blk-mq.c 69.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352 353
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
354
	blk_mq_sched_restart(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 371 372 373
}

void blk_mq_free_request(struct request *rq)
{
374
	blk_mq_sched_put_request(rq);
375
}
J
Jens Axboe 已提交
376
EXPORT_SYMBOL_GPL(blk_mq_free_request);
377

378
inline void __blk_mq_end_request(struct request *rq, int error)
379
{
M
Ming Lei 已提交
380 381
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
382
	if (rq->end_io) {
J
Jens Axboe 已提交
383
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
384
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
385 386 387
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
388
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
389
	}
390
}
391
EXPORT_SYMBOL(__blk_mq_end_request);
392

393
void blk_mq_end_request(struct request *rq, int error)
394 395 396
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
397
	__blk_mq_end_request(rq, error);
398
}
399
EXPORT_SYMBOL(blk_mq_end_request);
400

401
static void __blk_mq_complete_request_remote(void *data)
402
{
403
	struct request *rq = data;
404

405
	rq->q->softirq_done_fn(rq);
406 407
}

408
static void blk_mq_ipi_complete_request(struct request *rq)
409 410
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
411
	bool shared = false;
412 413
	int cpu;

C
Christoph Hellwig 已提交
414
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
415 416 417
		rq->q->softirq_done_fn(rq);
		return;
	}
418 419

	cpu = get_cpu();
C
Christoph Hellwig 已提交
420 421 422 423
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
424
		rq->csd.func = __blk_mq_complete_request_remote;
425 426
		rq->csd.info = rq;
		rq->csd.flags = 0;
427
		smp_call_function_single_async(ctx->cpu, &rq->csd);
428
	} else {
429
		rq->q->softirq_done_fn(rq);
430
	}
431 432
	put_cpu();
}
433

434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
437 438
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
439 440 441
	}
}

442
static void __blk_mq_complete_request(struct request *rq)
443 444 445
{
	struct request_queue *q = rq->q;

446 447
	blk_mq_stat_add(rq);

448
	if (!q->softirq_done_fn)
449
		blk_mq_end_request(rq, rq->errors);
450 451 452 453
	else
		blk_mq_ipi_complete_request(rq);
}

454 455 456 457 458 459 460 461
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
462
void blk_mq_complete_request(struct request *rq, int error)
463
{
464 465 466
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
467
		return;
468 469
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
470
		__blk_mq_complete_request(rq);
471
	}
472 473
}
EXPORT_SYMBOL(blk_mq_complete_request);
474

475 476 477 478 479 480
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

481
void blk_mq_start_request(struct request *rq)
482 483 484
{
	struct request_queue *q = rq->q;

485 486
	blk_mq_sched_started_request(rq);

487 488
	trace_block_rq_issue(q, rq);

489
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
490
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
491
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
492
		wbt_issue(q->rq_wb, &rq->issue_stat);
493 494
	}

495
	blk_add_timer(rq);
496

497 498 499 500 501 502
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

503 504 505 506 507 508
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
509 510 511 512
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
513 514 515 516 517 518 519 520 521

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
522
}
523
EXPORT_SYMBOL(blk_mq_start_request);
524

525 526
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
527
 * flag isn't set yet, so there may be race with timeout handler,
528 529 530 531 532 533
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
534
static void __blk_mq_requeue_request(struct request *rq)
535 536 537 538
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
539
	wbt_requeue(q->rq_wb, &rq->issue_stat);
540
	blk_mq_sched_requeue_request(rq);
541

542 543 544 545
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
546 547
}

548
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
549 550 551 552
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
553
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
554 555 556
}
EXPORT_SYMBOL(blk_mq_requeue_request);

557 558 559
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
560
		container_of(work, struct request_queue, requeue_work.work);
561 562 563 564 565 566 567 568 569
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
570
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
571 572
			continue;

573
		rq->rq_flags &= ~RQF_SOFTBARRIER;
574
		list_del_init(&rq->queuelist);
575
		blk_mq_sched_insert_request(rq, true, false, false, true);
576 577 578 579 580
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
581
		blk_mq_sched_insert_request(rq, false, false, false, true);
582 583
	}

