skbuff.h 110.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
18
#include <linux/kmemcheck.h>
L
Linus Torvalds 已提交
19 20
#include <linux/compiler.h>
#include <linux/time.h>
21
#include <linux/bug.h>
L
Linus Torvalds 已提交
22
#include <linux/cache.h>
E
Eric Dumazet 已提交
23
#include <linux/rbtree.h>
24
#include <linux/socket.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
38
#include <net/flow_dissector.h>
39
#include <linux/splice.h>
40
#include <linux/in6.h>
41
#include <linux/if_packet.h>
42
#include <net/flow.h>
L
Linus Torvalds 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* The interface for checksum offload between the stack and networking drivers
 * is as follows...
 *
 * A. IP checksum related features
 *
 * Drivers advertise checksum offload capabilities in the features of a device.
 * From the stack's point of view these are capabilities offered by the driver,
 * a driver typically only advertises features that it is capable of offloading
 * to its device.
 *
 * The checksum related features are:
 *
 *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
 *			  IP (one's complement) checksum for any combination
 *			  of protocols or protocol layering. The checksum is
 *			  computed and set in a packet per the CHECKSUM_PARTIAL
 *			  interface (see below).
 *
 *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv4. These are specifically
 *			  unencapsulated packets of the form IPv4|TCP or
 *			  IPv4|UDP where the Protocol field in the IPv4 header
 *			  is TCP or UDP. The IPv4 header may contain IP options
 *			  This feature cannot be set in features for a device
 *			  with NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv6. These are specifically
 *			  unencapsulated packets of the form IPv6|TCP or
 *			  IPv4|UDP where the Next Header field in the IPv6
 *			  header is either TCP or UDP. IPv6 extension headers
 *			  are not supported with this feature. This feature
 *			  cannot be set in features for a device with
 *			  NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
 *			 This flag is used only used to disable the RX checksum
 *			 feature for a device. The stack will accept receive
 *			 checksum indication in packets received on a device
 *			 regardless of whether NETIF_F_RXCSUM is set.
 *
 * B. Checksumming of received packets by device. Indication of checksum
 *    verification is in set skb->ip_summed. Possible values are:
89 90 91
 *
 * CHECKSUM_NONE:
 *
92
 *   Device did not checksum this packet e.g. due to lack of capabilities.
93 94 95 96 97 98 99
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 101
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
102 103
 *   though. A driver or device must never modify the checksum field in the
 *   packet even if checksum is verified.
104 105 106 107 108 109 110 111
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
112
 *     FCOE: indicates the CRC in FC frame has been validated.
113 114 115 116 117 118 119 120 121 122
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
123 124 125 126 127 128 129
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
130 131 132 133
 *   Notes:
 *   - Even if device supports only some protocols, but is able to produce
 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 135 136
 *
 * CHECKSUM_PARTIAL:
 *
137 138
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140 141 142 143 144 145
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
146
 *
147 148
 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 *    in the skb->ip_summed for a packet. Values are:
149 150 151
 *
 * CHECKSUM_PARTIAL:
 *
152
 *   The driver is required to checksum the packet as seen by hard_start_xmit()
153
 *   from skb->csum_start up to the end, and to record/write the checksum at
154 155 156 157 158 159 160 161 162 163 164 165 166 167
 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 *   csum_start and csum_offset values are valid values given the length and
 *   offset of the packet, however they should not attempt to validate that the
 *   checksum refers to a legitimate transport layer checksum-- it is the
 *   purview of the stack to validate that csum_start and csum_offset are set
 *   correctly.
 *
 *   When the stack requests checksum offload for a packet, the driver MUST
 *   ensure that the checksum is set correctly. A driver can either offload the
 *   checksum calculation to the device, or call skb_checksum_help (in the case
 *   that the device does not support offload for a particular checksum).
 *
 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 169 170 171 172
 *   checksum offload capability.
 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 *   on network device checksumming capabilities: if a packet does not match
 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 *   csum_not_inet, see item D.) is called to resolve the checksum.
173
 *
174
 * CHECKSUM_NONE:
175
 *
176 177
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
178 179 180
 *
 * CHECKSUM_UNNECESSARY:
 *
181 182
 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 *   output.
183
 *
184 185 186 187 188 189 190 191
 * CHECKSUM_COMPLETE:
 *   Not used in checksum output. If a driver observes a packet with this value
 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 *
 * D. Non-IP checksum (CRC) offloads
 *
 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 *     offloading the SCTP CRC in a packet. To perform this offload the stack
192 193 194 195 196 197 198
 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 *     must verify which offload is configured for a packet by testing the
 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 *
 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 *     accordingly. Note the there is no indication in the skbuff that the
 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 *     both IP checksum offload and FCOE CRC offload must verify which offload
 *     is configured for a packet presumably by inspecting packet headers.
 *
 * E. Checksumming on output with GSO.
 *
 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 * part of the GSO operation is implied. If a checksum is being offloaded
 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 * are set to refer to the outermost checksum being offload (two offloaded
 * checksums are possible with UDP encapsulation).
217 218
 */

219
/* Don't change this without changing skb_csum_unnecessary! */
220 221 222 223
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
224

225 226 227
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

228
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229
#define SKB_WITH_OVERHEAD(X)	\
230
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 232
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
233 234 235
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
236 237 238 239 240
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
241
struct net_device;
242
struct scatterlist;
J
Jens Axboe 已提交
243
struct pipe_inode_info;
H
Herbert Xu 已提交
244
struct iov_iter;
245
struct napi_struct;
L
Linus Torvalds 已提交
246

247
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
248 249 250
struct nf_conntrack {
	atomic_t use;
};
251
#endif
L
Linus Torvalds 已提交
252

253
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
254
struct nf_bridge_info {
255
	atomic_t		use;
256 257 258 259
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
260
	} orig_proto:8;
261 262 263
	u8			pkt_otherhost:1;
	u8			in_prerouting:1;
	u8			bridged_dnat:1;
264
	__u16			frag_max_size;
265
	struct net_device	*physindev;
266 267 268

