blk-mq.c 68.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202 203 204
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
205 206
	rq->timeout = 0;

207 208 209 210
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

211
	ctx->rq_dispatched[op_is_sync(op)]++;
212
}
213
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214

215 216
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
217 218 219 220
{
	struct request *rq;
	unsigned int tag;

221
	tag = blk_mq_get_tag(data);
222
	if (tag != BLK_MQ_TAG_FAIL) {
223 224 225
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
226

227 228 229 230
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
231 232 233 234
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
235 236 237 238
			rq->tag = tag;
			rq->internal_tag = -1;
		}

239
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 241 242 243 244
		return rq;
	}

	return NULL;
}
245
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246

247 248
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
249
{
250
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
251
	struct request *rq;
252
	int ret;
253

254
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 256
	if (ret)
		return ERR_PTR(ret);
257

258
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259

260 261 262 263
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
264
		return ERR_PTR(-EWOULDBLOCK);
265 266 267 268

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
269 270
	return rq;
}
271
EXPORT_SYMBOL(blk_mq_alloc_request);
272

M
Ming Lin 已提交
273 274 275
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
276
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
277
	struct request *rq;
278
	unsigned int cpu;
M
Ming Lin 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

297 298 299 300
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
301 302 303 304
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
M
Ming Lin 已提交
305
	}
306 307
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
308

309
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
310

311
	blk_mq_put_ctx(alloc_data.ctx);
312
	blk_queue_exit(q);
313 314 315 316 317

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
318 319 320
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

321 322
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
323
{
324
	const int sched_tag = rq->internal_tag;
325 326
	struct request_queue *q = rq->q;

327
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
328
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
329 330

	wbt_done(q->rq_wb, &rq->issue_stat);
331
	rq->rq_flags = 0;
332

333
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
334
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
335 336 337 338
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
339
	blk_mq_sched_restart_queues(hctx);
340
	blk_queue_exit(q);
341 342
}

343
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
344
				     struct request *rq)
345 346 347 348
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
349 350 351 352 353 354
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
355 356 357 358
}

void blk_mq_free_request(struct request *rq)
{
359
	blk_mq_sched_put_request(rq);
360
}
J
Jens Axboe 已提交
361
EXPORT_SYMBOL_GPL(blk_mq_free_request);
362

363
inline void __blk_mq_end_request(struct request *rq, int error)
364
{
M
Ming Lei 已提交
365 366
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
367
	if (rq->end_io) {
J
Jens Axboe 已提交
368
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
369
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
370 371 372
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
373
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
374
	}
375
}
376
EXPORT_SYMBOL(__blk_mq_end_request);
377

378
void blk_mq_end_request(struct request *rq, int error)
379 380 381
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
382
	__blk_mq_end_request(rq, error);
383
}
384
EXPORT_SYMBOL(blk_mq_end_request);
385

386
static void __blk_mq_complete_request_remote(void *data)
387
{
388
	struct request *rq = data;
389

390
	rq->q->softirq_done_fn(rq);
391 392
}

393
static void blk_mq_ipi_complete_request(struct request *rq)
394 395
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
396
	bool shared = false;
397 398
	int cpu;

C
Christoph Hellwig 已提交
399
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
400 401 402
		rq->q->softirq_done_fn(rq);
		return;
	}
403 404

	cpu = get_cpu();
C
Christoph Hellwig 已提交
405 406 407 408
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
409
		rq->csd.func = __blk_mq_complete_request_remote;
410 411
		rq->csd.info = rq;
		rq->csd.flags = 0;
412
		smp_call_function_single_async(ctx->cpu, &rq->csd);
413
	} else {
414
		rq->q->softirq_done_fn(rq);
415
	}
416 417
	put_cpu();
}
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

434
static void __blk_mq_complete_request(struct request *rq)
435 436 437
{
	struct request_queue *q = rq->q;

438 439
	blk_mq_stat_add(rq);

440
	if (!q->softirq_done_fn)
441
		blk_mq_end_request(rq, rq->errors);
442 443 444 445
	else
		blk_mq_ipi_complete_request(rq);
}