584
	blk_mq_run_hw_queues(q, false);
585 586
}

587 588
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
589 590 591 592 593 594 595 596
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
597
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
598 599 600

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
601
		rq->rq_flags |= RQF_SOFTBARRIER;
602 603 604 605 606
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
607 608 609

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
610 611 612 613 614
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
615
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
616 617 618
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

619 620 621 622 623 624 625 626
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

647 648
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
649 650
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
651
		return tags->rqs[tag];
652
	}
653 654

	return NULL;
655 656 657
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

658
struct blk_mq_timeout_data {
659 660
	unsigned long next;
	unsigned int next_set;
661 662
};

663
void blk_mq_rq_timed_out(struct request *req, bool reserved)
664
{
J
Jens Axboe 已提交
665
	const struct blk_mq_ops *ops = req->q->mq_ops;
666
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
667 668 669 670 671 672 673

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
674
	 * both flags will get cleared. So check here again, and ignore
675 676
	 * a timeout event with a request that isn't active.
	 */
677 678
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
679

680
	if (ops->timeout)
681
		ret = ops->timeout(req, reserved);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
697
}
698

699 700 701 702
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
703

704
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
705
		return;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
720 721
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
722
			blk_mq_rq_timed_out(rq, reserved);
723 724 725 726
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
727 728
}

729
static void blk_mq_timeout_work(struct work_struct *work)
730
{
731 732
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
733 734 735 736 737
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
738

739 740 741 742 743 744 745 746 747
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
748
	 * blk_freeze_queue_start, and the moment the last request is
749 750 751 752
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
753 754
		return;

755
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
756

757 758 759
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
760
	} else {
761 762
		struct blk_mq_hw_ctx *hctx;

763 764 765 766 767
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
768
	}
769
	blk_queue_exit(q);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
784
		bool merged = false;
785 786 787 788 789 790 791

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

792 793 794 795
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
796
			break;
797 798 799
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
800
			break;
801 802
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
803
			break;
804 805
		default:
			continue;
806
		}
807 808 809 810

		if (merged)
			ctx->rq_merged++;
		return merged;
811 812 813 814 815
	}

	return false;
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

834 835 836 837
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
838
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
839
{
840 841 842 843
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
844

845
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
846
}
847
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
848

849 850 851 852
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
853

854
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
855 856
}

857 858
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
859 860 861 862 863 864 865
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

866 867
	if (rq->tag != -1)
		goto done;
868

869 870 871
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

872 873
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
874 875 876 877
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
878 879 880
		data.hctx->tags->rqs[rq->tag] = rq;
	}

881 882 883 884
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
885 886
}

887 888
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
889 890 891 892 893 894 895 896 897 898
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

981
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
982
{
983
	struct blk_mq_hw_ctx *hctx;
984
	struct request *rq;
985
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
986

987 988 989
	if (list_empty(list))
		return false;

990 991 992
	/*
	 * Now process all the entries, sending them to the driver.
	 */
993
	errors = queued = 0;
994
	do {
995
		struct blk_mq_queue_data bd;
996

997
		rq = list_first_entry(list, struct request, queuelist);
998 999 1000
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1001 1002

			/*
1003 1004
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1005
			 */
1006 1007 1008 1009 1010 1011 1012 1013 1014
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1015
				break;
1016
			}
1017
		}
1018

1019 1020
		list_del_init(&rq->queuelist);

1021
		bd.rq = rq;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1035 1036

		ret = q->mq_ops->queue_rq(hctx, &bd);
1037 1038 1039
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1040
			break;
1041
		case BLK_MQ_RQ_QUEUE_BUSY:
1042
			blk_mq_put_driver_tag_hctx(hctx, rq);
1043
			list_add(&rq->queuelist, list);
1044
			__blk_mq_requeue_request(rq);
1045 1046 1047 1048
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1049
			errors++;
1050
			rq->errors = -EIO;
1051
			blk_mq_end_request(rq, rq->errors);
1052 1053 1054 1055 1056
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1057
	} while (!list_empty(list));
1058