	/* always valid & non-NULL from FORWARD on, for physdev match */
	struct net_device	*physoutdev;
269
	union {
270
		/* prerouting: detect dnat in orig/reply direction */
271 272
		__be32          ipv4_daddr;
		struct in6_addr ipv6_daddr;
273 274 275 276 277 278

		/* after prerouting + nat detected: store original source
		 * mac since neigh resolution overwrites it, only used while
		 * skb is out in neigh layer.
		 */
		char neigh_header[8];
279
	};
L
Linus Torvalds 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

294 295 296 297 298 299
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
300
 */
301
#if (65536/PAGE_SIZE + 1) < 16
302
#define MAX_SKB_FRAGS 16UL
303
#else
304
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305
#endif
H
Hans Westgaard Ry 已提交
306
extern int sysctl_max_skb_frags;
L
Linus Torvalds 已提交
307

308 309 310 311 312
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 * segment using its current segmentation instead.
 */
#define GSO_BY_FRAGS	0xFFFF

L
Linus Torvalds 已提交
313 314 315
typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
316 317 318
	struct {
		struct page *p;
	} page;
319
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 321
	__u32 page_offset;
	__u32 size;
322 323 324 325
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
326 327
};

E
Eric Dumazet 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

348 349 350
#define HAVE_HW_TIME_STAMP

/**
351
 * struct skb_shared_hwtstamps - hardware time stamps
352 353 354 355
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
356
 * skb->tstamp.
357 358 359 360 361 362 363 364 365 366 367
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

368 369 370 371 372
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

373
	/* generate software time stamp when queueing packet to NIC */
374 375 376 377 378
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

379
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
380
	SKBTX_DEV_ZEROCOPY = 1 << 3,
381 382

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
383
	SKBTX_WIFI_STATUS = 1 << 4,
384 385 386 387 388 389 390

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
391 392 393

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
394 395
};

396
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
397
				 SKBTX_SCHED_TSTAMP)
398 399
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

400 401 402
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
403 404
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
405 406
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
407 408
 */
struct ubuf_info {
409
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
410
	void *ctx;
411
	unsigned long desc;
412 413
};

L
Linus Torvalds 已提交
414 415 416 417
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
418
	unsigned short	_unused;
419 420
	unsigned char	nr_frags;
	__u8		tx_flags;
421 422 423
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
L
Linus Torvalds 已提交
424
	struct sk_buff	*frag_list;
425
	struct skb_shared_hwtstamps hwtstamps;
426
	unsigned int	gso_type;
427
	u32		tskey;
428
	__be32          ip6_frag_id;
E
Eric Dumazet 已提交
429 430 431 432 433 434

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
435 436 437
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
438

439 440
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
441 442 443 444
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
445 446
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
447 448 449 450 451 452 453 454 455 456
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

457 458

enum {
459 460 461
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
462 463
};

464 465
enum {
	SKB_GSO_TCPV4 = 1 << 0,
H
Herbert Xu 已提交
466
	SKB_GSO_UDP = 1 << 1,
467 468 469

	/* This indicates the skb is from an untrusted source. */
	SKB_GSO_DODGY = 1 << 2,
M
Michael Chan 已提交
470 471

	/* This indicates the tcp segment has CWR set. */
H
Herbert Xu 已提交
472 473
	SKB_GSO_TCP_ECN = 1 << 3,

474
	SKB_GSO_TCP_FIXEDID = 1 << 4,
475

476
	SKB_GSO_TCPV6 = 1 << 5,
477

478
	SKB_GSO_FCOE = 1 << 6,
479

480
	SKB_GSO_GRE = 1 << 7,
S
Simon Horman 已提交
481

482
	SKB_GSO_GRE_CSUM = 1 << 8,
E
Eric Dumazet 已提交
483

484
	SKB_GSO_IPXIP4 = 1 << 9,
E
Eric Dumazet 已提交
485

486
	SKB_GSO_IPXIP6 = 1 << 10,
487

488
	SKB_GSO_UDP_TUNNEL = 1 << 11,
T
Tom Herbert 已提交
489

490 491
	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,

492 493 494
	SKB_GSO_PARTIAL = 1 << 13,

	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
M
Marcelo Ricardo Leitner 已提交
495 496

	SKB_GSO_SCTP = 1 << 15,
S
Steffen Klassert 已提交
497 498

	SKB_GSO_ESP = 1 << 16,
499 500
};

501 502 503 504 505 506 507 508 509 510
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

L
Linus Torvalds 已提交
511 512 513 514
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
515
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
516
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
517
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
518
 *	@dev: Device we arrived on/are leaving by
519
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
520
 *	@_skb_refdst: destination entry (with norefcount bit)
521
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
522 523 524
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
525
 *	@hdr_len: writable header length of cloned skb
526 527 528
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
529
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
530
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
531
 *	@cloned: Head may be cloned (check refcnt to be sure)
532
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
533 534
 *	@nohdr: Payload reference only, must not modify header
 *	@pkt_type: Packet class
535 536
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
537
 *	@tc_skip_classify: do not classify packet. set by IFB device
538
 *	@tc_at_ingress: used within tc_classify to distinguish in/egress
539 540
 *	@tc_redirected: packet was redirected by a tc action
 *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
541 542
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
543
 *	@nf_trace: netfilter packet trace flag
544 545
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
546
 *	@_nfct: Associated connection, if any (with nfctinfo bits)
L
Linus Torvalds 已提交
547
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
548
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
549
 *	@tc_index: Traffic control index
550
 *	@hash: the packet hash
551
 *	@queue_mapping: Queue mapping for multiqueue devices
552
 *	@xmit_more: More SKBs are pending for this queue
553
 *	@ndisc_nodetype: router type (from link layer)
554
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
555
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
556
 *		ports.
557
 *	@sw_hash: indicates hash was computed in software stack
558 559
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
560
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
561
 *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
562
 *	@dst_pending_confirm: need to confirm neighbour
E
Eliezer Tamir 已提交
563
  *	@napi_id: id of the NAPI struct this skb came from
564
 *	@secmark: security marking
565
 *	@mark: Generic packet mark
566
 *	@vlan_proto: vlan encapsulation protocol
567
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
568
 *	@inner_protocol: Protocol (encapsulation)
569 570
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
571
 *	@inner_mac_header: Link layer header (encapsulation)
572 573 574 575 576 577 578 579 580
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
581 582 583
 */