446 447 448 449 450 451 452 453
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
454
void blk_mq_complete_request(struct request *rq, int error)
455
{
456 457 458
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
459
		return;
460 461
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
462
		__blk_mq_complete_request(rq);
463
	}
464 465
}
EXPORT_SYMBOL(blk_mq_complete_request);
466

467 468 469 470 471 472
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

473
void blk_mq_start_request(struct request *rq)
474 475 476
{
	struct request_queue *q = rq->q;

477 478
	blk_mq_sched_started_request(rq);

479 480
	trace_block_rq_issue(q, rq);

481 482 483
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
484
		wbt_issue(q->rq_wb, &rq->issue_stat);
485 486
	}

487
	blk_add_timer(rq);
488

489 490 491 492 493 494
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

495 496 497 498 499 500
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
501 502 503 504
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
505 506 507 508 509 510 511 512 513

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
514
}
515
EXPORT_SYMBOL(blk_mq_start_request);
516

517
static void __blk_mq_requeue_request(struct request *rq)
518 519 520 521
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
522
	wbt_requeue(q->rq_wb, &rq->issue_stat);
523
	blk_mq_sched_requeue_request(rq);
524

525 526 527 528
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
529 530
}

531
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
532 533 534 535
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
536
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
537 538 539
}
EXPORT_SYMBOL(blk_mq_requeue_request);

540 541 542
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
543
		container_of(work, struct request_queue, requeue_work.work);
544 545 546 547 548 549 550 551 552
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
553
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
554 555
			continue;

556
		rq->rq_flags &= ~RQF_SOFTBARRIER;
557
		list_del_init(&rq->queuelist);
558
		blk_mq_sched_insert_request(rq, true, false, false, true);
559 560 561 562 563
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
564
		blk_mq_sched_insert_request(rq, false, false, false, true);
565 566
	}

567
	blk_mq_run_hw_queues(q, false);
568 569
}

570 571
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
572 573 574 575 576 577 578 579
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
580
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
581 582 583

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
584
		rq->rq_flags |= RQF_SOFTBARRIER;
585 586 587 588 589
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
590 591 592

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
593 594 595 596 597
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
598
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
599 600 601
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

602 603 604 605 606 607 608 609
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

630 631
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
632 633
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
634
		return tags->rqs[tag];
635
	}
636 637

	return NULL;
638 639 640
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

641
struct blk_mq_timeout_data {
642 643
	unsigned long next;
	unsigned int next_set;
644 645
};

646
void blk_mq_rq_timed_out(struct request *req, bool reserved)
647
{
J
Jens Axboe 已提交
648
	const struct blk_mq_ops *ops = req->q->mq_ops;
649
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
650 651 652 653 654 655 656 657 658 659

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
660 661
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
662

663
	if (ops->timeout)
664
		ret = ops->timeout(req, reserved);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
680
}
681

682 683 684 685
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
686

687 688 689 690 691
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
692 693 694 695
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
696
		return;
697
	}
698

699 700
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
701
			blk_mq_rq_timed_out(rq, reserved);
702 703 704 705
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
706 707
}

708
static void blk_mq_timeout_work(struct work_struct *work)
709
{
710 711
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
712 713 714 715 716
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
732 733
		return;

734
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
735

736 737 738
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
739
	} else {
740 741
		struct blk_mq_hw_ctx *hctx;

742 743 744 745 746
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
747
	}
748
	blk_queue_exit(q);
749 750 751 752 753 754 755 756 757 758 759 760 761 762
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
763
		bool merged = false;
764 765 766 767 768 769 770

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

771 772 773 774
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
775
			break;
776 777 778
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
779
			break;
780 781
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
782
			break;
783 784
		default:
			continue;
785
		}
786 787 788 789

		if (merged)
			ctx->rq_merged++;
		return merged;
790 791 792 793 794
	}

	return false;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

813 814 815 816
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
817
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
818
{
819 820 821 822
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
823

824
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
825
}
826
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
827