1059
	hctx->dispatched[queued_to_index(queued)]++;
1060 1061 1062 1063 1064

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1065
	if (!list_empty(list)) {
1066 1067 1068 1069 1070 1071 1072
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1073
		spin_lock(&hctx->lock);
1074
		list_splice_init(list, &hctx->dispatch);
1075
		spin_unlock(&hctx->lock);
1076

1077 1078 1079 1080 1081 1082 1083 1084
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1085
		 *
1086 1087
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1088
		 */
1089 1090
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1091
			blk_mq_run_hw_queue(hctx, true);
1092
	}
1093

1094
	return (queued + errors) != 0;
1095 1096
}

1097 1098 1099 1100 1101 1102 1103 1104 1105
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1106
		blk_mq_sched_dispatch_requests(hctx);
1107 1108
		rcu_read_unlock();
	} else {
1109 1110
		might_sleep();

1111
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1112
		blk_mq_sched_dispatch_requests(hctx);
1113 1114 1115 1116
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1117 1118 1119 1120 1121 1122 1123 1124
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1125 1126
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1127 1128

	if (--hctx->next_cpu_batch <= 0) {
1129
		int next_cpu;
1130 1131 1132 1133 1134 1135 1136 1137 1138

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1139
	return hctx->next_cpu;
1140 1141
}

1142 1143
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1144
{
1145 1146
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1147 1148
		return;

1149
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1150 1151
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1152
			__blk_mq_run_hw_queue(hctx);
1153
			put_cpu();
1154 1155
			return;
		}
1156

1157
		put_cpu();
1158
	}
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1178 1179
}

1180
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1181 1182 1183 1184 1185
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1186
		if (!blk_mq_hctx_has_pending(hctx) ||
1187
		    blk_mq_hctx_stopped(hctx))
1188 1189
			continue;

1190
		blk_mq_run_hw_queue(hctx, async);
1191 1192
	}
}
1193
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1215 1216
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1217
	cancel_work(&hctx->run_work);
1218
	cancel_delayed_work(&hctx->delay_work);
1219 1220 1221 1222
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1233 1234 1235
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1236

1237
	blk_mq_run_hw_queue(hctx, false);
1238 1239 1240
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1261
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1262 1263 1264 1265
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1266 1267
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1268 1269 1270
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1271
static void blk_mq_run_work_fn(struct work_struct *work)
1272 1273 1274
{
	struct blk_mq_hw_ctx *hctx;

1275
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1276

1277 1278 1279
	__blk_mq_run_hw_queue(hctx);
}

1280 1281 1282 1283 1284 1285 1286 1287 1288
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1301 1302
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1303

1304
	blk_mq_stop_hw_queue(hctx);
1305 1306
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1307 1308 1309
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1310 1311 1312
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1313
{
J
Jens Axboe 已提交
1314 1315
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1316 1317
	trace_block_rq_insert(hctx->queue, rq);

1318 1319 1320 1321
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1322
}
1323

1324 1325
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1326 1327 1328
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1329
	__blk_mq_insert_req_list(hctx, rq, at_head);
1330 1331 1332
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1333 1334
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1346
		BUG_ON(rq->mq_ctx != ctx);
1347
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1348
		__blk_mq_insert_req_list(hctx, rq, false);
1349
	}
1350
	blk_mq_hctx_mark_pending(hctx, ctx);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1387 1388 1389 1390
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1407 1408 1409
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1410 1411 1412 1413 1414 1415
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1416

1417
	blk_account_io_start(rq, true);
1418 1419
}

1420 1421 1422 1423 1424 1425
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1426 1427 1428
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1429
{
1430
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1431 1432 1433 1434 1435 1436 1437
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1438 1439
		struct request_queue *q = hctx->queue;

1440 1441 1442 1443 1444
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1445

1446
		spin_unlock(&ctx->lock);
1447
		__blk_mq_finish_request(hctx, ctx, rq);
1448
		return true;
1449
	}
1450
}
1451

1452 1453
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1454 1455 1456 1457
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1458 1459
}