struct sk_buff {
584
	union {
E
Eric Dumazet 已提交
585 586 587 588 589 590 591
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				ktime_t		tstamp;
592
				u64		skb_mstamp;
E
Eric Dumazet 已提交
593 594 595
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
596
	};
597
	struct sock		*sk;
L
Linus Torvalds 已提交
598

599 600 601 602 603 604 605 606
	union {
		struct net_device	*dev;
		/* Some protocols might use this space to store information,
		 * while device pointer would be NULL.
		 * UDP receive path is one user.
		 */
		unsigned long		dev_scratch;
	};
L
Linus Torvalds 已提交
607 608 609 610 611 612
	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
613
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
614

E
Eric Dumazet 已提交
615
	unsigned long		_skb_refdst;
616
	void			(*destructor)(struct sk_buff *skb);
617 618
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
619 620
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
621
	unsigned long		 _nfct;
622
#endif
623
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
624
	struct nf_bridge_info	*nf_bridge;
625
#endif
L
Linus Torvalds 已提交
626
	unsigned int		len,
627 628 629
				data_len;
	__u16			mac_len,
				hdr_len;
630 631 632 633

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
634
	kmemcheck_bitfield_begin(flags1);
635
	__u16			queue_mapping;
636 637 638 639 640 641 642 643 644 645

/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK	(1 << 7)
#else
#define CLONED_MASK	1
#endif
#define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)

	__u8			__cloned_offset[0];
646
	__u8			cloned:1,
647
				nohdr:1,
648
				fclone:2,
649
				peeked:1,
650
				head_frag:1,
651 652
				xmit_more:1,
				__unused:1; /* one bit hole */
653
	kmemcheck_bitfield_end(flags1);
654

655 656 657
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
658
	/* private: */
659
	__u32			headers_start[0];
660
	/* public: */
661

662 663 664 665 666
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
667
#endif
668
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
669

670
	__u8			__pkt_type_offset[0];
671
	__u8			pkt_type:3;
672
	__u8			pfmemalloc:1;
673 674 675 676
	__u8			ignore_df:1;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
677
	__u8			ooo_okay:1;
678
	__u8			l4_hash:1;
679
	__u8			sw_hash:1;
680 681
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
682

683
	__u8			no_fcs:1;
684
	/* Indicates the inner headers are valid in the skbuff. */
685
	__u8			encapsulation:1;
686
	__u8			encap_hdr_csum:1;
687
	__u8			csum_valid:1;
688
	__u8			csum_complete_sw:1;
689
	__u8			csum_level:2;
690
	__u8			csum_not_inet:1;
691

692
	__u8			dst_pending_confirm:1;
693 694 695 696
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
697
	__u8			inner_protocol_type:1;
698
	__u8			remcsum_offload:1;
699 700 701
#ifdef CONFIG_NET_SWITCHDEV
	__u8			offload_fwd_mark:1;
#endif
702 703
#ifdef CONFIG_NET_CLS_ACT
	__u8			tc_skip_classify:1;
704
	__u8			tc_at_ingress:1;
705 706
	__u8			tc_redirected:1;
	__u8			tc_from_ingress:1;
707
#endif
708 709 710 711

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#endif
712

713 714 715 716 717 718 719 720 721 722 723 724
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
725 726 727 728 729
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
730
#endif
731
#ifdef CONFIG_NETWORK_SECMARK
732
	__u32		secmark;
733 734
#endif

735 736
	union {
		__u32		mark;
E
Eric Dumazet 已提交
737
		__u32		reserved_tailroom;
738
	};
L
Linus Torvalds 已提交
739

T
Tom Herbert 已提交
740 741 742 743 744
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

745 746 747
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
748 749

	__be16			protocol;
750 751 752
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
753

754
	/* private: */
755
	__u32			headers_end[0];
756
	/* public: */
757

L
Linus Torvalds 已提交
758
	/* These elements must be at the end, see alloc_skb() for details.  */
759
	sk_buff_data_t		tail;
760
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
761
	unsigned char		*head,
762
				*data;
763 764
	unsigned int		truesize;
	atomic_t		users;
L
Linus Torvalds 已提交
765 766 767 768 769 770 771 772 773
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


774 775
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
776
#define SKB_ALLOC_NAPI		0x04
777 778 779 780 781 782 783

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
784 785 786 787 788 789 790
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

791
#define SKB_NFCT_PTRMASK	~(7UL)
E
Eric Dumazet 已提交
792 793 794 795 796 797
/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
798 799
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
800 801 802 803 804 805 806
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
807 808
}

E
Eric Dumazet 已提交
809 810 811 812 813 814 815 816
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
817 818
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
819 820 821
	skb->_skb_refdst = (unsigned long)dst;
}

822 823 824 825 826 827 828 829 830 831 832 833
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
834 835
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
836
}
E
Eric Dumazet 已提交
837 838

/**
L
Lucas De Marchi 已提交
839
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
840 841 842 843 844
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
845 846
}

E
Eric Dumazet 已提交
847 848
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
849
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
850 851
}

852 853 854 855 856 857 858 859 860
/* For mangling skb->pkt_type from user space side from applications
 * such as nft, tc, etc, we only allow a conservative subset of
 * possible pkt_types to be set.
*/
static inline bool skb_pkt_type_ok(u32 ptype)
{
	return ptype <= PACKET_OTHERHOST;
}