828 829 830 831
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
832

833
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
834 835
}

836 837
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
838 839 840 841 842 843 844 845 846 847 848 849 850 851
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

852 853 854
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

855 856
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
857 858 859 860
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
861 862 863 864 865 866 867
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

945
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
946 947 948
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
949 950
	LIST_HEAD(driver_list);
	struct list_head *dptr;
951
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
952

953 954 955 956 957 958
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

959 960 961
	/*
	 * Now process all the entries, sending them to the driver.
	 */
962
	queued = 0;
963
	while (!list_empty(list)) {
964
		struct blk_mq_queue_data bd;
965

966
		rq = list_first_entry(list, struct request, queuelist);
967 968 969
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
970 971

			/*
972 973
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
974
			 */
975 976 977 978 979 980 981 982 983
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
984
				break;
985
			}
986
		}
987

988 989
		list_del_init(&rq->queuelist);

990 991
		bd.rq = rq;
		bd.list = dptr;
992
		bd.last = list_empty(list);
993 994

		ret = q->mq_ops->queue_rq(hctx, &bd);
995 996 997
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
998
			break;
999
		case BLK_MQ_RQ_QUEUE_BUSY:
1000
			blk_mq_put_driver_tag(hctx, rq);
1001
			list_add(&rq->queuelist, list);
1002
			__blk_mq_requeue_request(rq);
1003 1004 1005 1006
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1007
			rq->errors = -EIO;
1008
			blk_mq_end_request(rq, rq->errors);
1009 1010 1011 1012 1013
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1014 1015 1016 1017 1018

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1019
		if (!dptr && list->next != list->prev)
1020
			dptr = &driver_list;
1021 1022
	}

1023
	hctx->dispatched[queued_to_index(queued)]++;
1024 1025 1026 1027 1028

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1029
	if (!list_empty(list)) {
1030
		spin_lock(&hctx->lock);
1031
		list_splice_init(list, &hctx->dispatch);
1032
		spin_unlock(&hctx->lock);
1033

1034 1035 1036 1037 1038 1039 1040 1041
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1042
		 *
1043 1044
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1045
		 */
1046 1047
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1048
			blk_mq_run_hw_queue(hctx, true);
1049
	}
1050

1051
	return queued != 0;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1063
		blk_mq_sched_dispatch_requests(hctx);
1064 1065 1066
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1067
		blk_mq_sched_dispatch_requests(hctx);
1068 1069 1070 1071
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1072 1073 1074 1075 1076 1077 1078 1079
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1080 1081
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1082 1083

	if (--hctx->next_cpu_batch <= 0) {
1084
		int next_cpu;
1085 1086 1087 1088 1089 1090 1091 1092 1093

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1094
	return hctx->next_cpu;
1095 1096
}

1097 1098
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1099 1100
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1101 1102
		return;

1103
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1104 1105
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1106
			__blk_mq_run_hw_queue(hctx);
1107
			put_cpu();
1108 1109
			return;
		}
1110

1111
		put_cpu();
1112
	}
1113

1114
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1115 1116
}

1117
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1118 1119 1120 1121 1122
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1123
		if (!blk_mq_hctx_has_pending(hctx) ||
1124
		    blk_mq_hctx_stopped(hctx))
1125 1126
			continue;

1127
		blk_mq_run_hw_queue(hctx, async);
1128 1129
	}
}
1130
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1152 1153
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1154
	cancel_work(&hctx->run_work);
1155
	cancel_delayed_work(&hctx->delay_work);
1156 1157 1158 1159
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1170 1171 1172
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1173

1174
	blk_mq_run_hw_queue(hctx, false);
1175 1176 1177
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1198
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1199 1200 1201 1202
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1203 1204
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1205 1206 1207
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1208
static void blk_mq_run_work_fn(struct work_struct *work)
1209 1210 1211
{
	struct blk_mq_hw_ctx *hctx;

1212
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1213

1214 1215 1216
	__blk_mq_run_hw_queue(hctx);
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1229 1230
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1231

1232
	blk_mq_stop_hw_queue(hctx);
1233 1234
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1235 1236 1237
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1238 1239 1240
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1241
{
J
Jens Axboe 已提交
1242 1243
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1244 1245
	trace_block_rq_insert(hctx->queue, rq);

1246 1247 1248 1249
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1250
}
1251

1252 1253
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1254 1255 1256
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1257
	__blk_mq_insert_req_list(hctx, rq, at_head);
1258 1259 1260
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1261 1262
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1274
		BUG_ON(rq->mq_ctx != ctx);
1275
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1276
		__blk_mq_insert_req_list(hctx, rq, false);
1277
	}
1278
	blk_mq_hctx_mark_pending(hctx, ctx);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1315 1316 1317 1318
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1335 1336 1337
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1338 1339 1340 1341 1342 1343
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1344

1345
	blk_account_io_start(rq, true);
1346 1347
}

1348 1349 1350 1351 1352 1353
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1354 1355 1356
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1357
{
1358
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1359 1360 1361 1362 1363 1364 1365
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1366 1367
		struct request_queue *q = hctx->queue;

1368 1369 1370 1371 1372
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1373

1374
		spin_unlock(&ctx->lock);
1375
		__blk_mq_finish_request(hctx, ctx, rq);
1376
		return true;
1377
	}
1378
}
1379

1380 1381
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1382 1383 1384 1385
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1386 1387
}

1388
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1389 1390 1391 1392 1393 1394 1395
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1396 1397 1398
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1399

1400
	if (q->elevator)
1401 1402
		goto insert;

1403 1404 1405 1406 1407
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1408 1409 1410 1411 1412 1413
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1414 1415
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1416
		return;
1417
	}
1418

1419 1420 1421 1422 1423 1424
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1425
		return;
1426
	}
1427

1428
insert:
1429
	blk_mq_sched_insert_request(rq, false, true, true, false);
1430 1431
}

1432 1433 1434 1435 1436
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1437
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1438
{
1439
	const int is_sync = op_is_sync(bio->bi_opf);
1440
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1441
	struct blk_mq_alloc_data data = { .flags = 0 };
1442
	struct request *rq;
1443
	unsigned int request_count = 0, srcu_idx;
1444
	struct blk_plug *plug;
1445
	struct request *same_queue_rq = NULL;
1446
	blk_qc_t cookie;
J
Jens Axboe 已提交
1447
	unsigned int wb_acct;
1448 1449 1450 1451

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1452
		bio_io_error(bio);
1453
		return BLK_QC_T_NONE;
1454 1455
	}

1456 1457
	blk_queue_split(q, &bio, q->bio_split);

1458 1459 1460
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1461

1462 1463 1464
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1465 1466
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1467 1468 1469
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1470 1471
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1472
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1473 1474 1475
	}

	wbt_track(&rq->issue_stat, wb_acct);
1476

1477
	cookie = request_to_qc_t(data.hctx, rq);
1478 1479

	if (unlikely(is_flush_fua)) {
1480 1481
		if (q->elevator)
			goto elv_insert;
1482 1483
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1484
		goto run_queue;
1485 1486
	}

1487
	plug = current->plug;
1488 1489 1490 1491 1492
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1493 1494 1495
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1496 1497 1498 1499

		blk_mq_bio_to_request(rq, bio);

		/*
1500
		 * We do limited plugging. If the bio can be merged, do that.
1501 1502
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1503
		 */
1504
		if (plug) {
1505 1506
			/*
			 * The plug list might get flushed before this. If that
1507 1508 1509
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1510 1511
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1512
				list_del_init(&old_rq->queuelist);
1513
			}
1514 1515 1516 1517 1518
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1519
			goto done;
1520 1521 1522

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1523
			blk_mq_try_issue_directly(old_rq, &cookie);
1524 1525 1526
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1527
			blk_mq_try_issue_directly(old_rq, &cookie);
1528 1529
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1530
		goto done;
1531 1532
	}

