx);
1096 1097
		rcu_read_unlock();
	} else {
1098 1099
		might_sleep();

1100
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1101
		blk_mq_sched_dispatch_requests(hctx);
1102 1103 1104 1105
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1106 1107 1108 1109 1110 1111 1112 1113
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1114 1115
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1116 1117

	if (--hctx->next_cpu_batch <= 0) {
1118
		int next_cpu;
1119 1120 1121 1122 1123 1124 1125 1126 1127

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1128
	return hctx->next_cpu;
1129 1130
}

1131 1132
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1133
{
1134 1135
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1136 1137
		return;

1138
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1139 1140
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1141
			__blk_mq_run_hw_queue(hctx);
1142
			put_cpu();
1143 1144
			return;
		}
1145

1146
		put_cpu();
1147
	}
1148

1149 1150 1151
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1163
}
O
Omar Sandoval 已提交
1164
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1165

1166
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1167 1168 1169 1170 1171
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1172
		if (!blk_mq_hctx_has_pending(hctx) ||
1173
		    blk_mq_hctx_stopped(hctx))
1174 1175
			continue;

1176
		blk_mq_run_hw_queue(hctx, async);
1177 1178
	}
}
1179
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1201
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1202
{
1203 1204 1205 1206 1207
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1208 1209
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1210 1211 1212 1213 1214

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1215 1216
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1217
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1218 1219 1220 1221 1222
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1223 1224 1225 1226 1227 1228
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1229 1230 1231
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1232 1233 1234
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235

1236
	blk_mq_run_hw_queue(hctx, false);
1237 1238 1239
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1260
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1261 1262 1263 1264
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1265 1266
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1267 1268 1269
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1270
static void blk_mq_run_work_fn(struct work_struct *work)
1271 1272 1273
{
	struct blk_mq_hw_ctx *hctx;

1274
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1275

1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1284

1285 1286 1287
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1288 1289 1290 1291

	__blk_mq_run_hw_queue(hctx);
}

1292 1293 1294

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1295 1296
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1297

1298 1299 1300 1301 1302
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1303
	blk_mq_stop_hw_queue(hctx);
1304 1305 1306 1307
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1308 1309 1310
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1311 1312 1313
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1314
{
J
Jens Axboe 已提交
1315 1316
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1317 1318
	trace_block_rq_insert(hctx->queue, rq);

1319 1320 1321 1322
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1323
}
1324

1325 1326
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1327 1328 1329
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1330
	__blk_mq_insert_req_list(hctx, rq, at_head);
1331 1332 1333
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1334 1335
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1347
		BUG_ON(rq->mq_ctx != ctx);
1348
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1349
		__blk_mq_insert_req_list(hctx, rq, false);
1350
	}
1351
	blk_mq_hctx_mark_pending(hctx, ctx);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1388 1389 1390 1391
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1408 1409 1410
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1411 1412 1413 1414 1415
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1416
	blk_init_request_from_bio(rq, bio);
1417

1418
	blk_account_io_start(rq, true);
1419 1420
}

1421 1422 1423 1424 1425 1426
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1427 1428 1429
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1430
{
1431
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1432 1433 1434 1435 1436 1437 1438
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1439 1440
		struct request_queue *q = hctx->queue;

1441 1442 1443 1444 1445
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1446

1447
		spin_unlock(&ctx->lock);
1448
		__blk_mq_finish_request(hctx, ctx, rq);
1449
		return true;
1450
	}
1451
}
1452

1453 1454
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1455 1456 1457 1458
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1459 1460
}

M
Ming Lei 已提交
1461 1462 1463
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1464 1465 1466 1467
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1468
		.last = true,
1469
	};
1470 1471
	blk_qc_t new_cookie;
	int ret;
M
Ming Lei 已提交
1472 1473 1474 1475 1476 1477
	bool run_queue = true;

	if (blk_mq_hctx_stopped(hctx)) {
		run_queue = false;
		goto insert;
	}
1478

1479
	if (q->elevator)
1480 1481
		goto insert;

M
Ming Lei 已提交
1482
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1483 1484 1485 1486
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1487 1488 1489 1490 1491 1492
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1493 1494
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1495
		return;
1496
	}
1497

1498 1499
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
1500
		blk_mq_end_request(rq, -EIO);
1501
		return;
1502
	}
1503