861 862 863 864 865 866 867 868 869
static inline unsigned int skb_napi_id(const struct sk_buff *skb)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
	return skb->napi_id;
#else
	return 0;
#endif
}

870 871 872 873 874
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void  __kfree_skb(struct sk_buff *skb);
875
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
876

877 878 879
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
880

881 882
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
883
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
884
struct sk_buff *build_skb(void *data, unsigned int frag_size);
885
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
886
					gfp_t priority)
887
{
E
Eric Dumazet 已提交
888
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
889 890
}

891 892 893 894 895 896
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

897 898 899 900 901 902 903 904 905 906 907
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

	atomic_t	fclone_ref;
};

/**
 *	skb_fclone_busy - check if fclone is busy
908
 *	@sk: socket
909 910
 *	@skb: buffer
 *
M
Masanari Iida 已提交
911
 * Returns true if skb is a fast clone, and its clone is not freed.
912 913
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
914
 */
915 916
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
917 918 919 920 921 922
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
923
	       atomic_read(&fclones->fclone_ref) > 1 &&
924
	       fclones->skb2.sk == sk;
925 926
}

927
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
928
					       gfp_t priority)
929
{
930
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
931 932
}

933
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
934 935 936 937 938
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
{
	return __alloc_skb_head(priority, -1);
}

939 940 941 942
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
943 944 945 946 947 948 949
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
950 951 952 953 954 955

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
956 957 958 959
int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
				     int offset, int len);
int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
			      int offset, int len);
960 961
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int skb_pad(struct sk_buff *skb, int pad);
962
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
963

964 965 966 967
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
968

969 970 971
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
972
struct skb_seq_state {
973 974 975 976 977 978 979 980 981
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

982 983 984 985 986
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
987

988
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
989
			   unsigned int to, struct ts_config *config);
990

T
Tom Herbert 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

1024
static inline void skb_clear_hash(struct sk_buff *skb)
T
Tom Herbert 已提交
1025
{
1026
	skb->hash = 0;
1027
	skb->sw_hash = 0;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	skb->l4_hash = 0;
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
	if (!skb->l4_hash)
		skb_clear_hash(skb);
}

static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
	skb->l4_hash = is_l4;
	skb->sw_hash = is_sw;
1042
	skb->hash = hash;
T
Tom Herbert 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
	/* Used by drivers to set hash from HW */
	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}

static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
	__skb_set_hash(skb, hash, true, is_l4);
}

1058
void __skb_get_hash(struct sk_buff *skb);
1059
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
		   const struct flow_keys *keys, int hlen);
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
			    void *data, int hlen_proto);

static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
					int thoff, u8 ip_proto)
{
	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count);

bool __skb_flow_dissect(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container,
1079 1080
			void *data, __be16 proto, int nhoff, int hlen,
			unsigned int flags);
1081 1082 1083

static inline bool skb_flow_dissect(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
1084
				    void *target_container, unsigned int flags)
1085 1086
{
	return __skb_flow_dissect(skb, flow_dissector, target_container,
1087
				  NULL, 0, 0, 0, flags);
1088 1089 1090
}

static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1091 1092
					      struct flow_keys *flow,
					      unsigned int flags)
1093 1094 1095
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1096
				  NULL, 0, 0, 0, flags);
1097 1098 1099 1100
}

static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
						  void *data, __be16 proto,
1101 1102
						  int nhoff, int hlen,
						  unsigned int flags)
1103 1104 1105
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1106
				  data, proto, nhoff, hlen, flags);
1107 1108
}

1109
static inline __u32 skb_get_hash(struct sk_buff *skb)
1110
{
1111
	if (!skb->l4_hash && !skb->sw_hash)
1112
		__skb_get_hash(skb);
1113

1114
	return skb->hash;
1115 1116
}

1117
__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1118

1119
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1120
{
1121 1122
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1123
		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1124

1125
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1126
	}
1127 1128 1129 1130

	return skb->hash;
}

1131
__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1132

1133
static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1134
{
1135 1136
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1137
		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1138

1139
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1140
	}
1141 1142 1143 1144

	return skb->hash;
}

T
Tom Herbert 已提交
1145 1146
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);

T
Tom Herbert 已提交
1147 1148
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
1149
	return skb->hash;
T
Tom Herbert 已提交
1150 1151
}

1152 1153
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
1154
	to->hash = from->hash;
1155
	to->sw_hash = from->sw_hash;
1156
	to->l4_hash = from->l4_hash;
1157 1158
};

1159 1160 1161 1162 1163
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
1164 1165 1166 1167 1168

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
1169 1170 1171 1172 1173
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
1174 1175 1176 1177 1178

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
1179 1180
#endif

L
Linus Torvalds 已提交
1181
/* Internal */
1182
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
1183

1184 1185 1186 1187 1188
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

L
Linus Torvalds 已提交
1189 1190 1191 1192 1193 1194 1195 1196
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1197
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1198 1199
}

D
David S. Miller 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1210
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1223
	return skb->prev == (const struct sk_buff *) list;
1224 1225
}

D
David S. Miller 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
	atomic_inc(&skb->users);
	return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1294 1295
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
1296
	might_sleep_if(gfpflags_allow_blocking(pri));
1297 1298 1299 1300 1301 1302 1303

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(gfpflags_allow_blocking(pri));

	if (skb_header_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1333 1334 1335 1336 1337 1338 1339
/**
 *	skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Drop a reference to the header part of the buffer.  This is done
 *	by acquiring a payload reference.  You must not read from the header
 *	part of skb->data after this.
1340
 *	Note : Check if you can use __skb_header_release() instead.
L
Linus Torvalds 已提交
1341 1342 1343 1344 1345 1346 1347 1348
 */
static inline void skb_header_release(struct sk_buff *skb)
{
	BUG_ON(skb->nohdr);
	skb->nohdr = 1;
	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Variant of skb_header_release() assuming skb is private to caller.
 *	We can avoid one atomic operation.
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
	return atomic_read(&skb->users) != 1;
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1388
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1389
{
1390
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1391 1392
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1393 1394 1395 1396 1397