1533
	if (q->elevator) {
1534
elv_insert:
1535 1536
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1537
		blk_mq_sched_insert_request(rq, false, true,
1538
						!is_sync || is_flush_fua, true);
1539 1540
		goto done;
	}
1541 1542 1543 1544 1545 1546 1547
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1548
run_queue:
1549 1550 1551
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1552 1553
done:
	return cookie;
1554 1555 1556 1557 1558 1559
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1560
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1561
{
1562
	const int is_sync = op_is_sync(bio->bi_opf);
1563
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1564 1565
	struct blk_plug *plug;
	unsigned int request_count = 0;
1566
	struct blk_mq_alloc_data data = { .flags = 0 };
1567
	struct request *rq;
1568
	blk_qc_t cookie;
J
Jens Axboe 已提交
1569
	unsigned int wb_acct;
1570 1571 1572 1573

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1574
		bio_io_error(bio);
1575
		return BLK_QC_T_NONE;
1576 1577
	}

1578 1579
	blk_queue_split(q, &bio, q->bio_split);

1580 1581 1582 1583 1584
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1585

1586 1587 1588
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1589 1590
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1591 1592 1593
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1594 1595
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1596
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1597 1598 1599
	}

	wbt_track(&rq->issue_stat, wb_acct);
1600

1601
	cookie = request_to_qc_t(data.hctx, rq);
1602 1603

	if (unlikely(is_flush_fua)) {
1604 1605
		if (q->elevator)
			goto elv_insert;
1606 1607
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1608
		goto run_queue;
1609 1610 1611 1612 1613 1614 1615
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1616 1617
	plug = current->plug;
	if (plug) {
1618 1619
		struct request *last = NULL;

1620
		blk_mq_bio_to_request(rq, bio);
1621 1622 1623 1624 1625 1626 1627

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1628
		if (!request_count)
1629
			trace_block_plug(q);
1630 1631
		else
			last = list_entry_rq(plug->mq_list.prev);
1632 1633 1634

		blk_mq_put_ctx(data.ctx);

1635 1636
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1637 1638
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1639
		}
1640

1641
		list_add_tail(&rq->queuelist, &plug->mq_list);
1642
		return cookie;
1643 1644
	}

1645
	if (q->elevator) {
1646
elv_insert:
1647 1648
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1649
		blk_mq_sched_insert_request(rq, false, true,
1650
						!is_sync || is_flush_fua, true);
1651 1652
		goto done;
	}
1653 1654 1655 1656 1657 1658 1659
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1660
run_queue:
1661
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1662 1663
	}

1664
	blk_mq_put_ctx(data.ctx);
1665
done:
1666
	return cookie;
1667 1668
}

1669 1670
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1671
{
1672
	struct page *page;
1673

1674
	if (tags->rqs && set->ops->exit_request) {
1675
		int i;
1676

1677
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1678 1679 1680
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1681
				continue;
J
Jens Axboe 已提交
1682
			set->ops->exit_request(set->driver_data, rq,
1683
						hctx_idx, i);
J
Jens Axboe 已提交
1684
			tags->static_rqs[i] = NULL;
1685
		}
1686 1687
	}

1688 1689
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1690
		list_del_init(&page->lru);
1691 1692 1693 1694 1695
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1696 1697
		__free_pages(page, page->private);
	}
1698
}
1699

1700 1701
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1702
	kfree(tags->rqs);
1703
	tags->rqs = NULL;
J
Jens Axboe 已提交
1704 1705
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1706

1707
	blk_mq_free_tags(tags);
1708 1709
}

1710 1711 1712 1713
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1714
{
1715
	struct blk_mq_tags *tags;
1716
	int node;
1717

1718 1719 1720 1721 1722
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1723
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1724 1725
	if (!tags)
		return NULL;
1726

1727
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1728
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1729
				 node);
1730 1731 1732 1733
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1734

J
Jens Axboe 已提交
1735 1736
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1737
				 node);
J
Jens Axboe 已提交
1738 1739 1740 1741 1742 1743
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1757 1758 1759 1760 1761
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1762 1763 1764

	INIT_LIST_HEAD(&tags->page_list);