1504
	__blk_mq_requeue_request(rq);
1505
insert:
M
Ming Lei 已提交
1506
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1507 1508
}

1509 1510 1511 1512 1513
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1514
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1515 1516
		rcu_read_unlock();
	} else {
1517 1518 1519 1520 1521
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1522
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1523 1524 1525 1526
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1527
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1528
{
1529
	const int is_sync = op_is_sync(bio->bi_opf);
1530
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1531
	struct blk_mq_alloc_data data = { .flags = 0 };
1532
	struct request *rq;
1533
	unsigned int request_count = 0;
1534
	struct blk_plug *plug;
1535
	struct request *same_queue_rq = NULL;
1536
	blk_qc_t cookie;
J
Jens Axboe 已提交
1537
	unsigned int wb_acct;
1538 1539 1540

	blk_queue_bounce(q, &bio);

1541 1542
	blk_queue_split(q, &bio, q->bio_split);

1543
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1544
		bio_io_error(bio);
1545
		return BLK_QC_T_NONE;
1546 1547
	}

1548 1549 1550
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1551

1552 1553 1554
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1555 1556
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1557 1558 1559
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1560 1561
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1562
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1563 1564 1565
	}

	wbt_track(&rq->issue_stat, wb_acct);
1566

1567
	cookie = request_to_qc_t(data.hctx, rq);
1568

1569
	plug = current->plug;
1570
	if (unlikely(is_flush_fua)) {
1571
		blk_mq_put_ctx(data.ctx);
1572
		blk_mq_bio_to_request(rq, bio);
1573 1574 1575
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1576
		} else {
1577 1578
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1579
		}
1580
	} else if (plug && q->nr_hw_queues == 1) {
1581 1582
		struct request *last = NULL;

1583
		blk_mq_put_ctx(data.ctx);
1584
		blk_mq_bio_to_request(rq, bio);
1585 1586 1587 1588 1589 1590 1591

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1592 1593 1594
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1595
		if (!request_count)
1596
			trace_block_plug(q);
1597 1598
		else
			last = list_entry_rq(plug->mq_list.prev);
1599

1600 1601
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1602 1603
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1604
		}
1605

1606
		list_add_tail(&rq->queuelist, &plug->mq_list);
1607
	} else if (plug && !blk_queue_nomerges(q)) {
1608
		blk_mq_bio_to_request(rq, bio);
1609 1610

		/*
1611
		 * We do limited plugging. If the bio can be merged, do that.
1612 1613
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1614 1615
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1616
		 */
1617 1618 1619 1620 1621 1622
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1623 1624
		blk_mq_put_ctx(data.ctx);

1625 1626 1627
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1628 1629
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1630
		}
1631
	} else if (q->nr_hw_queues > 1 && is_sync) {
1632
		blk_mq_put_ctx(data.ctx);
1633 1634
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1635
	} else if (q->elevator) {
1636
		blk_mq_put_ctx(data.ctx);
1637
		blk_mq_bio_to_request(rq, bio);
1638
		blk_mq_sched_insert_request(rq, false, true, true, true);
1639 1640
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_put_ctx(data.ctx);
1641
		blk_mq_run_hw_queue(data.hctx, true);
1642 1643
	} else
		blk_mq_put_ctx(data.ctx);
1644

1645
	return cookie;
1646 1647
}

1648 1649
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1650
{
1651
	struct page *page;
1652

1653
	if (tags->rqs && set->ops->exit_request) {
1654
		int i;
1655

1656
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1657 1658 1659
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1660
				continue;
1661
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1662
			tags->static_rqs[i] = NULL;
1663
		}
1664 1665
	}

1666 1667
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1668
		list_del_init(&page->lru);
1669 1670 1671 1672 1673
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1674 1675
		__free_pages(page, page->private);
	}
1676
}
1677

1678 1679
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1680
	kfree(tags->rqs);
1681
	tags->rqs = NULL;
J
Jens Axboe 已提交
1682 1683
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1684

1685
	blk_mq_free_tags(tags);
1686 1687
}

1688 1689 1690 1691
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1692
{
1693
	struct blk_mq_tags *tags;
1694
	int node;
1695

1696 1697 1698 1699 1700
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1701
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1702 1703
	if (!tags)
		return NULL;
1704