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1423
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1424
					  gfp_t pri)
L
Linus Torvalds 已提交
1425
{
1426
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1427 1428
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1429 1430 1431 1432 1433 1434

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
		skb = nskb;
	}
	return skb;
}

/**
1441
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1453
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1454
{
1455 1456 1457 1458 1459
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1460 1461
}

P
Pavel Emelyanov 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1475

P
Pavel Emelyanov 已提交
1476 1477 1478 1479 1480
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1481
/**
1482
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1494
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1495
{
1496 1497 1498 1499 1500 1501
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1531 1532 1533 1534 1535 1536 1537 1538
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1539 1540 1541
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1542
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1543 1544
}

1545 1546 1547 1548 1549 1550 1551
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1552
/*
1553
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1554 1555 1556 1557
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1558 1559
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1560 1561 1562 1563 1564 1565 1566 1567 1568
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1594
		head->qlen += list->qlen;
1595 1596 1597 1598
	}
}

/**
E
Eric Dumazet 已提交
1599
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1610
		head->qlen += list->qlen;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1625
		head->qlen += list->qlen;
1626 1627 1628 1629
	}
}

/**
E
Eric Dumazet 已提交
1630
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1642
		head->qlen += list->qlen;
1643 1644 1645 1646
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1647
/**
1648
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1649
 *	@list: list to use
1650
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1651 1652
 *	@newsk: buffer to queue
 *
1653
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1654 1655 1656 1657
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1658 1659 1660
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1661
{
1662
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1663 1664
}

1665 1666
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1667

1668 1669 1670 1671 1672 1673 1674
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1685
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1686 1687 1688 1689 1690 1691
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1702
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1703 1704 1705
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1706
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1713
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1726 1727 1728 1729 1730 1731 1732 1733
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1734
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1735 1736 1737 1738 1739 1740 1741
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1751
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1761
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

1771
static inline unsigned int skb_pagelen(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1772
{
1773
	unsigned int i, len = 0;
L
Linus Torvalds 已提交
1774

1775
	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
E
Eric Dumazet 已提交
1776
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
L
Linus Torvalds 已提交
1777 1778 1779
	return len + skb_headlen(skb);
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1795 1796 1797
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1798
	/*
1799 1800 1801
	 * Propagate page pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page but rely
	 * on page_is_pfmemalloc doing the right thing(tm).
1802
	 */
1803
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1804
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1805
	skb_frag_size_set(frag, size);
1806 1807

	page = compound_head(page);
1808
	if (page_is_pfmemalloc(page))
1809
		skb->pfmemalloc	= true;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1821
 * @skb to point to @size bytes at offset @off within @page. In
1822 1823 1824 1825 1826 1827 1828 1829
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1830 1831 1832
	skb_shinfo(skb)->nr_frags = i + 1;
}

1833 1834
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1835

J
Jason Wang 已提交
1836 1837 1838
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1839
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1840
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1841 1842
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1875

1876 1877
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
1878 1879 1880
/*
 *	Add data to an sk_buff
 */
M
Mathias Krause 已提交
1881
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1882
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1883 1884
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
1885
	unsigned char *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

1892
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1893 1894 1895 1896 1897 1898 1899
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

1900
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906 1907
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

1908 1909 1910 1911 1912
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

1913
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
1914 1915 1916 1917

static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
1918
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
1935
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
1936 1937
}

1938 1939
void skb_condense(struct sk_buff *skb);

L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945
/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
1946
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
1959
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
1960 1961
}

1962 1963 1964 1965 1966 1967 1968 1969 1970
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1971 1972 1973 1974
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
1975 1976
}

L
Linus Torvalds 已提交
1977 1978 1979 1980 1981 1982 1983 1984
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
1985
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990
{
	skb->data += len;
	skb->tail += len;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
/**
 *	skb_tailroom_reserve - adjust reserved_tailroom
 *	@skb: buffer to alter
 *	@mtu: maximum amount of headlen permitted
 *	@needed_tailroom: minimum amount of reserved_tailroom
 *
 *	Set reserved_tailroom so that headlen can be as large as possible but
 *	not larger than mtu and tailroom cannot be smaller than
 *	needed_tailroom.
 *	The required headroom should already have been reserved before using
 *	this function.
 */
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
					unsigned int needed_tailroom)
{
	SKB_LINEAR_ASSERT(skb);
	if (mtu < skb_tailroom(skb) - needed_tailroom)
		/* use at most mtu */
		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
	else
		/* use up to all available space */
		skb->reserved_tailroom = needed_tailroom;
}

T
Tom Herbert 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

2032 2033
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
2034
	skb->inner_mac_header = skb->mac_header;
2035 2036 2037 2038
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

2039 2040 2041 2042 2043
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

2044 2045 2046 2047 2048 2049
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

2050 2051 2052 2053 2054
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
{
	return skb_inner_transport_header(skb) - skb->data;
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
2100 2101
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
2102
	return skb->transport_header != (typeof(skb->transport_header))~0U;
2103 2104
}

2105 2106
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
2107
	return skb->head + skb->transport_header;
2108 2109
}

2110 2111
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
2112
	skb->transport_header = skb->data - skb->head;
2113 2114
}

2115 2116 2117
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
2118 2119
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
2120 2121
}

2122 2123
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
2124
	return skb->head + skb->network_header;
2125 2126
}

2127 2128
static inline void skb_reset_network_header(struct sk_buff *skb)
{
2129
	skb->network_header = skb->data - skb->head;
2130 2131
}

2132 2133
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
2134 2135
	skb_reset_network_header(skb);
	skb->network_header += offset;
2136 2137
}

2138
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2139
{
2140
	return skb->head + skb->mac_header;
2141 2142
}