1765 1766 1767 1768
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1769
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1770
				cache_line_size());
1771
	left = rq_size * depth;
1772

1773
	for (i = 0; i < depth; ) {
1774 1775 1776 1777 1778
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1779
		while (this_order && left < order_to_size(this_order - 1))
1780 1781 1782
			this_order--;

		do {
1783
			page = alloc_pages_node(node,
1784
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1785
				this_order);
1786 1787 1788 1789 1790 1791 1792 1793 1794
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1795
			goto fail;
1796 1797

		page->private = this_order;
1798
		list_add_tail(&page->lru, &tags->page_list);
1799 1800

		p = page_address(page);
1801 1802 1803 1804
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1805
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1806
		entries_per_page = order_to_size(this_order) / rq_size;
1807
		to_do = min(entries_per_page, depth - i);
1808 1809
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1810 1811 1812
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1813 1814
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1815
						rq, hctx_idx, i,
1816
						node)) {
J
Jens Axboe 已提交
1817
					tags->static_rqs[i] = NULL;
1818
					goto fail;
1819
				}
1820 1821
			}

1822 1823 1824 1825
			p += rq_size;
			i++;
		}
	}
1826
	return 0;
1827

1828
fail:
1829 1830
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1831 1832
}

J
Jens Axboe 已提交
1833 1834 1835 1836 1837
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1838
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1839
{
1840
	struct blk_mq_hw_ctx *hctx;
1841 1842 1843
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1844
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1845
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1846 1847 1848 1849 1850 1851 1852 1853 1854

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1855
		return 0;
1856

J
Jens Axboe 已提交
1857 1858 1859
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1860 1861

	blk_mq_run_hw_queue(hctx, true);
1862
	return 0;
1863 1864
}

1865
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1866
{
1867 1868
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1869 1870
}

1871
/* hctx->ctxs will be freed in queue's release handler */
1872 1873 1874 1875
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1876 1877
	unsigned flush_start_tag = set->queue_depth;

1878 1879
	blk_mq_tag_idle(hctx);

1880 1881 1882 1883 1884
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1885 1886 1887
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1888 1889 1890
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1891
	blk_mq_remove_cpuhp(hctx);
1892
	blk_free_flush_queue(hctx->fq);
1893
	sbitmap_free(&hctx->ctx_map);
1894 1895
}

M
Ming Lei 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1905
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1915
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1916 1917 1918
		free_cpumask_var(hctx->cpumask);
}

1919 1920 1921
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1922
{
1923
	int node;
1924
	unsigned flush_start_tag = set->queue_depth;
1925 1926 1927 1928 1929

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1930
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1931 1932 1933 1934 1935
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1936
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1937

1938
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1939 1940

	hctx->tags = set->tags[hctx_idx];
1941 1942

	/*
1943 1944
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1945
	 */
1946 1947 1948 1949
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1950

1951 1952
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1953
		goto free_ctxs;
1954

1955
	hctx->nr_ctx = 0;
1956

1957 1958 1959
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1960

1961 1962 1963
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1964

1965 1966 1967 1968 1969
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1970

1971 1972 1973
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1974
	return 0;
1975

1976 1977 1978 1979 1980
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1981
 free_bitmap:
1982
	sbitmap_free(&hctx->ctx_map);
1983 1984 1985
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1986
	blk_mq_remove_cpuhp(hctx);
1987 1988
	return -1;
}
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
2004 2005
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2006 2007 2008 2009 2010

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
2011
		hctx = blk_mq_map_queue(q, i);
2012

2013 2014 2015 2016 2017
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2018
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2019 2020 2021
	}
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2044 2045 2046 2047 2048
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2049 2050
}

2051 2052
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2053
{
2054
	unsigned int i, hctx_idx;
2055 2056
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2057
	struct blk_mq_tag_set *set = q->tag_set;
2058

2059 2060 2061 2062 2063
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2064
	queue_for_each_hw_ctx(q, hctx, i) {
2065
		cpumask_clear(hctx->cpumask);
2066 2067 2068 2069 2070 2071
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2072
	for_each_possible_cpu(i) {
2073
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2074
		if (!cpumask_test_cpu(i, online_mask))
2075 2076
			continue;

2077 2078
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2079 2080
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2081 2082 2083 2084 2085 2086
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2087
			q->mq_map[i] = 0;
2088 2089
		}

2090
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2091
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2092

2093
		cpumask_set_cpu(i, hctx->cpumask);
2094 2095 2096
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2097

2098 2099
	mutex_unlock(&q->sysfs_lock);

2100
	queue_for_each_hw_ctx(q, hctx, i) {
2101
		/*
2102 2103
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2104 2105
		 */
		if (!hctx->nr_ctx) {
2106 2107 2108 2109
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2110 2111 2112
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2113
			hctx->tags = NULL;
2114 2115 2116
			continue;
		}

M
Ming Lei 已提交
2117 2118 2119
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2120 2121 2122 2123 2124
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2125
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2126

2127 2128 2129
		/*
		 * Initialize batch roundrobin counts
		 */
2130 2131 2132
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2133 2134
}

2135
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2136 2137 2138 2139
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2151 2152 2153

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2154
		queue_set_hctx_shared(q, shared);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2165 2166 2167 2168 2169 2170
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2180 2181 2182 2183 2184 2185 2186 2187 2188

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2189
	list_add_tail(&q->tag_set_list, &set->tag_list);
2190

2191 2192 2193
	mutex_unlock(&set->tag_list_lock);
}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2205 2206
	blk_mq_sched_teardown(q);

2207
	/* hctx kobj stays in hctx */
2208 2209 2210 2211
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2212
		kfree(hctx);
2213
	}
2214

2215 2216
	q->mq_map = NULL;

2217 2218 2219 2220 2221 2222
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2223
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2239 2240
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2241
{
K
Keith Busch 已提交
2242 2243
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2244

K
Keith Busch 已提交
2245
	blk_mq_sysfs_unregister(q);
2246
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2247
		int node;
2248

K
Keith Busch 已提交
2249 2250 2251 2252
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2253 2254
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2255
		if (!hctxs[i])
K
Keith Busch 已提交
2256
			break;
2257

2258
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2259 2260 2261 2262 2263
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2264

2265
		atomic_set(&hctxs[i]->nr_active, 0);
2266
		hctxs[i]->numa_node = node;
2267
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2268 2269 2270 2271 2272 2273 2274 2275

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2276
	}
K
Keith Busch 已提交
2277 2278 2279 2280
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2281 2282
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2299 2300 2301
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2302 2303
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2304
		goto err_exit;
K
Keith Busch 已提交
2305 2306 2307 2308 2309 2310

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2311
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2312 2313 2314 2315

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2316

2317
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2318
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2319 2320 2321

	q->nr_queues = nr_cpu_ids;

2322
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2323

2324 2325 2326
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2327 2328
	q->sg_reserved_size = INT_MAX;

2329
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2330 2331 2332
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2333 2334 2335 2336 2337
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2338 2339 2340 2341 2342
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2343 2344 2345 2346 2347
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2348 2349
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2350

2351
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2352

2353
	get_online_cpus();
2354 2355
	mutex_lock(&all_q_mutex);

2356
	list_add_tail(&q->all_q_node, &all_q_list);
2357
	blk_mq_add_queue_tag_set(set, q);
2358
	blk_mq_map_swqueue(q, cpu_online_mask);
2359

2360
	mutex_unlock(&all_q_mutex);
2361
	put_online_cpus();
2362

2363 2364 2365 2366 2367 2368 2369 2370
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2371
	return q;
2372

2373
err_hctxs:
K
Keith Busch 已提交
2374
	kfree(q->queue_hw_ctx);
2375
err_percpu:
K
Keith Busch 已提交
2376
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2377 2378
err_exit:
	q->mq_ops = NULL;
2379 2380
	return ERR_PTR(-ENOMEM);
}
2381
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2382 2383 2384

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2385
	struct blk_mq_tag_set	*set = q->tag_set;
2386

2387 2388 2389 2390
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2391 2392
	wbt_exit(q);

2393 2394
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2395 2396
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2397 2398 2399
}

/* Basically redo blk_mq_init_queue with queue frozen */
2400 2401
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2402
{
2403
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2404

2405 2406
	blk_mq_sysfs_unregister(q);

2407 2408 2409 2410 2411 2412
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2413
	blk_mq_map_swqueue(q, online_mask);
2414

2415
	blk_mq_sysfs_register(q);
2416 2417
}

2418 2419 2420 2421 2422 2423 2424 2425
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2426 2427 2428 2429
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2430 2431 2432 2433 2434 2435 2436 2437 2438
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2439
	list_for_each_entry(q, &all_q_list, all_q_node)
2440 2441
		blk_mq_freeze_queue_wait(q);

2442
	list_for_each_entry(q, &all_q_list, all_q_node)
2443
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2444 2445 2446 2447

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2448
	mutex_unlock(&all_q_mutex);
2449 2450 2451 2452
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2453
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2469 2470 2471 2472
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2473 2474 2475 2476 2477 2478 2479
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2480 2481
}

2482 2483 2484 2485
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2486 2487
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2488 2489 2490 2491 2492 2493
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2494
		blk_mq_free_rq_map(set->tags[i]);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2534 2535 2536 2537 2538 2539
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2540 2541
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2542 2543
	int ret;

B
Bart Van Assche 已提交
2544 2545
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2546 2547
	if (!set->nr_hw_queues)
		return -EINVAL;
2548
	if (!set->queue_depth)
2549 2550 2551 2552
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2553
	if (!set->ops->queue_rq)
2554 2555
		return -EINVAL;

2556 2557 2558 2559 2560
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2571 2572 2573 2574 2575
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2576

K
Keith Busch 已提交
2577
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2578 2579
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2580
		return -ENOMEM;
2581

2582 2583 2584
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2585 2586 2587
	if (!set->mq_map)
		goto out_free_tags;

2588 2589 2590 2591 2592 2593 2594 2595 2596
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2597
		goto out_free_mq_map;
2598

2599 2600 2601
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2602
	return 0;
2603 2604 2605 2606 2607

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2608 2609
	kfree(set->tags);
	set->tags = NULL;
2610
	return ret;
2611 2612 2613 2614 2615 2616 2617
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2618 2619
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2620

2621 2622 2623
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2624
	kfree(set->tags);
2625
	set->tags = NULL;
2626 2627 2628
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2629 2630 2631 2632 2633 2634
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2635
	if (!set)
2636 2637
		return -EINVAL;

2638 2639 2640
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2641 2642
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2643 2644
		if (!hctx->tags)
			continue;
2645 2646 2647 2648
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2649 2650 2651 2652 2653 2654 2655 2656
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2657 2658 2659 2660 2661 2662 2663
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2664 2665 2666
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2667 2668 2669
	return ret;
}

K
Keith Busch 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

2686 2687 2688 2689
		/*
		 * Manually set the make_request_fn as blk_queue_make_request
		 * resets a lot of the queue settings.
		 */
K
Keith Busch 已提交
2690
		if (q->nr_hw_queues > 1)
2691
			q->make_request_fn = blk_mq_make_request;
K
Keith Busch 已提交
2692
		else
2693
			q->make_request_fn = blk_sq_make_request;
K
Keith Busch 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2740
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2741
				     struct blk_mq_hw_ctx *hctx,
2742 2743 2744 2745
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2746
	unsigned int nsecs;
2747 2748
	ktime_t kt;

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2767 2768 2769 2770 2771 2772 2773 2774
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2775
	kt = nsecs;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2798 2799 2800 2801 2802
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2803 2804 2805 2806 2807 2808 2809
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2810
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2811 2812
		return true;

J
Jens Axboe 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2856 2857 2858 2859
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2860 2861 2862 2863 2864

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2875 2876
static int __init blk_mq_init(void)
{
2877 2878
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2879

2880 2881 2882
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2883 2884 2885
	return 0;
}
subsys_initcall(blk_mq_init);