1705
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1706
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1707
				 node);
1708 1709 1710 1711
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1712

J
Jens Axboe 已提交
1713 1714
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1715
				 node);
J
Jens Axboe 已提交
1716 1717 1718 1719 1720 1721
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1735 1736 1737 1738 1739
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1740 1741 1742

	INIT_LIST_HEAD(&tags->page_list);

1743 1744 1745 1746
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1747
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1748
				cache_line_size());
1749
	left = rq_size * depth;
1750

1751
	for (i = 0; i < depth; ) {
1752 1753 1754 1755 1756
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1757
		while (this_order && left < order_to_size(this_order - 1))
1758 1759 1760
			this_order--;

		do {
1761
			page = alloc_pages_node(node,
1762
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1763
				this_order);
1764 1765 1766 1767 1768 1769 1770 1771 1772
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1773
			goto fail;
1774 1775

		page->private = this_order;
1776
		list_add_tail(&page->lru, &tags->page_list);
1777 1778

		p = page_address(page);
1779 1780 1781 1782
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1783
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1784
		entries_per_page = order_to_size(this_order) / rq_size;
1785
		to_do = min(entries_per_page, depth - i);
1786 1787
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1788 1789 1790
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1791
			if (set->ops->init_request) {
1792
				if (set->ops->init_request(set, rq, hctx_idx,
1793
						node)) {
J
Jens Axboe 已提交
1794
					tags->static_rqs[i] = NULL;
1795
					goto fail;
1796
				}
1797 1798
			}

1799 1800 1801 1802
			p += rq_size;
			i++;
		}
	}
1803
	return 0;
1804

1805
fail:
1806 1807
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1808 1809
}

J
Jens Axboe 已提交
1810 1811 1812 1813 1814
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1815
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1816
{
1817
	struct blk_mq_hw_ctx *hctx;
1818 1819 1820
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1821
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1822
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1823 1824 1825 1826 1827 1828 1829 1830 1831

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1832
		return 0;
1833

J
Jens Axboe 已提交
1834 1835 1836
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1837 1838

	blk_mq_run_hw_queue(hctx, true);
1839
	return 0;
1840 1841
}

1842
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1843
{
1844 1845
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1846 1847
}

1848
/* hctx->ctxs will be freed in queue's release handler */
1849 1850 1851 1852
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1853 1854
	blk_mq_debugfs_unregister_hctx(hctx);

1855 1856
	blk_mq_tag_idle(hctx);

1857
	if (set->ops->exit_request)
1858
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1859

1860 1861
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1862 1863 1864
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1865 1866 1867
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1868
	blk_mq_remove_cpuhp(hctx);
1869
	blk_free_flush_queue(hctx->fq);
1870
	sbitmap_free(&hctx->ctx_map);
1871 1872
}

M
Ming Lei 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1882
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1883 1884 1885
	}
}

1886 1887 1888
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1889
{
1890 1891 1892 1893 1894 1895
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1896
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1897 1898 1899 1900
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1901
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1902

1903
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1904 1905

	hctx->tags = set->tags[hctx_idx];
1906 1907

	/*
1908 1909
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1910
	 */
1911 1912 1913 1914
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1915

1916 1917
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1918
		goto free_ctxs;
1919

1920
	hctx->nr_ctx = 0;
1921

1922 1923 1924
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1925

1926 1927 1928
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1929 1930
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1931
		goto sched_exit_hctx;
1932

1933
	if (set->ops->init_request &&
1934 1935
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1936
		goto free_fq;
1937

1938 1939 1940
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1941 1942
	blk_mq_debugfs_register_hctx(q, hctx);

1943
	return 0;
1944

1945 1946
 free_fq:
	kfree(hctx->fq);
1947 1948
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1949 1950 1951
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1952
 free_bitmap:
1953
	sbitmap_free(&hctx->ctx_map);
1954 1955 1956
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1957
	blk_mq_remove_cpuhp(hctx);
1958 1959
	return -1;
}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

1975 1976
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
1977 1978
			continue;

C
Christoph Hellwig 已提交
1979
		hctx = blk_mq_map_queue(q, i);
1980

1981 1982 1983 1984 1985
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1986
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1987 1988 1989
	}
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2012 2013 2014 2015 2016
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2017 2018
}

2019
static void blk_mq_map_swqueue(struct request_queue *q)
2020
{
2021
	unsigned int i, hctx_idx;
2022 2023
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2024
	struct blk_mq_tag_set *set = q->tag_set;
2025

2026 2027 2028 2029 2030
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2031
	queue_for_each_hw_ctx(q, hctx, i) {
2032
		cpumask_clear(hctx->cpumask);
2033 2034 2035 2036
		hctx->nr_ctx = 0;
	}

	/*
2037 2038 2039
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2040
	 */
2041
	for_each_present_cpu(i) {
2042 2043
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2044 2045
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2046 2047 2048 2049 2050 2051
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2052
			q->mq_map[i] = 0;
2053 2054
		}

2055
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2056
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2057

2058
		cpumask_set_cpu(i, hctx->cpumask);
2059 2060 2061
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2062

2063 2064
	mutex_unlock(&q->sysfs_lock);

2065
	queue_for_each_hw_ctx(q, hctx, i) {
2066
		/*
2067 2068
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2069 2070
		 */
		if (!hctx->nr_ctx) {
2071 2072 2073 2074
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2075 2076 2077
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2078
			hctx->tags = NULL;
2079 2080 2081
			continue;
		}

M
Ming Lei 已提交
2082 2083 2084
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2085 2086 2087 2088 2089
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2090
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2091

2092 2093 2094
		/*
		 * Initialize batch roundrobin counts
		 */
2095 2096 2097
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2098 2099
}

2100
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2101 2102 2103 2104
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2116

2117 2118
	lockdep_assert_held(&set->tag_list_lock);

2119 2120
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2121
		queue_set_hctx_shared(q, shared);
2122 2123 2124 2125 2126 2127 2128 2129 2130
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2131 2132
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2133 2134 2135 2136 2137 2138
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2139
	mutex_unlock(&set->tag_list_lock);
2140 2141

	synchronize_rcu();
2142 2143 2144 2145 2146 2147 2148 2149
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2150 2151 2152 2153 2154 2155 2156 2157 2158

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2159
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2160

2161 2162 2163
	mutex_unlock(&set->tag_list_lock);
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2176 2177 2178
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2179
		kobject_put(&hctx->kobj);
2180
	}
2181

2182 2183
	q->mq_map = NULL;

2184 2185
	kfree(q->queue_hw_ctx);

2186 2187 2188 2189 2190 2191
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2192 2193 2194
	free_percpu(q->queue_ctx);
}

2195
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2211 2212
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2213
{
K
Keith Busch 已提交
2214 2215
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2216

K
Keith Busch 已提交
2217
	blk_mq_sysfs_unregister(q);
2218
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2219
		int node;
2220

K
Keith Busch 已提交
2221 2222 2223 2224
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2225 2226
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2227
		if (!hctxs[i])
K
Keith Busch 已提交
2228
			break;
2229

2230
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2231 2232 2233 2234 2235
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2236

2237
		atomic_set(&hctxs[i]->nr_active, 0);
2238
		hctxs[i]->numa_node = node;
2239
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2240 2241 2242 2243 2244 2245 2246 2247

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2248
	}
K
Keith Busch 已提交
2249 2250 2251 2252
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2253 2254
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2268 2269 2270
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2271
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2272 2273
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2274 2275 2276
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2277 2278
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2279
		goto err_exit;
K
Keith Busch 已提交
2280

2281 2282 2283
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2284 2285 2286 2287 2288
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2289
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2290 2291 2292 2293

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2294

2295
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2296
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2297 2298 2299

	q->nr_queues = nr_cpu_ids;

2300
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2301

2302 2303 2304
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2305 2306
	q->sg_reserved_size = INT_MAX;

2307
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2308 2309 2310
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2311
	blk_queue_make_request(q, blk_mq_make_request);
2312

2313 2314 2315 2316 2317
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2318 2319 2320 2321 2322
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2323 2324
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2325

2326
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2327
	blk_mq_add_queue_tag_set(set, q);
2328
	blk_mq_map_swqueue(q);
2329

2330 2331 2332 2333 2334 2335 2336 2337
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2338
	return q;
2339

2340
err_hctxs:
K
Keith Busch 已提交
2341
	kfree(q->queue_hw_ctx);
2342
err_percpu:
K
Keith Busch 已提交
2343
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2344 2345
err_exit:
	q->mq_ops = NULL;
2346 2347
	return ERR_PTR(-ENOMEM);
}
2348
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2349 2350 2351