1460
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1461
				      bool may_sleep)
1462 1463 1464 1465 1466 1467
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.last = 1
	};
1468 1469 1470
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1471

1472
	if (q->elevator)
1473 1474
		goto insert;

1475 1476 1477 1478 1479
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1480 1481 1482 1483 1484 1485
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1486 1487
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1488
		return;
1489
	}
1490

1491 1492 1493 1494
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1495
		return;
1496
	}
1497

1498
	__blk_mq_requeue_request(rq);
1499
insert:
1500
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1501 1502
}

1503 1504 1505 1506 1507 1508 1509 1510
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1511 1512 1513 1514 1515
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1516 1517 1518 1519 1520
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1521
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1522
{
1523
	const int is_sync = op_is_sync(bio->bi_opf);
1524
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1525
	struct blk_mq_alloc_data data = { .flags = 0 };
1526
	struct request *rq;
1527
	unsigned int request_count = 0;
1528
	struct blk_plug *plug;
1529
	struct request *same_queue_rq = NULL;
1530
	blk_qc_t cookie;
J
Jens Axboe 已提交
1531
	unsigned int wb_acct;
1532 1533 1534 1535

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1536
		bio_io_error(bio);
1537
		return BLK_QC_T_NONE;
1538 1539
	}

1540 1541
	blk_queue_split(q, &bio, q->bio_split);

1542 1543 1544
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1545

1546 1547 1548
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1549 1550
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1551 1552 1553
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1554 1555
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1556
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1557 1558 1559
	}

	wbt_track(&rq->issue_stat, wb_acct);
1560

1561
	cookie = request_to_qc_t(data.hctx, rq);
1562

1563
	plug = current->plug;
1564 1565
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1566 1567 1568 1569 1570 1571 1572 1573
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1599
	} else if (plug && !blk_queue_nomerges(q)) {
1600 1601 1602
		blk_mq_bio_to_request(rq, bio);

		/*
1603
		 * We do limited plugging. If the bio can be merged, do that.
1604 1605
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1606 1607
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1608
		 */
1609 1610 1611 1612 1613 1614
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1615 1616
		blk_mq_put_ctx(data.ctx);

1617 1618 1619
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1620 1621

		return cookie;
1622
	} else if (q->nr_hw_queues > 1 && is_sync) {
1623
		blk_mq_put_ctx(data.ctx);
1624 1625
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1626
		return cookie;
1627
	} else if (q->elevator) {
1628
		blk_mq_bio_to_request(rq, bio);
1629
		blk_mq_sched_insert_request(rq, false, true, true, true);
1630
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1631 1632
		blk_mq_run_hw_queue(data.hctx, true);

1633
	blk_mq_put_ctx(data.ctx);
1634
	return cookie;
1635 1636
}

1637 1638
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1639
{
1640
	struct page *page;
1641

1642
	if (tags->rqs && set->ops->exit_request) {
1643
		int i;
1644

1645
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1646 1647 1648
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1649
				continue;
J
Jens Axboe 已提交
1650
			set->ops->exit_request(set->driver_data, rq,
1651
						hctx_idx, i);
J
Jens Axboe 已提交
1652
			tags->static_rqs[i] = NULL;
1653
		}
1654 1655
	}

1656 1657
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1658
		list_del_init(&page->lru);
1659 1660 1661 1662 1663
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1664 1665
		__free_pages(page, page->private);
	}
1666
}
1667

1668 1669
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1670
	kfree(tags->rqs);
1671
	tags->rqs = NULL;
J
Jens Axboe 已提交
1672 1673
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1674

1675
	blk_mq_free_tags(tags);
1676 1677
}

1678 1679 1680 1681
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1682
{
1683
	struct blk_mq_tags *tags;
1684
	int node;
1685

1686 1687 1688 1689 1690
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1691
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1692 1693
	if (!tags)
		return NULL;
1694

1695
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1696
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697
				 node);
1698 1699 1700 1701
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1702

J
Jens Axboe 已提交
1703 1704
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705
				 node);
J
Jens Axboe 已提交
1706 1707 1708 1709 1710 1711
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1725 1726 1727 1728 1729
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1730 1731 1732

	INIT_LIST_HEAD(&tags->page_list);

1733 1734 1735 1736
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1737
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1738
				cache_line_size());
1739
	left = rq_size * depth;
1740

1741
	for (i = 0; i < depth; ) {
1742 1743 1744 1745 1746
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1747
		while (this_order && left < order_to_size(this_order - 1))
1748 1749 1750
			this_order--;

		do {
1751
			page = alloc_pages_node(node,
1752
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1753
				this_order);
1754 1755 1756 1757 1758 1759 1760 1761 1762
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1763
			goto fail;
1764 1765

		page->private = this_order;
1766
		list_add_tail(&page->lru, &tags->page_list);
1767 1768

		p = page_address(page);
1769 1770 1771 1772
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1773
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1774
		entries_per_page = order_to_size(this_order) / rq_size;
1775
		to_do = min(entries_per_page, depth - i);
1776 1777
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1778 1779 1780
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1781 1782
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1783
						rq, hctx_idx, i,
1784
						node)) {
J
Jens Axboe 已提交
1785
					tags->static_rqs[i] = NULL;
1786
					goto fail;
1787
				}
1788 1789
			}

1790 1791 1792 1793
			p += rq_size;
			i++;
		}
	}
1794
	return 0;
1795

1796
fail:
1797 1798
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1799 1800
}

J
Jens Axboe 已提交
1801 1802 1803 1804 1805
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1806
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1807
{
1808
	struct blk_mq_hw_ctx *hctx;
1809 1810 1811
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1812
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1813
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1814 1815 1816 1817 1818 1819 1820 1821 1822

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1823
		return 0;
1824

J
Jens Axboe 已提交
1825 1826 1827
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1828 1829

	blk_mq_run_hw_queue(hctx, true);
1830
	return 0;
1831 1832
}

1833
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1834
{
1835 1836
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1837 1838
}

1839
/* hctx->ctxs will be freed in queue's release handler */
1840 1841 1842 1843
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1844 1845
	unsigned flush_start_tag = set->queue_depth;

1846 1847
	blk_mq_tag_idle(hctx);

1848 1849 1850 1851 1852
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1853 1854
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1855 1856 1857
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1858 1859 1860
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1861
	blk_mq_remove_cpuhp(hctx);
1862
	blk_free_flush_queue(hctx->fq);
1863
	sbitmap_free(&hctx->ctx_map);
1864 1865
}

M
Ming Lei 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1875
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1876 1877 1878
	}
}

1879 1880 1881
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1882
{
1883
	int node;
1884
	unsigned flush_start_tag = set->queue_depth;
1885 1886 1887 1888 1889

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1890
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1891
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1892 1893 1894 1895 1896
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1897
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1898

1899
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1900 1901

	hctx->tags = set->tags[hctx_idx];
1902 1903

	/*
1904 1905
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1906
	 */
1907 1908 1909 1910
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1911

1912 1913
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1914
		goto free_ctxs;
1915

1916
	hctx->nr_ctx = 0;
1917

1918 1919 1920
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1921

1922 1923 1924
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1925 1926
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1927
		goto sched_exit_hctx;
1928

1929 1930 1931 1932 1933
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1934

1935 1936 1937
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1938
	return 0;
1939

1940 1941
 free_fq:
	kfree(hctx->fq);
1942 1943
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1944 1945 1946
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1947
 free_bitmap:
1948
	sbitmap_free(&hctx->ctx_map);
1949 1950 1951
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1952
	blk_mq_remove_cpuhp(hctx);
1953 1954
	return -1;
}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1974
		hctx = blk_mq_map_queue(q, i);
1975

1976 1977 1978 1979 1980
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1981
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1982 1983 1984
	}
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2007 2008 2009 2010 2011
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2012 2013
}

2014 2015
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2016
{
2017
	unsigned int i, hctx_idx;
2018 2019
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2020
	struct blk_mq_tag_set *set = q->tag_set;
2021