2143 2144 2145 2146 2147
static inline int skb_mac_offset(const struct sk_buff *skb)
{
	return skb_mac_header(skb) - skb->data;
}

2148
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2149
{
C
Cong Wang 已提交
2150
	return skb->mac_header != (typeof(skb->mac_header))~0U;
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

2164 2165 2166 2167 2168
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

2169 2170 2171 2172 2173 2174 2175
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
2176
	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2177
		skb_set_transport_header(skb, keys.control.thoff);
2178 2179 2180 2181
	else
		skb_set_transport_header(skb, offset_hint);
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

2192 2193 2194 2195 2196
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

2197 2198 2199 2200 2201
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
{
	return skb->head + skb->csum_start;
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

2212 2213 2214 2215 2216
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

2217 2218 2219 2220
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
2221

2222 2223 2224 2225 2226
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

2227 2228 2229 2230 2231
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2243
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2244 2245 2246 2247
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2248
 *
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2256 2257 2258 2259
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2260
 * 32 bytes or less we avoid the reallocation.
2261 2262 2263 2264 2265 2266 2267
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2268
 * Various parts of the networking layer expect at least 32 bytes of
2269
 * headroom, you should not reduce this.
2270 2271 2272 2273
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2274
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2275 2276
 */
#ifndef NET_SKB_PAD
2277
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2278 2279
#endif

2280
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2281

2282
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2283
{
2284
	if (unlikely(skb_is_nonlinear(skb))) {
2285 2286 2287
		WARN_ON(1);
		return;
	}
2288 2289
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2290 2291
}

2292 2293 2294 2295 2296
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
	__skb_set_length(skb, len);
}

2297
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2298 2299 2300

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2301 2302 2303 2304
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2305 2306 2307 2308 2309 2310 2311
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
{
	unsigned int diff = len - skb->len;

	if (skb_tailroom(skb) < diff) {
		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
					   GFP_ATOMIC);
		if (ret)
			return ret;
	}
	__skb_set_length(skb, len);
	return 0;
}

L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2351
	if (skb->destructor) {
L
Linus Torvalds 已提交
2352
		skb->destructor(skb);
E
Eric Dumazet 已提交
2353 2354
		skb->destructor = NULL;
		skb->sk		= NULL;
2355 2356
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2357
	}
L
Linus Torvalds 已提交
2358 2359
}

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2376 2377 2378 2379 2380 2381 2382 2383
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2384
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389 2390 2391
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2392 2393
void skb_rbtree_purge(struct rb_root *root);

2394
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2395

2396 2397
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2413
					       unsigned int length)
2414 2415 2416 2417
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2432 2433
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2434
{
2435
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2436 2437 2438 2439 2440 2441

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2442 2443 2444 2445 2446 2447
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2448 2449
static inline void skb_free_frag(void *addr)
{
2450
	page_frag_free(addr);
2451 2452
}

2453
void *napi_alloc_frag(unsigned int fragsz);
2454 2455 2456 2457 2458 2459 2460
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
2461 2462 2463
void napi_consume_skb(struct sk_buff *skb, int budget);

void __kfree_skb_flush(void);
2464
void __kfree_skb_defer(struct sk_buff *skb);
2465

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
2493
	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
2511
	return dev_alloc_pages(0);
2512 2513
}

2514 2515 2516 2517 2518 2519 2520 2521
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
2522
	if (page_is_pfmemalloc(page))
2523 2524 2525
		skb->pfmemalloc = true;
}

2526
/**
2527
 * skb_frag_page - retrieve the page referred to by a paged fragment
2528 2529 2530 2531 2532 2533
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2534
	return frag->page.p;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2620
	frag->page.p = page;
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2637 2638
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2639 2640
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2641
 * @dev: the device to map the fragment to
2642 2643 2644 2645
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2646
 * @dir: the direction of the mapping (%PCI_DMA_*)
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2659 2660 2661 2662 2663 2664
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2665 2666 2667 2668 2669 2670 2671 2672

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2673 2674 2675 2676 2677 2678 2679 2680
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2681
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2682 2683 2684 2685 2686
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

2687 2688 2689 2690 2691 2692 2693
static inline int skb_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}

H
Herbert Xu 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2722 2723
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2724

H
Herbert Xu 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2747 2748
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2749
 */
2750
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2751 2752 2753
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2754
		return 0;
G
Gerrit Renker 已提交
2755
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2756 2757
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
		if (skb_pad(skb, len))
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

L
Linus Torvalds 已提交
2781
static inline int skb_add_data(struct sk_buff *skb,
2782
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
2783 2784 2785 2786
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
2787
		__wsum csum = 0;
2788 2789
		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
					         &csum, from)) {
L
Linus Torvalds 已提交
2790 2791 2792
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
2793
	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

2800 2801
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
2802 2803
{
	if (i) {
E
Eric Dumazet 已提交
2804
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
2805

2806
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
2807
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
2808
	}
2809
	return false;
L
Linus Torvalds 已提交
2810 2811
}

H
Herbert Xu 已提交
2812 2813 2814 2815 2816
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
2817 2818 2819 2820 2821 2822 2823
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
2824 2825 2826 2827 2828
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

2829 2830 2831 2832 2833 2834 2835 2836 2837
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
2838 2839
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2840 2841
}

H
Herbert Xu 已提交
2842 2843 2844 2845 2846 2847 2848 2849
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
2850
{
H
Herbert Xu 已提交
2851 2852
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
static __always_inline void
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_sub(skb->csum,
					   csum_partial(start, len, 0), off);
	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) < 0)
		skb->ip_summed = CHECKSUM_NONE;
}

L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872 2873
/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
2874 2875
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
2876 2877
 */
static inline void skb_postpull_rcsum(struct sk_buff *skb,
2878
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
2879
{
2880
	__skb_postpull_rcsum(skb, start, len, 0);
L
Linus Torvalds 已提交
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890
static __always_inline void
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_add(skb->csum,
					   csum_partial(start, len, 0), off);
}
2891

