blk-mq.c 69.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352 353
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
354
	blk_mq_sched_restart(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370
}
O
Omar Sandoval 已提交
371
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372 373 374

void blk_mq_free_request(struct request *rq)
{
375
	blk_mq_sched_put_request(rq);
376
}
J
Jens Axboe 已提交
377
EXPORT_SYMBOL_GPL(blk_mq_free_request);
378

379
inline void __blk_mq_end_request(struct request *rq, int error)
380
{
M
Ming Lei 已提交
381 382
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
383
	if (rq->end_io) {
J
Jens Axboe 已提交
384
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
385
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
386 387 388
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
389
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
390
	}
391
}
392
EXPORT_SYMBOL(__blk_mq_end_request);
393

394
void blk_mq_end_request(struct request *rq, int error)
395 396 397
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
398
	__blk_mq_end_request(rq, error);
399
}
400
EXPORT_SYMBOL(blk_mq_end_request);
401

402
static void __blk_mq_complete_request_remote(void *data)
403
{
404
	struct request *rq = data;
405

406
	rq->q->softirq_done_fn(rq);
407 408
}

409
static void blk_mq_ipi_complete_request(struct request *rq)
410 411
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
412
	bool shared = false;
413 414
	int cpu;

C
Christoph Hellwig 已提交
415
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 417 418
		rq->q->softirq_done_fn(rq);
		return;
	}
419 420

	cpu = get_cpu();
C
Christoph Hellwig 已提交
421 422 423 424
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425
		rq->csd.func = __blk_mq_complete_request_remote;
426 427
		rq->csd.info = rq;
		rq->csd.flags = 0;
428
		smp_call_function_single_async(ctx->cpu, &rq->csd);
429
	} else {
430
		rq->q->softirq_done_fn(rq);
431
	}
432 433
	put_cpu();
}
434

435 436 437
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
438 439
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
440 441 442
	}
}

443
static void __blk_mq_complete_request(struct request *rq)
444 445 446
{
	struct request_queue *q = rq->q;

447 448
	blk_mq_stat_add(rq);

449
	if (!q->softirq_done_fn)
450
		blk_mq_end_request(rq, rq->errors);
451 452 453 454
	else
		blk_mq_ipi_complete_request(rq);
}

455 456 457 458 459 460 461 462
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
463
void blk_mq_complete_request(struct request *rq, int error)
464
{
465 466 467
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
468
		return;
469 470
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
471
		__blk_mq_complete_request(rq);
472
	}
473 474
}
EXPORT_SYMBOL(blk_mq_complete_request);
475

476 477 478 479 480 481
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

482
void blk_mq_start_request(struct request *rq)
483 484 485
{
	struct request_queue *q = rq->q;

486 487
	blk_mq_sched_started_request(rq);

488 489
	trace_block_rq_issue(q, rq);

490
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
493
		wbt_issue(q->rq_wb, &rq->issue_stat);
494 495
	}

496
	blk_add_timer(rq);
497

498 499 500 501 502 503
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

504 505 506 507 508 509
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
510 511 512 513
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514 515 516 517 518 519 520 521 522

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
523
}
524
EXPORT_SYMBOL(blk_mq_start_request);
525

526 527
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528
 * flag isn't set yet, so there may be race with timeout handler,
529 530 531 532 533 534
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
535
static void __blk_mq_requeue_request(struct request *rq)
536 537 538 539
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
540
	wbt_requeue(q->rq_wb, &rq->issue_stat);
541
	blk_mq_sched_requeue_request(rq);
542

543 544 545 546
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
547 548
}

549
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550 551 552 553
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
554
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555 556 557
}
EXPORT_SYMBOL(blk_mq_requeue_request);

558 559 560
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
561
		container_of(work, struct request_queue, requeue_work.work);
562 563 564 565 566 567 568 569 570
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
572 573
			continue;

574
		rq->rq_flags &= ~RQF_SOFTBARRIER;
575
		list_del_init(&rq->queuelist);
576
		blk_mq_sched_insert_request(rq, true, false, false, true);
577 578 579 580 581
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
582
		blk_mq_sched_insert_request(rq, false, false, false, true);
583 584
	}