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2352
	struct blk_mq_tag_set	*set = q->tag_set;
2353

2354
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2355
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2356 2357 2358
}

/* Basically redo blk_mq_init_queue with queue frozen */
2359
static void blk_mq_queue_reinit(struct request_queue *q)
2360
{
2361
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2362

2363
	blk_mq_debugfs_unregister_hctxs(q);
2364 2365
	blk_mq_sysfs_unregister(q);

2366 2367 2368 2369 2370 2371
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2372
	blk_mq_map_swqueue(q);
2373

2374
	blk_mq_sysfs_register(q);
2375
	blk_mq_debugfs_register_hctxs(q);
2376 2377
}

2378 2379 2380 2381
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2382 2383
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2384 2385 2386 2387 2388 2389
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2390
		blk_mq_free_rq_map(set->tags[i]);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2430 2431 2432 2433 2434 2435 2436 2437
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2438 2439 2440 2441 2442 2443
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2444 2445
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2446 2447
	int ret;

B
Bart Van Assche 已提交
2448 2449
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2450 2451
	if (!set->nr_hw_queues)
		return -EINVAL;
2452
	if (!set->queue_depth)
2453 2454 2455 2456
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2457
	if (!set->ops->queue_rq)
2458 2459
		return -EINVAL;

2460 2461 2462 2463 2464
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2465

2466 2467 2468 2469 2470 2471 2472 2473 2474
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2475 2476 2477 2478 2479
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2480

K
Keith Busch 已提交
2481
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2482 2483
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2484
		return -ENOMEM;
2485

2486 2487 2488
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2489 2490 2491
	if (!set->mq_map)
		goto out_free_tags;

2492
	ret = blk_mq_update_queue_map(set);
2493 2494 2495 2496 2497
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2498
		goto out_free_mq_map;
2499

2500 2501 2502
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2503
	return 0;
2504 2505 2506 2507 2508

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2509 2510
	kfree(set->tags);
	set->tags = NULL;
2511
	return ret;
2512 2513 2514 2515 2516 2517 2518
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2519 2520
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2521

2522 2523 2524
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2525
	kfree(set->tags);
2526
	set->tags = NULL;
2527 2528 2529
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2530 2531 2532 2533 2534 2535
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2536
	if (!set)
2537 2538
		return -EINVAL;

2539 2540
	blk_mq_freeze_queue(q);

2541 2542
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2543 2544
		if (!hctx->tags)
			continue;
2545 2546 2547 2548
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2549 2550 2551 2552 2553 2554 2555 2556
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2557 2558 2559 2560 2561 2562 2563
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2564 2565
	blk_mq_unfreeze_queue(q);

2566 2567 2568
	return ret;
}

2569 2570
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2571 2572 2573
{
	struct request_queue *q;

2574 2575
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2585
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2586 2587
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2588
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2589 2590 2591 2592 2593
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2594 2595 2596 2597 2598 2599 2600

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2601 2602
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2629
	int bucket;
2630

2631 2632 2633 2634
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2635 2636
}

2637 2638 2639 2640 2641
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2642
	int bucket;
2643 2644 2645 2646 2647

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2648
	if (!blk_poll_stats_enable(q))
2649 2650 2651 2652 2653 2654 2655 2656
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2657 2658
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2659
	 */
2660 2661 2662 2663 2664 2665
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2666 2667 2668 2669

	return ret;
}

2670
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2671
				     struct blk_mq_hw_ctx *hctx,
2672 2673 2674 2675
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2676
	unsigned int nsecs;
2677 2678
	ktime_t kt;

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2697 2698 2699 2700 2701 2702 2703 2704
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2705
	kt = nsecs;
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2728 2729 2730 2731 2732
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2733 2734 2735 2736 2737 2738 2739
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2740
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2741 2742
		return true;

J
Jens Axboe 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2786 2787
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2788
	else {
2789
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2790 2791 2792 2793 2794 2795 2796 2797 2798
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2799 2800 2801 2802 2803

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2804 2805
static int __init blk_mq_init(void)
{
2806 2807
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2808 2809 2810
	return 0;
}
subsys_initcall(blk_mq_init);