2892 2893 2894 2895 2896 2897 2898 2899 2900
/**
 *	skb_postpush_rcsum - update checksum for received skb after push
 *	@skb: buffer to update
 *	@start: start of data after push
 *	@len: length of data pushed
 *
 *	After doing a push on a received packet, you need to call this to
 *	update the CHECKSUM_COMPLETE checksum.
 */
2901 2902 2903
static inline void skb_postpush_rcsum(struct sk_buff *skb,
				      const void *start, unsigned int len)
{
2904
	__skb_postpush_rcsum(skb, start, len, 0);
2905 2906
}

2907 2908
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/**
 *	skb_push_rcsum - push skb and update receive checksum
 *	@skb: buffer to update
 *	@len: length of data pulled
 *
 *	This function performs an skb_push on the packet and updates
 *	the CHECKSUM_COMPLETE checksum.  It should be used on
 *	receive path processing instead of skb_push unless you know
 *	that the checksum difference is zero (e.g., a valid IP header)
 *	or you are setting ip_summed to CHECKSUM_NONE.
 */
static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
					    unsigned int len)
{
	skb_push(skb, len);
	skb_postpush_rcsum(skb, skb->data, len);
	return skb->data;
}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	__skb_trim(skb, len);
	return 0;
}

static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __skb_grow(skb, len);
}

L
Linus Torvalds 已提交
2961 2962
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
2963
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
2964 2965
		     skb = skb->next)

2966 2967 2968 2969 2970
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2971
#define skb_queue_walk_from(queue, skb)						\
2972
		for (; skb != (struct sk_buff *)(queue);			\
2973 2974 2975 2976 2977 2978 2979
		     skb = skb->next)

#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2980 2981
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
2982
		     skb != (struct sk_buff *)(queue);				\
2983 2984
		     skb = skb->prev)

2985 2986 2987 2988 2989 2990 2991 2992 2993
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
2994

2995
static inline bool skb_has_frag_list(const struct sk_buff *skb)
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

3008 3009 3010

int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
				const struct sk_buff *skb);
3011 3012 3013 3014 3015 3016 3017
struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
					  struct sk_buff_head *queue,
					  unsigned int flags,
					  void (*destructor)(struct sock *sk,
							   struct sk_buff *skb),
					  int *peeked, int *off, int *err,
					  struct sk_buff **last);
3018
struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3019 3020
					void (*destructor)(struct sock *sk,
							   struct sk_buff *skb),
3021 3022
					int *peeked, int *off, int *err,
					struct sk_buff **last);
3023
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3024 3025
				    void (*destructor)(struct sock *sk,
						       struct sk_buff *skb),
3026 3027 3028 3029 3030
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
unsigned int datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
3031 3032
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
3033 3034 3035
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
3036
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3037
}
3038 3039
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
3040 3041 3042
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3043
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3044 3045 3046 3047 3048 3049
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
static inline void skb_free_datagram_locked(struct sock *sk,
					    struct sk_buff *skb)
{
	__skb_free_datagram_locked(sk, skb, 0);
}
3050 3051 3052 3053 3054
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
3055
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3056
		    struct pipe_inode_info *pipe, unsigned int len,
A
Al Viro 已提交
3057
		    unsigned int flags);
3058
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3059
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3060 3061
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
3062 3063 3064
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3065
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3066
bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3067
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3068
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3069
int skb_ensure_writable(struct sk_buff *skb, int write_len);
3070
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3071 3072
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3073 3074
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
			     gfp_t gfp);
3075

A
Al Viro 已提交
3076 3077
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
3078
	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
A
Al Viro 已提交
3079 3080
}

A
Al Viro 已提交
3081 3082
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
3083
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
3084 3085
}

3086 3087 3088 3089 3090
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

3091 3092
extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;

3093 3094 3095 3096 3097
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

3098 3099 3100
static inline void * __must_check
__skb_header_pointer(const struct sk_buff *skb, int offset,
		     int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
3101
{
3102
	if (hlen - offset >= len)
3103
		return data + offset;
L
Linus Torvalds 已提交
3104

3105 3106
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111
		return NULL;

	return buffer;
}

3112 3113
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3114 3115 3116 3117 3118
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

3166
void skb_init(void);
L
Linus Torvalds 已提交
3167

3168 3169 3170 3171 3172
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

3173 3174 3175 3176 3177 3178 3179 3180 3181
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
3182 3183
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
3184
{
3185
	*stamp = ktime_to_timeval(skb->tstamp);
3186 3187
}

3188 3189 3190 3191 3192 3193
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

3194
static inline void __net_timestamp(struct sk_buff *skb)
3195
{
3196
	skb->tstamp = ktime_get_real();
3197 3198
}

3199 3200 3201 3202 3203
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

3204 3205
static inline ktime_t net_invalid_timestamp(void)
{
T
Thomas Gleixner 已提交
3206
	return 0;
3207
}
3208

3209 3210
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

3211 3212
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

3213 3214
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
3232 3233
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
3234 3235
 * must call this function to return the skb back to the stack with a
 * timestamp.
3236
 *
3237
 * @skb: clone of the the original outgoing packet
3238
 * @hwtstamps: hardware time stamps
3239 3240 3241 3242 3243
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

3244 3245 3246 3247
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
3259 3260
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
3261

3262 3263 3264 3265
/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
3266
 * function immediately before giving the sk_buff to the MAC hardware.
3267
 *
3268 3269 3270 3271
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
3272 3273 3274 3275
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
3276
	skb_clone_tx_timestamp(skb);
3277 3278
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
		skb_tstamp_tx(skb, NULL);
3279 3280
}

3281 3282 3283 3284 3285 3286 3287 3288 3289
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

3290 3291
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
3292

3293 3294
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
3295 3296 3297 3298
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
3299 3300
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
3317
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3318
{
3319 3320
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
3321 3322
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