585
	blk_mq_run_hw_queues(q, false);
586 587
}

588 589
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
590 591 592 593 594 595 596 597
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
598
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599 600 601

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
602
		rq->rq_flags |= RQF_SOFTBARRIER;
603 604 605 606 607
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
608 609 610

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
611 612 613 614 615
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
616
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
617 618 619
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

620 621 622 623 624 625 626 627
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

648 649
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
650 651
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
652
		return tags->rqs[tag];
653
	}
654 655

	return NULL;
656 657 658
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

659
struct blk_mq_timeout_data {
660 661
	unsigned long next;
	unsigned int next_set;
662 663
};

664
void blk_mq_rq_timed_out(struct request *req, bool reserved)
665
{
J
Jens Axboe 已提交
666
	const struct blk_mq_ops *ops = req->q->mq_ops;
667
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668 669 670 671 672 673 674

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
675
	 * both flags will get cleared. So check here again, and ignore
676 677
	 * a timeout event with a request that isn't active.
	 */
678 679
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
680

681
	if (ops->timeout)
682
		ret = ops->timeout(req, reserved);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
698
}
699

700 701 702 703
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
704

705
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706
		return;
707

708 709 710 711 712 713 714 715 716 717 718 719 720
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
721 722
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
723
			blk_mq_rq_timed_out(rq, reserved);
724 725 726 727
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
728 729
}

730
static void blk_mq_timeout_work(struct work_struct *work)
731
{
732 733
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
734 735 736 737 738
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
739

740 741 742 743 744 745 746 747 748
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
749
	 * blk_freeze_queue_start, and the moment the last request is
750 751 752 753
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
754 755
		return;

756
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757

758 759 760
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
761
	} else {
762 763
		struct blk_mq_hw_ctx *hctx;

764 765 766 767 768
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
769
	}
770
	blk_queue_exit(q);
771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785
		bool merged = false;
786 787 788 789 790 791 792

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

793 794 795 796
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
797
			break;
798 799 800
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
801
			break;
802 803
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
804
			break;
805 806
		default:
			continue;
807
		}
808 809 810 811

		if (merged)
			ctx->rq_merged++;
		return merged;
812 813 814 815 816
	}

	return false;
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

835 836 837 838
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
839
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840
{
841 842 843 844
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
845

846
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847
}
848
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849

850 851 852 853
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
854

855
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 857
}

858 859
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
860 861 862 863 864 865 866
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

867 868
	if (rq->tag != -1)
		goto done;
869

870 871 872
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

873 874
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
875 876 877 878
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
879 880 881
		data.hctx->tags->rqs[rq->tag] = rq;
	}

882 883 884 885
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
886 887
}

888 889
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
890 891 892 893 894 895 896 897 898 899
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

982
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983
{
984
	struct blk_mq_hw_ctx *hctx;
985
	struct request *rq;
986
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
987

988 989 990
	if (list_empty(list))
		return false;

991 992 993
	/*
	 * Now process all the entries, sending them to the driver.
	 */
994
	errors = queued = 0;
995
	do {
996
		struct blk_mq_queue_data bd;
997

998
		rq = list_first_entry(list, struct request, queuelist);
999 1000 1001
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1002 1003

			/*
1004 1005
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1006
			 */
1007 1008 1009 1010 1011 1012 1013 1014 1015
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016
				break;
1017
		}
1018

1019 1020
		list_del_init(&rq->queuelist);

1021
		bd.rq = rq;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1035 1036

		ret = q->mq_ops->queue_rq(hctx, &bd);
1037 1038 1039
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1040
			break;
1041
		case BLK_MQ_RQ_QUEUE_BUSY:
1042
			blk_mq_put_driver_tag_hctx(hctx, rq);
1043
			list_add(&rq->queuelist, list);
1044
			__blk_mq_requeue_request(rq);
1045 1046 1047 1048
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1049
			errors++;
1050
			rq->errors = -EIO;
1051
			blk_mq_end_request(rq, rq->errors);
1052 1053 1054 1055 1056
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1057
	} while (!list_empty(list));
1058

1059
	hctx->dispatched[queued_to_index(queued)]++;
1060 1061 1062 1063 1064

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1065
	if (!list_empty(list)) {
1066
		/*
1067 1068
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1069 1070 1071 1072
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1073
		spin_lock(&hctx->lock);
1074
		list_splice_init(list, &hctx->dispatch);
1075
		spin_unlock(&hctx->lock);
1076

1077
		/*
1078 1079 1080
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1081
		 *
1082 1083 1084 1085
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1086
		 *
1087 1088 1089 1090 1091 1092 1093 1094 1095
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1096
		 */
1097 1098
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1099
			blk_mq_run_hw_queue(hctx, true);
1100
	}
1101

1102
	return (queued + errors) != 0;
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1114
		blk_mq_sched_dispatch_requests(hctx);
1115 1116
		rcu_read_unlock();
	} else {
1117 1118
		might_sleep();

1119
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1120
		blk_mq_sched_dispatch_requests(hctx);
1121 1122 1123 1124
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1125 1126 1127 1128 1129 1130 1131 1132
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1133 1134
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1135 1136

	if (--hctx->next_cpu_batch <= 0) {
1137
		int next_cpu;
1138 1139 1140 1141 1142 1143 1144 1145 1146

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1147
	return hctx->next_cpu;
1148 1149
}

1150 1151
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1152
{
1153 1154
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1155 1156
		return;

1157
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1158 1159
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1160
			__blk_mq_run_hw_queue(hctx);
1161
			put_cpu();
1162 1163
			return;
		}
1164

1165
		put_cpu();
1166
	}
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1186
}
O
Omar Sandoval 已提交
1187
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1188

1189
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1190 1191 1192 1193 1194
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1195
		if (!blk_mq_hctx_has_pending(hctx) ||
1196
		    blk_mq_hctx_stopped(hctx))
1197 1198
			continue;

1199
		blk_mq_run_hw_queue(hctx, async);
1200 1201
	}
}
1202
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1224 1225
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1226
	cancel_work(&hctx->run_work);
1227
	cancel_delayed_work(&hctx->delay_work);
1228 1229 1230 1231
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1242 1243 1244
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1245

1246
	blk_mq_run_hw_queue(hctx, false);
1247 1248 1249
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1270
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1271 1272 1273 1274
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1275 1276
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1277 1278 1279
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1280
static void blk_mq_run_work_fn(struct work_struct *work)
1281 1282 1283
{
	struct blk_mq_hw_ctx *hctx;

1284
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1285

1286 1287 1288
	__blk_mq_run_hw_queue(hctx);
}

1289 1290 1291 1292 1293 1294 1295 1296 1297
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1310 1311
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1312

1313
	blk_mq_stop_hw_queue(hctx);
1314 1315
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1316 1317 1318
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1319 1320 1321
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1322
{
J
Jens Axboe 已提交
1323 1324
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1325 1326
	trace_block_rq_insert(hctx->queue, rq);

1327 1328 1329 1330
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1331
}
1332

1333 1334
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1335 1336 1337
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1338
	__blk_mq_insert_req_list(hctx, rq, at_head);
1339 1340 1341
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1342 1343
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1355
		BUG_ON(rq->mq_ctx != ctx);
1356
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1357
		__blk_mq_insert_req_list(hctx, rq, false);
1358
	}
1359
	blk_mq_hctx_mark_pending(hctx, ctx);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1396 1397 1398 1399
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1416 1417 1418
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1419 1420 1421 1422 1423 1424
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1425

1426
	blk_account_io_start(rq, true);
1427 1428
}

1429 1430 1431 1432 1433 1434
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1435 1436 1437
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1438
{
1439
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1440 1441 1442 1443 1444 1445 1446
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1447 1448
		struct request_queue *q = hctx->queue;

1449 1450 1451 1452 1453
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1454

1455
		spin_unlock(&ctx->lock);
1456
		__blk_mq_finish_request(hctx, ctx, rq);
1457
		return true;
1458
	}
1459
}
1460

1461 1462
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1463 1464 1465 1466
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1467 1468
}

1469
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1470
				      bool may_sleep)
1471 1472 1473 1474
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1475
		.last = true,
1476
	};
1477 1478 1479
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1480

1481
	if (q->elevator)
1482 1483
		goto insert;

1484 1485 1486 1487 1488
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1489 1490 1491 1492 1493 1494
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1495 1496
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1497
		return;
1498
	}
1499

1500 1501 1502 1503
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1504
		return;
1505
	}
1506

1507
	__blk_mq_requeue_request(rq);
1508
insert:
1509
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1520 1521 1522 1523 1524
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1525 1526 1527 1528 1529
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1530
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1531
{
1532
	const int is_sync = op_is_sync(bio->bi_opf);
1533
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1534
	struct blk_mq_alloc_data data = { .flags = 0 };
1535
	struct request *rq;
1536
	unsigned int request_count = 0;
1537
	struct blk_plug *plug;
1538
	struct request *same_queue_rq = NULL;
1539
	blk_qc_t cookie;
J
Jens Axboe 已提交
1540
	unsigned int wb_acct;
1541 1542 1543 1544

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1545
		bio_io_error(bio);
1546
		return BLK_QC_T_NONE;
1547 1548
	}

1549 1550
	blk_queue_split(q, &bio, q->bio_split);

1551 1552 1553
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1554

1555 1556 1557
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1558 1559
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1560 1561 1562
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1563 1564
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1565
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1566 1567 1568
	}

	wbt_track(&rq->issue_stat, wb_acct);
1569

1570
	cookie = request_to_qc_t(data.hctx, rq);
1571

1572
	plug = current->plug;
1573 1574
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1575 1576 1577 1578 1579 1580 1581 1582
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1608
	} else if (plug && !blk_queue_nomerges(q)) {
1609 1610 1611
		blk_mq_bio_to_request(rq, bio);

		/*
1612
		 * We do limited plugging. If the bio can be merged, do that.
1613 1614
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1615 1616
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1617
		 */
1618 1619 1620 1621 1622 1623
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1624 1625
		blk_mq_put_ctx(data.ctx);

1626 1627 1628
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1629 1630

		return cookie;
1631
	} else if (q->nr_hw_queues > 1 && is_sync) {
1632
		blk_mq_put_ctx(data.ctx);
1633 1634
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1635
		return cookie;
1636
	} else if (q->elevator) {
1637
		blk_mq_bio_to_request(rq, bio);
1638
		blk_mq_sched_insert_request(rq, false, true, true, true);
1639
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1640 1641
		blk_mq_run_hw_queue(data.hctx, true);

1642
	blk_mq_put_ctx(data.ctx);
1643
	return cookie;
1644 1645
}

1646 1647
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1648
{
1649
	struct page *page;
1650

1651
	if (tags->rqs && set->ops->exit_request) {
1652
		int i;
1653

1654
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1655 1656 1657
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1658
				continue;
J
Jens Axboe 已提交
1659
			set->ops->exit_request(set->driver_data, rq,
1660
						hctx_idx, i);
J
Jens Axboe 已提交
1661
			tags->static_rqs[i] = NULL;
1662
		}
1663 1664
	}

1665 1666
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1667
		list_del_init(&page->lru);
1668 1669 1670 1671 1672
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1673 1674
		__free_pages(page, page->private);
	}
1675
}
1676

1677 1678
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1679
	kfree(tags->rqs);
1680
	tags->rqs = NULL;
J
Jens Axboe 已提交
1681 1682
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1683

1684
	blk_mq_free_tags(tags);
1685 1686
}

1687 1688 1689 1690
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1691
{
1692
	struct blk_mq_tags *tags;
1693
	int node;
1694

1695 1696 1697 1698 1699
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1700
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1701 1702
	if (!tags)
		return NULL;
1703

1704
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1705
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1706
				 node);
1707 1708 1709 1710
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1711

J
Jens Axboe 已提交
1712 1713
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1714
				 node);
J
Jens Axboe 已提交
1715 1716 1717 1718 1719 1720
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1734 1735 1736 1737 1738
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1739 1740 1741

	INIT_LIST_HEAD(&tags->page_list);

1742 1743 1744 1745
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1746
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1747
				cache_line_size());
1748
	left = rq_size * depth;
1749

1750
	for (i = 0; i < depth; ) {
1751 1752 1753 1754 1755
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1756
		while (this_order && left < order_to_size(this_order - 1))
1757 1758 1759
			this_order--;

		do {
1760
			page = alloc_pages_node(node,
1761
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1762
				this_order);
1763 1764 1765 1766 1767 1768 1769 1770 1771
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1772
			goto fail;
1773 1774

		page->private = this_order;
1775
		list_add_tail(&page->lru, &tags->page_list);
1776 1777

		p = page_address(page);
1778 1779 1780 1781
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1782
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1783
		entries_per_page = order_to_size(this_order) / rq_size;
1784
		to_do = min(entries_per_page, depth - i);
1785 1786
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1787 1788 1789
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1790 1791
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1792
						rq, hctx_idx, i,
1793
						node)) {
J
Jens Axboe 已提交
1794
					tags->static_rqs[i] = NULL;
1795
					goto fail;
1796
				}
1797 1798
			}

1799 1800 1801 1802
			p += rq_size;
			i++;
		}
	}
1803
	return 0;
1804

1805
fail:
1806 1807
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1808 1809
}

J
Jens Axboe 已提交
1810 1811 1812 1813 1814
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1815
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1816
{
1817
	struct blk_mq_hw_ctx *hctx;
1818 1819 1820
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1821
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1822
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1823 1824 1825 1826 1827 1828 1829 1830 1831

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1832
		return 0;
1833

J
Jens Axboe 已提交
1834 1835 1836
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1837 1838

	blk_mq_run_hw_queue(hctx, true);
1839
	return 0;
1840 1841
}

1842
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1843
{
1844 1845
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1846 1847
}

1848
/* hctx->ctxs will be freed in queue's release handler */
1849 1850 1851 1852
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1853 1854
	unsigned flush_start_tag = set->queue_depth;

1855 1856
	blk_mq_tag_idle(hctx);

1857 1858 1859 1860 1861
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1862 1863
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1864 1865 1866
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1867 1868 1869
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1870
	blk_mq_remove_cpuhp(hctx);
1871
	blk_free_flush_queue(hctx->fq);
1872
	sbitmap_free(&hctx->ctx_map);
1873 1874
}

M
Ming Lei 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1884
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1885 1886 1887
	}
}

1888 1889 1890
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1891
{
1892
	int node;
1893
	unsigned flush_start_tag = set->queue_depth;
1894 1895 1896 1897 1898

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1899
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1900
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1901 1902 1903 1904 1905
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1906
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1907

1908
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1909 1910

	hctx->tags = set->tags[hctx_idx];
1911 1912

	/*
1913 1914
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1915
	 */
1916 1917 1918 1919
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1920

1921 1922
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1923
		goto free_ctxs;
1924

1925
	hctx->nr_ctx = 0;
1926

1927 1928 1929
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1930

1931 1932 1933
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1934 1935
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1936
		goto sched_exit_hctx;
1937

1938 1939 1940 1941 1942
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1943

1944 1945 1946
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1947
	return 0;
1948

1949 1950
 free_fq:
	kfree(hctx->fq);
1951 1952
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1953 1954 1955
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1956
 free_bitmap:
1957
	sbitmap_free(&hctx->ctx_map);
1958 1959 1960
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1961
	blk_mq_remove_cpuhp(hctx);
1962 1963
	return -1;
}
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1983
		hctx = blk_mq_map_queue(q, i);
1984

1985 1986 1987 1988 1989
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1990
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1991 1992 1993
	}
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2016 2017 2018 2019 2020
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2021 2022
}

2023 2024
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2025
{
2026
	unsigned int i, hctx_idx;
2027 2028
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2029
	struct blk_mq_tag_set *set = q->tag_set;
2030

2031 2032 2033 2034 2035
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2036
	queue_for_each_hw_ctx(q, hctx, i) {
2037
		cpumask_clear(hctx->cpumask);
2038 2039 2040 2041 2042 2043
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2044
	for_each_possible_cpu(i) {
2045
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2046
		if (!cpumask_test_cpu(i, online_mask))
2047 2048
			continue;

2049 2050
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2051 2052
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2053 2054 2055 2056 2057 2058
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2059
			q->mq_map[i] = 0;
2060 2061
		}

2062
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2063
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2064

2065
		cpumask_set_cpu(i, hctx->cpumask);
2066 2067 2068
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2069

2070 2071
	mutex_unlock(&q->sysfs_lock);

2072
	queue_for_each_hw_ctx(q, hctx, i) {
2073
		/*
2074 2075
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2076 2077
		 */
		if (!hctx->nr_ctx) {
2078 2079 2080 2081
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2082 2083 2084
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2085
			hctx->tags = NULL;
2086 2087 2088
			continue;
		}

M
Ming Lei 已提交
2089 2090 2091
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2092 2093 2094 2095 2096
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2097
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2098

2099 2100 2101
		/*
		 * Initialize batch roundrobin counts
		 */
2102 2103 2104
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2105 2106
}

2107
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2108 2109 2110 2111
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2123

2124 2125
	lockdep_assert_held(&set->tag_list_lock);

2126 2127
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2128
		queue_set_hctx_shared(q, shared);
2129 2130 2131 2132 2133 2134 2135 2136 2137
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2138 2139
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2140 2141 2142 2143 2144 2145
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2146
	mutex_unlock(&set->tag_list_lock);
2147 2148

	synchronize_rcu();
2149 2150 2151 2152 2153 2154 2155 2156
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2157 2158 2159 2160 2161 2162 2163 2164 2165

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2166
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2167

2168 2169 2170
	mutex_unlock(&set->tag_list_lock);
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2183 2184 2185
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2186
		kobject_put(&hctx->kobj);
2187
	}
2188

2189 2190
	q->mq_map = NULL;

2191 2192
	kfree(q->queue_hw_ctx);

2193 2194 2195 2196 2197 2198
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2199 2200 2201
	free_percpu(q->queue_ctx);
}

2202
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2218 2219
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2220
{
K
Keith Busch 已提交
2221 2222
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2223

K
Keith Busch 已提交
2224
	blk_mq_sysfs_unregister(q);
2225
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2226
		int node;
2227

K
Keith Busch 已提交
2228 2229 2230 2231
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2232 2233
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2234
		if (!hctxs[i])
K
Keith Busch 已提交
2235
			break;
2236

2237
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2238 2239 2240 2241 2242
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2243

2244
		atomic_set(&hctxs[i]->nr_active, 0);
2245
		hctxs[i]->numa_node = node;
2246
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2247 2248 2249 2250 2251 2252 2253 2254

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2255
	}
K
Keith Busch 已提交
2256 2257 2258 2259
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2260 2261
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2275 2276 2277
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2278 2279 2280 2281 2282
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2283 2284
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2285
		goto err_exit;
K
Keith Busch 已提交
2286

2287 2288 2289
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2290 2291 2292 2293 2294
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2295
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2296 2297 2298 2299

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2300

2301
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2302
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2303 2304 2305

	q->nr_queues = nr_cpu_ids;

2306
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2307

2308 2309 2310
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2311 2312
	q->sg_reserved_size = INT_MAX;

2313
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2314 2315 2316
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2317
	blk_queue_make_request(q, blk_mq_make_request);
2318

2319 2320 2321 2322 2323
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2324 2325 2326 2327 2328
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2329 2330
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2331

2332
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2333

2334
	get_online_cpus();
2335 2336
	mutex_lock(&all_q_mutex);

2337
	list_add_tail(&q->all_q_node, &all_q_list);
2338
	blk_mq_add_queue_tag_set(set, q);
2339
	blk_mq_map_swqueue(q, cpu_online_mask);
2340

2341
	mutex_unlock(&all_q_mutex);
2342
	put_online_cpus();
2343

2344 2345 2346 2347 2348 2349 2350 2351
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2352
	return q;
2353

2354
err_hctxs:
K
Keith Busch 已提交
2355
	kfree(q->queue_hw_ctx);
2356
err_percpu:
K
Keith Busch 已提交
2357
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2358 2359
err_exit:
	q->mq_ops = NULL;
2360 2361
	return ERR_PTR(-ENOMEM);
}
2362
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2363 2364 2365

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2366
	struct blk_mq_tag_set	*set = q->tag_set;
2367

2368 2369 2370 2371
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2372 2373
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2374
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2375 2376 2377
}

/* Basically redo blk_mq_init_queue with queue frozen */
2378 2379
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2380
{
2381
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2382

2383 2384
	blk_mq_sysfs_unregister(q);

2385 2386 2387 2388 2389 2390
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2391
	blk_mq_map_swqueue(q, online_mask);
2392

2393
	blk_mq_sysfs_register(q);
2394 2395
}

2396 2397 2398 2399 2400 2401 2402 2403
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2404 2405 2406 2407
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2408 2409 2410 2411 2412 2413 2414 2415
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2416
		blk_freeze_queue_start(q);
2417
	list_for_each_entry(q, &all_q_list, all_q_node)
2418 2419
		blk_mq_freeze_queue_wait(q);

2420
	list_for_each_entry(q, &all_q_list, all_q_node)
2421
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2422 2423 2424 2425

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2426
	mutex_unlock(&all_q_mutex);
2427 2428 2429 2430
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2431
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2447 2448 2449 2450
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2451 2452 2453 2454 2455 2456 2457
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2458 2459
}

2460 2461 2462 2463
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2464 2465
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2466 2467 2468 2469 2470 2471
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2472
		blk_mq_free_rq_map(set->tags[i]);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2512 2513 2514 2515 2516 2517 2518 2519
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2520 2521 2522 2523 2524 2525
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2526 2527
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2528 2529
	int ret;

B
Bart Van Assche 已提交
2530 2531
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2532 2533
	if (!set->nr_hw_queues)
		return -EINVAL;
2534
	if (!set->queue_depth)
2535 2536 2537 2538
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2539
	if (!set->ops->queue_rq)
2540 2541
		return -EINVAL;

2542 2543 2544 2545 2546
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2557 2558 2559 2560 2561
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2562

K
Keith Busch 已提交
2563
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2564 2565
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2566
		return -ENOMEM;
2567

2568 2569 2570
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2571 2572 2573
	if (!set->mq_map)
		goto out_free_tags;

2574
	ret = blk_mq_update_queue_map(set);
2575 2576 2577 2578 2579
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2580
		goto out_free_mq_map;
2581

2582 2583 2584
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2585
	return 0;
2586 2587 2588 2589 2590

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2591 2592
	kfree(set->tags);
	set->tags = NULL;
2593
	return ret;
2594 2595 2596 2597 2598 2599 2600
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2601 2602
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2603

2604 2605 2606
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2607
	kfree(set->tags);
2608
	set->tags = NULL;
2609 2610 2611
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2612 2613 2614 2615 2616 2617
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2618
	if (!set)
2619 2620
		return -EINVAL;

2621 2622 2623
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2624 2625
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2626 2627
		if (!hctx->tags)
			continue;
2628 2629 2630 2631
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2632 2633 2634 2635 2636 2637 2638 2639
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2640 2641 2642 2643 2644 2645 2646
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2647 2648 2649
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2650 2651 2652
	return ret;
}

K
Keith Busch 已提交
2653 2654 2655 2656
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2657 2658
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2668
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2722
	if (!blk_poll_stats_enable(q))
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2733 2734 2735 2736
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2737 2738 2739 2740

	return ret;
}

2741
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742
				     struct blk_mq_hw_ctx *hctx,
2743 2744 2745 2746
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2747
	unsigned int nsecs;
2748 2749
	ktime_t kt;

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2768 2769 2770 2771 2772 2773 2774 2775
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2776
	kt = nsecs;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2799 2800 2801 2802 2803
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2804 2805 2806 2807 2808 2809 2810
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2811
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812 2813
		return true;

J
Jens Axboe 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857 2858 2859 2860
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2861 2862 2863 2864 2865

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2876 2877
static int __init blk_mq_init(void)
{
2878 2879
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2880

2881 2882 2883
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2884 2885 2886
	return 0;
}
subsys_initcall(blk_mq_init);