2022 2023 2024 2025 2026
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2027
	queue_for_each_hw_ctx(q, hctx, i) {
2028
		cpumask_clear(hctx->cpumask);
2029 2030 2031 2032 2033 2034
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2035
	for_each_possible_cpu(i) {
2036
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2037
		if (!cpumask_test_cpu(i, online_mask))
2038 2039
			continue;

2040 2041
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2042 2043
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2044 2045 2046 2047 2048 2049
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2050
			q->mq_map[i] = 0;
2051 2052
		}

2053
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2054
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2055

2056
		cpumask_set_cpu(i, hctx->cpumask);
2057 2058 2059
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2060

2061 2062
	mutex_unlock(&q->sysfs_lock);

2063
	queue_for_each_hw_ctx(q, hctx, i) {
2064
		/*
2065 2066
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2067 2068
		 */
		if (!hctx->nr_ctx) {
2069 2070 2071 2072
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2073 2074 2075
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2076
			hctx->tags = NULL;
2077 2078 2079
			continue;
		}

M
Ming Lei 已提交
2080 2081 2082
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2083 2084 2085 2086 2087
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2088
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2089

2090 2091 2092
		/*
		 * Initialize batch roundrobin counts
		 */
2093 2094 2095
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2096 2097
}

2098
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2099 2100 2101 2102
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2114 2115 2116

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2117
		queue_set_hctx_shared(q, shared);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2128 2129 2130 2131 2132 2133
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2134 2135 2136 2137 2138 2139 2140 2141 2142
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2143 2144 2145 2146 2147 2148 2149 2150 2151

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2152
	list_add_tail(&q->tag_set_list, &set->tag_list);
2153

2154 2155 2156
	mutex_unlock(&set->tag_list_lock);
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2169 2170 2171
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2172
		kobject_put(&hctx->kobj);
2173
	}
2174

2175 2176
	q->mq_map = NULL;

2177 2178
	kfree(q->queue_hw_ctx);

2179 2180 2181 2182 2183 2184
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2185 2186 2187
	free_percpu(q->queue_ctx);
}

2188
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2204 2205
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2206
{
K
Keith Busch 已提交
2207 2208
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2209

K
Keith Busch 已提交
2210
	blk_mq_sysfs_unregister(q);
2211
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2212
		int node;
2213

K
Keith Busch 已提交
2214 2215 2216 2217
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2218 2219
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2220
		if (!hctxs[i])
K
Keith Busch 已提交
2221
			break;
2222

2223
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2224 2225 2226 2227 2228
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2229

2230
		atomic_set(&hctxs[i]->nr_active, 0);
2231
		hctxs[i]->numa_node = node;
2232
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2233 2234 2235 2236 2237 2238 2239 2240

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2241
	}
K
Keith Busch 已提交
2242 2243 2244 2245
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2246 2247
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2261 2262 2263
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2264 2265 2266 2267 2268
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2269 2270
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2271
		goto err_exit;
K
Keith Busch 已提交
2272

2273 2274 2275
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2276 2277 2278 2279 2280
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2281
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2282 2283 2284 2285

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2286

2287
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2288
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2289 2290 2291

	q->nr_queues = nr_cpu_ids;

2292
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2293

2294 2295 2296
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2297 2298
	q->sg_reserved_size = INT_MAX;

2299
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2300 2301 2302
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2303
	blk_queue_make_request(q, blk_mq_make_request);
2304

2305 2306 2307 2308 2309
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2310 2311 2312 2313 2314
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2315 2316
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2317

2318
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2319

2320
	get_online_cpus();
2321 2322
	mutex_lock(&all_q_mutex);

2323
	list_add_tail(&q->all_q_node, &all_q_list);
2324
	blk_mq_add_queue_tag_set(set, q);
2325
	blk_mq_map_swqueue(q, cpu_online_mask);
2326

2327
	mutex_unlock(&all_q_mutex);
2328
	put_online_cpus();
2329

2330 2331 2332 2333 2334 2335 2336 2337
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2338
	return q;
2339

2340
err_hctxs:
K
Keith Busch 已提交
2341
	kfree(q->queue_hw_ctx);
2342
err_percpu:
K
Keith Busch 已提交
2343
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2344 2345
err_exit:
	q->mq_ops = NULL;
2346 2347
	return ERR_PTR(-ENOMEM);
}
2348
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2349 2350 2351

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2352
	struct blk_mq_tag_set	*set = q->tag_set;
2353

2354 2355 2356 2357
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2358 2359
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2360
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2361 2362 2363
}

/* Basically redo blk_mq_init_queue with queue frozen */
2364 2365
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2366
{
2367
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2368

2369 2370
	blk_mq_sysfs_unregister(q);

2371 2372 2373 2374 2375 2376
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2377
	blk_mq_map_swqueue(q, online_mask);
2378

2379
	blk_mq_sysfs_register(q);
2380 2381
}

2382 2383 2384 2385 2386 2387 2388 2389
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2390 2391 2392 2393
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2394 2395 2396 2397 2398 2399 2400 2401
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2402
		blk_freeze_queue_start(q);
2403
	list_for_each_entry(q, &all_q_list, all_q_node)
2404 2405
		blk_mq_freeze_queue_wait(q);

2406
	list_for_each_entry(q, &all_q_list, all_q_node)
2407
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2408 2409 2410 2411

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2412
	mutex_unlock(&all_q_mutex);
2413 2414 2415 2416
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2417
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2433 2434 2435 2436
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2437 2438 2439 2440 2441 2442 2443
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2444 2445
}

2446 2447 2448 2449
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2450 2451
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2452 2453 2454 2455 2456 2457
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2458
		blk_mq_free_rq_map(set->tags[i]);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2498 2499 2500 2501 2502 2503 2504 2505
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2506 2507 2508 2509 2510 2511
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2512 2513
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2514 2515
	int ret;

B
Bart Van Assche 已提交
2516 2517
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2518 2519
	if (!set->nr_hw_queues)
		return -EINVAL;
2520
	if (!set->queue_depth)
2521 2522 2523 2524
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2525
	if (!set->ops->queue_rq)
2526 2527
		return -EINVAL;

2528 2529 2530 2531 2532
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2543 2544 2545 2546 2547
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2548

K
Keith Busch 已提交
2549
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2550 2551
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2552
		return -ENOMEM;
2553

2554 2555 2556
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2557 2558 2559
	if (!set->mq_map)
		goto out_free_tags;

2560
	ret = blk_mq_update_queue_map(set);
2561 2562 2563 2564 2565
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2566
		goto out_free_mq_map;
2567

2568 2569 2570
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2571
	return 0;
2572 2573 2574 2575 2576

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2577 2578
	kfree(set->tags);
	set->tags = NULL;
2579
	return ret;
2580 2581 2582 2583 2584 2585 2586
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2587 2588
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2589

2590 2591 2592
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2593
	kfree(set->tags);
2594
	set->tags = NULL;
2595 2596 2597
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2598 2599 2600 2601 2602 2603
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2604
	if (!set)
2605 2606
		return -EINVAL;

2607 2608 2609
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2610 2611
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2612 2613
		if (!hctx->tags)
			continue;
2614 2615 2616 2617
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2618 2619 2620 2621 2622 2623 2624 2625
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2626 2627 2628 2629 2630 2631 2632
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2633 2634 2635
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2636 2637 2638
	return ret;
}

K
Keith Busch 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2652
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2706
	if (!blk_poll_stats_enable(q))
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2717 2718 2719 2720
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2721 2722 2723 2724

	return ret;
}

2725
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2726
				     struct blk_mq_hw_ctx *hctx,
2727 2728 2729 2730
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2731
	unsigned int nsecs;
2732 2733
	ktime_t kt;

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2752 2753 2754 2755 2756 2757 2758 2759
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2760
	kt = nsecs;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2783 2784 2785 2786 2787
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2788 2789 2790 2791 2792 2793 2794
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2795
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2796 2797
		return true;

J
Jens Axboe 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2841 2842 2843 2844
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2845 2846 2847 2848 2849

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2860 2861
static int __init blk_mq_init(void)
{
2862 2863
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2864

2865 2866 2867
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2868 2869 2870
	return 0;
}
subsys_initcall(blk_mq_init);