3344 3345 3346 3347 3348 3349 3350 3351 3352
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
3353 3354
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
3355
		__skb_decr_checksum_unnecessary(skb);
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3394
			skb->csum_valid = 1;
3395 3396 3397 3398 3399 3400
			return 0;
		}
	}

	skb->csum = psum;

3401 3402 3403 3404 3405 3406 3407
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3431
	skb->csum_valid = 0;						\
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
3449
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3450 3451 3452 3453

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3454 3455
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
3456
	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3473 3474 3475 3476 3477 3478 3479 3480
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

3481 3482 3483 3484 3485 3486
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3487
				       int start, int offset, bool nopartial)
3488 3489 3490
{
	__wsum delta;

3491 3492 3493 3494 3495
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

3507 3508 3509
static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3510
	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3511 3512 3513 3514 3515
#else
	return NULL;
#endif
}

3516
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3517
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3518 3519 3520
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3521
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3522 3523 3524 3525 3526 3527
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3528
#endif
3529
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
		atomic_inc(&nf_bridge->use);
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3541 3542
static inline void nf_reset(struct sk_buff *skb)
{
3543
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3544 3545
	nf_conntrack_put(skb_nfct(skb));
	skb->_nfct = 0;
3546
#endif
3547
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3548 3549 3550 3551 3552
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3553 3554
static inline void nf_reset_trace(struct sk_buff *skb)
{
3555
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3556 3557
	skb->nf_trace = 0;
#endif
3558 3559
}

3560
/* Note: This doesn't put any conntrack and bridge info in dst. */
3561 3562
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3563
{
3564
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3565 3566
	dst->_nfct = src->_nfct;
	nf_conntrack_get(skb_nfct(src));
3567
#endif
3568
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3569 3570 3571
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3572
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3573 3574
	if (copy)
		dst->nf_trace = src->nf_trace;
3575
#endif
3576 3577
}

3578 3579 3580
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3581
	nf_conntrack_put(skb_nfct(dst));
3582
#endif
3583
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3584 3585
	nf_bridge_put(dst->nf_bridge);
#endif
3586
	__nf_copy(dst, src, true);
3587 3588
}

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3607 3608 3609 3610 3611 3612
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
3613
		!skb_nfct(skb) &&
3614 3615 3616 3617
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3618 3619 3620 3621 3622
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

3623
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3624 3625 3626 3627
{
	return skb->queue_mapping;
}

3628 3629 3630 3631 3632
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

3633 3634 3635 3636 3637
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

3638
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3639 3640 3641 3642
{
	return skb->queue_mapping - 1;
}

3643
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3644
{
E
Eric Dumazet 已提交
3645
	return skb->queue_mapping != 0;
3646 3647
}

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
{
	skb->dst_pending_confirm = val;
}

static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
{
	return skb->dst_pending_confirm != 0;
}

3658 3659
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
3660
#ifdef CONFIG_XFRM
3661 3662 3663 3664
	return skb->sp;
#else
	return NULL;
#endif
3665
}
3666

3667 3668 3669
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
3670 3671 3672
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
3673
struct skb_gso_cb {
3674 3675 3676 3677
	union {
		int	mac_offset;
		int	data_offset;
	};
3678
	int	encap_level;
3679
	__wsum	csum;
3680
	__u16	csum_start;
3681
};
3682 3683
#define SKB_SGO_CB_OFFSET	32
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3684 3685 3686 3687 3688 3689 3690

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
{
	/* Do not update partial checksums if remote checksum is enabled. */
	if (skb->remcsum_offload)
		return;

	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
}

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
3726 3727 3728
	unsigned char *csum_start = skb_transport_header(skb);
	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
	__wsum partial = SKB_GSO_CB(skb)->csum;
3729

3730 3731
	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3732

3733
	return csum_fold(csum_partial(csum_start, plen, partial));
3734 3735
}

3736
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
3737 3738 3739 3740
{
	return skb_shinfo(skb)->gso_size;
}

3741
/* Note: Should be called only if skb_is_gso(skb) is true */
3742
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
3743 3744 3745 3746
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

3747 3748 3749 3750 3751 3752 3753
static inline void skb_gso_reset(struct sk_buff *skb)
{
	skb_shinfo(skb)->gso_size = 0;
	skb_shinfo(skb)->gso_segs = 0;
	skb_shinfo(skb)->gso_type = 0;
}

3754
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3755 3756 3757 3758 3759

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
3760 3761
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

3762 3763
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
3764 3765 3766 3767 3768 3769
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

3770 3771 3772 3773 3774 3775 3776
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3777 3778 3779 3780 3781 3782 3783 3784
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
3785
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3786 3787 3788 3789 3790 3791
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

3792
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3793

P
Paul Durrant 已提交
3794
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3795 3796 3797
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
3798

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
T
Thomas Graf 已提交
3829

3830 3831 3832
/* Local Checksum Offload.
 * Compute outer checksum based on the assumption that the
 * inner checksum will be offloaded later.
3833 3834
 * See Documentation/networking/checksum-offloads.txt for
 * explanation of how this works.
3835 3836 3837 3838 3839 3840
 * Fill in outer checksum adjustment (e.g. with sum of outer
 * pseudo-header) before calling.
 * Also ensure that inner checksum is in linear data area.
 */
static inline __wsum lco_csum(struct sk_buff *skb)
{
3841 3842 3843
	unsigned char *csum_start = skb_checksum_start(skb);
	unsigned char *l4_hdr = skb_transport_header(skb);
	__wsum partial;
3844 3845

	/* Start with complement of inner checksum adjustment */
3846 3847 3848
	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
						    skb->csum_offset));

3849
	/* Add in checksum of our headers (incl. outer checksum
3850
	 * adjustment filled in by caller) and return result.
3851
	 */
3852
	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3853 3854
}

L
Linus Torvalds 已提交
3855 3856
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */