i915_gem_gtt.c 106.8 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176 177
	if (has_full_48bit_ppgtt)
		return 3;
178

179 180
	if (has_full_ppgtt)
		return 2;
181

182
	return 1;
183 184
}

185 186 187
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
188
{
189
	u32 pte_flags;
190 191 192 193 194 195 196 197
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
198

199
	/* Applicable to VLV, and gen8+ */
200
	pte_flags = 0;
201
	if (i915_gem_object_is_readonly(vma->obj))
202 203
		pte_flags |= PTE_READ_ONLY;

204
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
205 206

	return 0;
207 208 209 210
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
211
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
212
}
213

214 215 216 217 218 219
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

220 221
	vma->page_sizes = vma->obj->mm.page_sizes;

222 223 224 225 226 227 228 229 230 231 232 233
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
234 235

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
236 237
}

238
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
239 240
				  enum i915_cache_level level,
				  u32 flags)
B
Ben Widawsky 已提交
241
{
242 243 244 245
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
246 247 248

	switch (level) {
	case I915_CACHE_NONE:
249
		pte |= PPAT_UNCACHED;
250 251
		break;
	case I915_CACHE_WT:
252
		pte |= PPAT_DISPLAY_ELLC;
253 254
		break;
	default:
255
		pte |= PPAT_CACHED;
256 257 258
		break;
	}

B
Ben Widawsky 已提交
259 260 261
	return pte;
}

262 263
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
264
{
265
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
266 267
	pde |= addr;
	if (level != I915_CACHE_NONE)
268
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
269
	else
270
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
271 272 273
	return pde;
}

274 275 276
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

277 278
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
279
				 u32 unused)
280
{
281
	gen6_pte_t pte = GEN6_PTE_VALID;
282
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
283 284

	switch (level) {
285 286 287 288 289 290 291 292
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
293
		MISSING_CASE(level);
294 295 296 297 298
	}

	return pte;
}

299 300
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
301
				 u32 unused)
302
{
303
	gen6_pte_t pte = GEN6_PTE_VALID;
304 305 306 307 308
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
309 310 311 312 313
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
314
		pte |= GEN6_PTE_UNCACHED;
315 316
		break;
	default:
317
		MISSING_CASE(level);
318 319
	}

320 321 322
	return pte;
}

323 324
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
325
				 u32 flags)
326
{
327
	gen6_pte_t pte = GEN6_PTE_VALID;
328 329
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

330 331
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
332 333 334 335 336 337 338

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

339 340
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
341
				 u32 unused)
342
{
343
	gen6_pte_t pte = GEN6_PTE_VALID;
344
	pte |= HSW_PTE_ADDR_ENCODE(addr);
345 346

	if (level != I915_CACHE_NONE)
347
		pte |= HSW_WB_LLC_AGE3;
348 349 350 351

	return pte;
}

352 353
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
354
				  u32 unused)
355
{
356
	gen6_pte_t pte = GEN6_PTE_VALID;
357 358
	pte |= HSW_PTE_ADDR_ENCODE(addr);

359 360 361 362
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
363
		pte |= HSW_WT_ELLC_LLC_AGE3;
364 365
		break;
	default:
366
		pte |= HSW_WB_ELLC_LLC_AGE3;
367 368
		break;
	}
369 370 371 372

	return pte;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

408
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
409
{
410 411
	struct pagevec stack;
	struct page *page;
412

413 414
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
415

416 417 418
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
419 420 421 422 423

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
424 425 426
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
427

428
	/*
429
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
430 431 432 433 434 435
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
436
	pagevec_init(&stack);
437 438
	do {
		struct page *page;
439

440 441 442 443
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

444 445
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
446

447 448
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
449

450 451
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
452

453 454 455
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
456
	}
457

458 459 460 461 462 463 464
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
465 466
}

467 468
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
469
{
470 471
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
472

473
	lockdep_assert_held(&vm->free_pages.lock);
474
	GEM_BUG_ON(!pagevec_count(pvec));
475

476
	if (vm->pt_kmap_wc) {
477 478
		/*
		 * When we use WC, first fill up the global stash and then
479 480
		 * only if full immediately free the overflow.
		 */
481
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
482

483 484 485 486 487 488 489 490
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
491

492 493 494 495 496 497 498 499 500 501
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
502
		set_pages_array_wb(pvec->pages, pvec->nr);
503 504

		spin_lock(&vm->free_pages.lock);
505 506 507
	}

	__pagevec_release(pvec);
508 509 510 511
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
512 513 514 515 516 517 518 519
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
520 521
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
522
		vm_free_pages_release(vm, false);
523 524 525 526 527 528
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
529 530 531 532 533 534 535 536
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	i915_gem_shrinker_taints_mutex(&vm->mutex);

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
557 558

	mutex_destroy(&vm->mutex);
559
}
560

561 562 563 564
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
565
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
566 567
	if (unlikely(!p->page))
		return -ENOMEM;
568

569 570 571
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
572
				      DMA_ATTR_SKIP_CPU_SYNC |
573
				      DMA_ATTR_NO_WARN);
574 575 576
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
577
	}
578 579

	return 0;
580 581
}

582
static int setup_page_dma(struct i915_address_space *vm,
583
			  struct i915_page_dma *p)
584
{
585
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
586 587
}

588
static void cleanup_page_dma(struct i915_address_space *vm,
589
			     struct i915_page_dma *p)
590
{
591 592
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
593 594
}

595
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
596

597 598
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
599 600
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
601

602 603 604
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
605
{
606
	u64 * const vaddr = kmap_atomic(p->page);
607

608
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
609

610
	kunmap_atomic(vaddr);
611 612
}

613 614 615
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
616
{
617
	fill_page_dma(vm, p, (u64)v << 32 | v);
618 619
}

620
static int
621
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
622
{
623
	unsigned long size;
624

625 626 627 628 629 630 631 632 633 634 635 636
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
637
	size = I915_GTT_PAGE_SIZE_4K;
638 639
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
640 641
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
642
	}
643 644 645 646 647 648
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
649

650
		page = alloc_pages(gfp, order);
651
		if (unlikely(!page))
652
			goto skip;
653

654 655 656
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
657
					  DMA_ATTR_SKIP_CPU_SYNC |
658
					  DMA_ATTR_NO_WARN);
659 660
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
661

662 663
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
681 682
}

683
static void cleanup_scratch_page(struct i915_address_space *vm)
684
{
685 686
	struct i915_page_dma *p = &vm->scratch_page;

687 688 689
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
690 691
}

692
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
693
{
694
	struct i915_page_table *pt;
695

696
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
697
	if (unlikely(!pt))
698 699
		return ERR_PTR(-ENOMEM);

700 701 702 703
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
704

705
	pt->used_ptes = 0;
706 707 708
	return pt;
}

709
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
710
{
711
	cleanup_px(vm, pt);
712 713 714 715 716 717
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
718
	fill_px(vm, pt,
719
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
720 721
}

722
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
723 724
			       struct i915_page_table *pt)
{
725
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
726 727
}

728
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
729
{
730
	struct i915_page_directory *pd;
731

732
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
733
	if (unlikely(!pd))
734 735
		return ERR_PTR(-ENOMEM);

736 737 738 739
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
740

741
	pd->used_pdes = 0;
742 743 744
	return pd;
}

745
static void free_pd(struct i915_address_space *vm,
746
		    struct i915_page_directory *pd)
747
{
748 749
	cleanup_px(vm, pd);
	kfree(pd);
750 751 752 753 754
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
755 756
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
757
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
758 759
}

760
static int __pdp_init(struct i915_address_space *vm,
761 762
		      struct i915_page_directory_pointer *pdp)
{
763
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
764

765
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
766
					    I915_GFP_ALLOW_FAIL);
767
	if (unlikely(!pdp->page_directory))
768 769
		return -ENOMEM;

770
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
771

772 773 774 775 776 777 778 779 780
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

781 782 783 784 785
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

786 787
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
788 789 790 791
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

792
	GEM_BUG_ON(!use_4lvl(vm));
793 794 795 796 797

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

798
	ret = __pdp_init(vm, pdp);
799 800 801
	if (ret)
		goto fail_bitmap;

802
	ret = setup_px(vm, pdp);
803 804 805 806 807 808 809 810 811 812 813 814 815
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

816
static void free_pdp(struct i915_address_space *vm,
817 818 819
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
820 821 822 823 824 825

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
826 827
}

828 829 830 831 832 833 834
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

835
	fill_px(vm, pdp, scratch_pdpe);
836 837 838 839 840
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
841 842
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
843
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
844 845
}

846 847 848 849 850 851 852
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
853
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
854 855
}

856 857 858 859
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
860
				struct i915_page_table *pt,
861
				u64 start, u64 length)
862
{
863
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
864 865
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
866
	const gen8_pte_t scratch_pte =
867
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
868
	gen8_pte_t *vaddr;
869

870
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
871

872 873 874
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
875

876
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
877
	while (pte < pte_end)
878
		vaddr[pte++] = scratch_pte;
879
	kunmap_atomic(vaddr);
880 881

	return false;
882
}
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

898
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
899
				struct i915_page_directory *pd,
900
				u64 start, u64 length)
901 902
{
	struct i915_page_table *pt;
903
	u32 pde;
904 905

	gen8_for_each_pde(pt, pd, start, length, pde) {
906 907
		GEM_BUG_ON(pt == vm->scratch_pt);

908 909
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
910

911
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
912
		GEM_BUG_ON(!pd->used_pdes);
913
		pd->used_pdes--;
914 915

		free_pt(vm, pt);
916 917
	}

918 919
	return !pd->used_pdes;
}
920

921 922 923 924 925 926 927 928
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
929
	if (!use_4lvl(vm))
930 931 932 933 934
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
935
}
936

937 938 939 940
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
941
				 struct i915_page_directory_pointer *pdp,
942
				 u64 start, u64 length)
943 944
{
	struct i915_page_directory *pd;
945
	unsigned int pdpe;
946

947
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
948 949
		GEM_BUG_ON(pd == vm->scratch_pd);

950 951
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
952

953
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
954
		GEM_BUG_ON(!pdp->used_pdpes);
955
		pdp->used_pdpes--;
956

957 958
		free_pd(vm, pd);
	}
959

960
	return !pdp->used_pdpes;
961
}
962

963 964 965 966 967 968
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

969 970 971 972 973 974 975 976 977 978 979 980 981
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

982 983 984 985
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
986 987
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
988
{
989 990
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
991
	struct i915_page_directory_pointer *pdp;
992
	unsigned int pml4e;
993

994
	GEM_BUG_ON(!use_4lvl(vm));
995

996
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
997 998
		GEM_BUG_ON(pdp == vm->scratch_pdp);

999 1000
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
1001

1002 1003 1004
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
1005 1006 1007
	}
}

1008
static inline struct sgt_dma {
1009 1010
	struct scatterlist *sg;
	dma_addr_t dma, max;
1011 1012 1013 1014 1015
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1034 1035
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1036
			      struct i915_page_directory_pointer *pdp,
1037
			      struct sgt_dma *iter,
1038
			      struct gen8_insert_pte *idx,
1039 1040
			      enum i915_cache_level cache_level,
			      u32 flags)
1041
{
1042
	struct i915_page_directory *pd;
1043
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1044 1045
	gen8_pte_t *vaddr;
	bool ret;
1046

1047
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1048 1049
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1050
	do {
1051 1052
		vaddr[idx->pte] = pte_encode | iter->dma;

1053 1054 1055 1056 1057 1058 1059
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1060

1061 1062
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1063
		}
1064

1065 1066 1067 1068 1069 1070
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1071
				/* Limited by sg length for 3lvl */
1072 1073
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1074
					ret = true;
1075
					break;
1076 1077
				}

1078
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1079
				pd = pdp->page_directory[idx->pdpe];
1080
			}
1081

1082
			kunmap_atomic(vaddr);
1083
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1084
		}
1085
	} while (1);
1086
	kunmap_atomic(vaddr);
1087

1088
	return ret;
1089 1090
}

1091
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1092
				   struct i915_vma *vma,
1093
				   enum i915_cache_level cache_level,
1094
				   u32 flags)
1095
{
1096
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1097
	struct sgt_dma iter = sgt_dma(vma);
1098
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1099

1100
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1101
				      cache_level, flags);
1102 1103

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1104
}
1105

1106 1107 1108
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1109 1110
					   enum i915_cache_level cache_level,
					   u32 flags)
1111
{
1112
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1113 1114 1115 1116 1117 1118 1119 1120
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1121
		bool maybe_64K = false;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1143 1144 1145 1146 1147 1148 1149
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1169 1170 1171 1172 1173 1174
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1175 1176 1177 1178 1179 1180
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1197
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1219
		}
1220 1221

		vma->page_sizes.gtt |= page_size;
1222 1223 1224
	} while (iter->sg);
}

1225
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1226
				   struct i915_vma *vma,
1227
				   enum i915_cache_level cache_level,
1228
				   u32 flags)
1229 1230
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1231
	struct sgt_dma iter = sgt_dma(vma);
1232
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1233

1234
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1235 1236
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1237 1238 1239 1240
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1241 1242
						     &iter, &idx, cache_level,
						     flags))
1243
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1244 1245

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1246
	}
1247 1248
}

1249
static void gen8_free_page_tables(struct i915_address_space *vm,
1250
				  struct i915_page_directory *pd)
1251 1252 1253
{
	int i;

1254 1255 1256
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1257
	}
B
Ben Widawsky 已提交
1258 1259
}

1260 1261
static int gen8_init_scratch(struct i915_address_space *vm)
{
1262
	int ret;
1263

1264
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1265 1266
	if (ret)
		return ret;
1267

1268
	vm->scratch_pt = alloc_pt(vm);
1269
	if (IS_ERR(vm->scratch_pt)) {
1270 1271
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1272 1273
	}

1274
	vm->scratch_pd = alloc_pd(vm);
1275
	if (IS_ERR(vm->scratch_pd)) {
1276 1277
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1278 1279
	}

1280
	if (use_4lvl(vm)) {
1281
		vm->scratch_pdp = alloc_pdp(vm);
1282
		if (IS_ERR(vm->scratch_pdp)) {
1283 1284
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1285 1286 1287
		}
	}

1288 1289
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1290
	if (use_4lvl(vm))
1291
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1292 1293

	return 0;
1294 1295

free_pd:
1296
	free_pd(vm, vm->scratch_pd);
1297
free_pt:
1298
	free_pt(vm, vm->scratch_pt);
1299
free_scratch_page:
1300
	cleanup_scratch_page(vm);
1301 1302

	return ret;
1303 1304
}

1305 1306
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1307
	struct i915_address_space *vm = &ppgtt->vm;
1308
	struct drm_i915_private *dev_priv = vm->i915;
1309 1310 1311
	enum vgt_g2v_type msg;
	int i;

1312 1313
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1314

1315 1316
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1317 1318 1319 1320

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1321
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1322
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1323

1324 1325
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1337 1338
static void gen8_free_scratch(struct i915_address_space *vm)
{
1339
	if (use_4lvl(vm))
1340 1341 1342 1343
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1344 1345
}

1346
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1347
				    struct i915_page_directory_pointer *pdp)
1348
{
1349
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1350 1351
	int i;

1352
	for (i = 0; i < pdpes; i++) {
1353
		if (pdp->page_directory[i] == vm->scratch_pd)
1354 1355
			continue;

1356 1357
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1358
	}
1359

1360
	free_pdp(vm, pdp);
1361 1362 1363 1364 1365 1366
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1367
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1368
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1369 1370
			continue;

1371
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1372 1373
	}

1374
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1375 1376 1377 1378
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1379
	struct drm_i915_private *dev_priv = vm->i915;
1380
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1381

1382
	if (intel_vgpu_active(dev_priv))
1383 1384
		gen8_ppgtt_notify_vgt(ppgtt, false);

1385
	if (use_4lvl(vm))
1386
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1387
	else
1388
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1389

1390
	gen8_free_scratch(vm);
1391 1392
}

1393 1394 1395
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1396
{
1397
	struct i915_page_table *pt;
1398
	u64 from = start;
1399
	unsigned int pde;
1400

1401
	gen8_for_each_pde(pt, pd, start, length, pde) {
1402 1403
		int count = gen8_pte_count(start, length);

1404
		if (pt == vm->scratch_pt) {
1405 1406
			pd->used_pdes++;

1407
			pt = alloc_pt(vm);
1408 1409
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1410
				goto unwind;
1411
			}
1412

1413
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1414
				gen8_initialize_pt(vm, pt);
1415 1416

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1417
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1418
		}
1419

1420
		pt->used_ptes += count;
1421
	}
1422
	return 0;
1423

1424 1425
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1426
	return -ENOMEM;
1427 1428
}

1429 1430 1431
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1432
{
1433
	struct i915_page_directory *pd;
1434 1435
	u64 from = start;
	unsigned int pdpe;
1436 1437
	int ret;

1438
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1439
		if (pd == vm->scratch_pd) {
1440 1441
			pdp->used_pdpes++;

1442
			pd = alloc_pd(vm);
1443 1444
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1445
				goto unwind;
1446
			}
1447

1448
			gen8_initialize_pd(vm, pd);
1449
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1450
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1451 1452

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1453 1454 1455
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1456 1457
		if (unlikely(ret))
			goto unwind_pd;
1458
	}
1459

B
Ben Widawsky 已提交
1460
	return 0;
1461

1462 1463 1464 1465 1466 1467 1468
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1469 1470 1471
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1472 1473
}

1474 1475
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1476
{
1477 1478 1479
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1490

1491
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1492 1493 1494 1495
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1496

1497 1498 1499
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1500

1501
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1502 1503
		if (unlikely(ret))
			goto unwind_pdp;
1504 1505 1506 1507
	}

	return 0;

1508 1509 1510 1511 1512
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1513 1514 1515
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1516 1517
}

1518 1519
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1520
			  u64 start, u64 length,
1521 1522 1523
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1524
	struct i915_address_space *vm = &ppgtt->vm;
1525
	struct i915_page_directory *pd;
1526
	u32 pdpe;
1527

1528
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1529
		struct i915_page_table *pt;
1530 1531 1532
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1533

1534
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1535 1536 1537
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1538
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1539
			u32 pte;
1540 1541
			gen8_pte_t *pt_vaddr;

1542
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1543 1544
				continue;

1545
			pt_vaddr = kmap_atomic_px(pt);
1546
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1547 1548 1549
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1575
	struct i915_address_space *vm = &ppgtt->vm;
1576
	const gen8_pte_t scratch_pte =
1577
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1578
	u64 start = 0, length = ppgtt->vm.total;
1579

1580
	if (use_4lvl(vm)) {
1581
		u64 pml4e;
1582 1583 1584
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1585
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1586
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1587 1588 1589
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1590
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1591
		}
1592 1593
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1594 1595 1596
	}
}

1597
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1598
{
1599
	struct i915_address_space *vm = &ppgtt->vm;
1600 1601
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1602
	u64 start = 0, length = ppgtt->vm.total;
1603 1604
	u64 from = start;
	unsigned int pdpe;
1605

1606 1607 1608 1609
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1610

1611 1612 1613 1614
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1615

1616 1617
	pdp->used_pdpes++; /* never remove */
	return 0;
1618

1619 1620 1621 1622 1623 1624 1625 1626
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1627 1628
}

1629
/*
1630 1631 1632 1633
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1634
 *
1635
 */
1636
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1637
{
1638 1639 1640 1641 1642 1643 1644
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1645 1646
	kref_init(&ppgtt->ref);

1647 1648
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1649

1650
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1651 1652 1653
		1ULL << 48 :
		1ULL << 32;

1654 1655 1656 1657 1658 1659
	/*
	 * From bdw, there is support for read-only pages in the PPGTT.
	 *
	 * XXX GVT is not honouring the lack of RW in the PTE bits.
	 */
	ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1660

1661 1662
	i915_address_space_init(&ppgtt->vm, i915);

1663 1664 1665
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1666
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1667
		ppgtt->vm.pt_kmap_wc = true;
1668

1669 1670 1671
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1672

1673 1674 1675 1676
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1677

1678
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1679

1680 1681 1682
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1683
	} else {
1684 1685 1686
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1687

1688 1689 1690
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1691
				__pdp_fini(&ppgtt->pdp);
1692
				goto err_scratch;
1693
			}
1694
		}
1695

1696 1697 1698
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1699
	}
1700

1701
	if (intel_vgpu_active(i915))
1702 1703
		gen8_ppgtt_notify_vgt(ppgtt, true);

1704
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1705 1706
	ppgtt->debug_dump = gen8_dump_ppgtt;

1707
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1708 1709 1710 1711
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1712
	return ppgtt;
1713

1714
err_scratch:
1715
	gen8_free_scratch(&ppgtt->vm);
1716 1717 1718
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1719 1720
}

1721
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1722
{
1723
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1724
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1752
			int i;
1753

B
Ben Widawsky 已提交
1754
			for (i = 0; i < 4; i++)
1755 1756 1757
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1758 1759
				continue;

1760 1761 1762
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1763
			for (i = 0; i < 4; i++) {
1764 1765
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1766
				else
1767
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1768 1769 1770
			}
			seq_puts(m, "\n");
		}
1771
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1772 1773 1774
	}
}

1775
/* Write pde (index) from the page directory @pd to the page table @pt */
1776
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1777 1778
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1779
{
1780
	/* Caller needs to make sure the write completes if necessary */
1781 1782
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1783
}
B
Ben Widawsky 已提交
1784

1785
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1786
{
1787
	struct intel_engine_cs *engine;
1788
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1789

1790
	for_each_engine(engine, dev_priv, id) {
1791 1792
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1793
		I915_WRITE(RING_MODE_GEN7(engine),
1794
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1795 1796
	}
}
B
Ben Widawsky 已提交
1797

1798
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1799
{
1800
	struct intel_engine_cs *engine;
1801
	u32 ecochk, ecobits;
1802
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1803

1804 1805
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1806

1807
	ecochk = I915_READ(GAM_ECOCHK);
1808
	if (IS_HASWELL(dev_priv)) {
1809 1810 1811 1812 1813 1814
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1815

1816
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1817
		/* GFX_MODE is per-ring on gen7+ */
1818
		I915_WRITE(RING_MODE_GEN7(engine),
1819
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1820
	}
1821
}
B
Ben Widawsky 已提交
1822

1823
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1824
{
1825
	u32 ecochk, gab_ctl, ecobits;
1826

1827 1828 1829
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1830

1831 1832 1833 1834 1835 1836 1837
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1838 1839
}

1840
/* PPGTT support for Sandybdrige/Gen6 and later */
1841
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1842
				   u64 start, u64 length)
1843
{
1844
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1845 1846 1847 1848
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1849
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1850

1851
	while (num_entries) {
1852 1853 1854
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1855
		gen6_pte_t *vaddr;
1856

1857 1858 1859 1860 1861 1862 1863 1864
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1865

1866 1867
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1868 1869 1870 1871
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1872

1873 1874 1875 1876 1877
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1878

1879
		pte = 0;
1880
	}
1881 1882
}

1883
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1884
				      struct i915_vma *vma,
1885 1886
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1887
{
1888
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1889
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1890 1891
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1892
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1893
	struct sgt_dma iter = sgt_dma(vma);
1894 1895
	gen6_pte_t *vaddr;

1896 1897
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1898
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1899 1900
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1901

1902 1903 1904 1905 1906
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1907

1908 1909 1910
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1911

1912
		if (++act_pte == GEN6_PTES) {
1913 1914
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1915
			act_pte = 0;
D
Daniel Vetter 已提交
1916
		}
1917
	} while (1);
1918
	kunmap_atomic(vaddr);
1919 1920

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1921 1922
}

1923
static int gen6_alloc_va_range(struct i915_address_space *vm,
1924
			       u64 start, u64 length)
1925
{
1926
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1927
	struct i915_page_table *pt;
1928 1929 1930
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1931

1932
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1933 1934
		const unsigned int count = gen6_pte_count(start, length);

1935 1936 1937 1938
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1939

1940
			gen6_initialize_pt(ppgtt, pt);
1941
			ppgtt->base.pd.page_table[pde] = pt;
1942 1943 1944 1945 1946 1947

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1948 1949

			GEM_BUG_ON(pt->used_ptes);
1950
		}
1951 1952

		pt->used_ptes += count;
1953 1954
	}

1955
	if (flush) {
1956 1957
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1958 1959 1960
	}

	return 0;
1961 1962

unwind_out:
1963
	gen6_ppgtt_clear_range(vm, from, start - from);
1964
	return -ENOMEM;
1965 1966
}

1967
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1968
{
1969 1970 1971
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1972
	int ret;
1973

1974
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1975 1976
	if (ret)
		return ret;
1977

1978 1979 1980 1981
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1982
	vm->scratch_pt = alloc_pt(vm);
1983
	if (IS_ERR(vm->scratch_pt)) {
1984
		cleanup_scratch_page(vm);
1985 1986 1987
		return PTR_ERR(vm->scratch_pt);
	}

1988
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1989 1990
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1991 1992 1993 1994

	return 0;
}

1995
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1996
{
1997 1998
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1999 2000
}

2001
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2002
{
2003
	struct i915_page_table *pt;
2004
	u32 pde;
2005

2006
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2007 2008 2009 2010 2011 2012 2013
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2014

2015
	i915_vma_destroy(ppgtt->vma);
2016 2017 2018

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2019 2020
}

2021
static int pd_vma_set_pages(struct i915_vma *vma)
2022
{
2023 2024 2025
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2026

2027 2028 2029
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
2043

2044 2045
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2046

2047 2048
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2049

2050 2051
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2052

2053
	return 0;
2054
}
2055

2056
static void pd_vma_unbind(struct i915_vma *vma)
2057
{
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

2104 2105
	vma->active = RB_ROOT;

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2116

2117
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2118 2119 2120
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2130 2131 2132 2133 2134 2135 2136 2137
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2138 2139
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2151
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2152
{
2153
	struct i915_ggtt * const ggtt = &i915->ggtt;
2154
	struct gen6_hw_ppgtt *ppgtt;
2155 2156 2157 2158 2159 2160
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2161 2162
	kref_init(&ppgtt->base.ref);

2163 2164
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2165

2166
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2167

2168 2169
	i915_address_space_init(&ppgtt->base.vm, i915);

2170
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2171 2172 2173 2174
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2175

2176
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2177 2178 2179
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2180

2181 2182
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2183
	err = gen6_ppgtt_init_scratch(ppgtt);
2184 2185 2186
	if (err)
		goto err_free;

2187 2188 2189
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2190
		goto err_scratch;
2191
	}
2192

2193
	return &ppgtt->base;
2194

2195 2196
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2197 2198 2199
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2200
}
2201

2202
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2203 2204 2205 2206 2207
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2208
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2209
	if (IS_BROADWELL(dev_priv))
2210
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2211
	else if (IS_CHERRYVIEW(dev_priv))
2212
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2213
	else if (IS_GEN9_LP(dev_priv))
2214
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2215 2216
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2234 2235
}

2236
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2237
{
2238
	gtt_write_workarounds(dev_priv);
2239

2240 2241 2242
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2243
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2244 2245
		return 0;

2246
	if (!USES_PPGTT(dev_priv))
2247 2248
		return 0;

2249
	if (IS_GEN6(dev_priv))
2250
		gen6_ppgtt_enable(dev_priv);
2251
	else if (IS_GEN7(dev_priv))
2252 2253 2254
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2255
	else
2256
		MISSING_CASE(INTEL_GEN(dev_priv));
2257

2258 2259
	return 0;
}
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2270
struct i915_hw_ppgtt *
2271
i915_ppgtt_create(struct drm_i915_private *i915,
2272
		  struct drm_i915_file_private *fpriv)
2273 2274 2275
{
	struct i915_hw_ppgtt *ppgtt;

2276 2277 2278
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2279

2280
	ppgtt->vm.file = fpriv;
2281

2282
	trace_i915_ppgtt_create(&ppgtt->vm);
2283

2284 2285 2286
	return ppgtt;
}

2287
void i915_ppgtt_close(struct i915_address_space *vm)
2288 2289 2290 2291 2292 2293
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2307
			i915_vma_destroy(vma);
2308 2309 2310
	}
}

2311
void i915_ppgtt_release(struct kref *kref)
2312 2313 2314 2315
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2316
	trace_i915_ppgtt_release(&ppgtt->vm);
2317

2318
	ppgtt_destroy_vma(&ppgtt->vm);
2319

2320 2321 2322
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2323

2324 2325
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2326 2327
	kfree(ppgtt);
}
2328

2329 2330 2331
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2332
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2333 2334 2335 2336
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2337
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2338 2339
}

2340
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2341
{
2342
	struct intel_engine_cs *engine;
2343
	enum intel_engine_id id;
2344
	u32 fault;
2345

2346
	for_each_engine(engine, dev_priv, id) {
2347 2348
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2349
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2350
					 "\tAddr: 0x%08lx\n"
2351 2352 2353
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2354 2355 2356 2357
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2358
			I915_WRITE(RING_FAULT_REG(engine),
2359
				   fault & ~RING_FAULT_VALID);
2360 2361
		}
	}
2362

2363 2364 2365 2366 2367 2368 2369 2370
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2371 2372 2373 2374 2375 2376 2377 2378
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2379
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2380 2381
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2382 2383 2384
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2385 2386 2387
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2407 2408
}

2409
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2410
{
2411
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2412 2413 2414 2415

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2416
	if (INTEL_GEN(dev_priv) < 6)
2417 2418
		return;

2419
	i915_check_and_clear_faults(dev_priv);
2420

2421
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2422

2423
	i915_ggtt_invalidate(dev_priv);
2424 2425
}

2426 2427
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2428
{
2429
	do {
2430 2431 2432 2433
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2444
				 obj->base.size >> PAGE_SHIFT, NULL,
2445 2446 2447
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2448

2449
	return -ENOSPC;
2450 2451
}

2452
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2453 2454 2455 2456
{
	writeq(pte, addr);
}

2457 2458
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2459
				  u64 offset,
2460 2461 2462
				  enum i915_cache_level level,
				  u32 unused)
{
2463
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2464
	gen8_pte_t __iomem *pte =
2465
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2466

2467
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2468

2469
	ggtt->invalidate(vm->i915);
2470 2471
}

B
Ben Widawsky 已提交
2472
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2473
				     struct i915_vma *vma,
2474
				     enum i915_cache_level level,
2475
				     u32 flags)
B
Ben Widawsky 已提交
2476
{
2477
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2478 2479
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2480
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2481
	dma_addr_t addr;
2482

2483 2484 2485 2486
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2487

2488
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2489 2490
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2491
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2492

2493 2494 2495
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2496
	 */
2497
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2498 2499
}

2500 2501
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2502
				  u64 offset,
2503 2504 2505
				  enum i915_cache_level level,
				  u32 flags)
{
2506
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2507
	gen6_pte_t __iomem *pte =
2508
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2509

2510
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2511

2512
	ggtt->invalidate(vm->i915);
2513 2514
}

2515 2516 2517 2518 2519 2520
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2521
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2522
				     struct i915_vma *vma,
2523 2524
				     enum i915_cache_level level,
				     u32 flags)
2525
{
2526
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2527
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2528
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2529
	struct sgt_iter iter;
2530
	dma_addr_t addr;
2531
	for_each_sgt_dma(addr, iter, vma->pages)
2532
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2533

2534 2535 2536
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2537
	 */
2538
	ggtt->invalidate(vm->i915);
2539 2540
}

2541
static void nop_clear_range(struct i915_address_space *vm,
2542
			    u64 start, u64 length)
2543 2544 2545
{
}

B
Ben Widawsky 已提交
2546
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2547
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2548
{
2549
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2550 2551
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2552
	const gen8_pte_t scratch_pte =
2553
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2554
	gen8_pte_t __iomem *gtt_base =
2555 2556
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2612
	struct i915_vma *vma;
2613
	enum i915_cache_level level;
2614
	u32 flags;
2615 2616 2617 2618 2619 2620
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2621
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2622 2623 2624 2625 2626 2627
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2628
					     struct i915_vma *vma,
2629
					     enum i915_cache_level level,
2630
					     u32 flags)
2631
{
2632
	struct insert_entries arg = { vm, vma, level, flags };
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2662
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2663
				  u64 start, u64 length)
2664
{
2665
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2666 2667
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2668
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2669 2670
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2671 2672 2673 2674 2675 2676 2677
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2678
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2679
				     I915_CACHE_LLC, 0);
2680

2681 2682 2683 2684
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2685 2686
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2687
				  u64 offset,
2688 2689 2690 2691 2692 2693 2694 2695 2696
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2697
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2698
				     struct i915_vma *vma,
2699 2700
				     enum i915_cache_level cache_level,
				     u32 unused)
2701 2702 2703 2704
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2705 2706
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2707 2708
}

2709
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2710
				  u64 start, u64 length)
2711
{
2712
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2713 2714
}

2715 2716 2717
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2718
{
2719
	struct drm_i915_private *i915 = vma->vm->i915;
2720
	struct drm_i915_gem_object *obj = vma->obj;
2721
	u32 pte_flags;
2722

2723
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2724
	pte_flags = 0;
2725
	if (i915_gem_object_is_readonly(obj))
2726 2727
		pte_flags |= PTE_READ_ONLY;

2728
	intel_runtime_pm_get(i915);
2729
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2730
	intel_runtime_pm_put(i915);
2731

2732 2733
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2734 2735 2736 2737 2738
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2739
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2740 2741 2742 2743

	return 0;
}

2744 2745 2746 2747 2748 2749 2750 2751 2752
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2753 2754 2755
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2756
{
2757
	struct drm_i915_private *i915 = vma->vm->i915;
2758
	u32 pte_flags;
2759
	int ret;
2760

2761
	/* Currently applicable only to VLV */
2762
	pte_flags = 0;
2763
	if (i915_gem_object_is_readonly(vma->obj))
2764
		pte_flags |= PTE_READ_ONLY;
2765

2766 2767 2768
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2769
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2770 2771 2772
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2773
			if (ret)
2774
				return ret;
2775 2776
		}

2777 2778
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2779 2780
	}

2781
	if (flags & I915_VMA_GLOBAL_BIND) {
2782
		intel_runtime_pm_get(i915);
2783
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2784
		intel_runtime_pm_put(i915);
2785
	}
2786

2787
	return 0;
2788 2789
}

2790
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2791
{
2792
	struct drm_i915_private *i915 = vma->vm->i915;
2793

2794 2795
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2796
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2797 2798
		intel_runtime_pm_put(i915);
	}
2799

2800
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2801
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2802 2803 2804

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2805 2806
}

2807 2808
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2809
{
D
David Weinehall 已提交
2810 2811
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2812
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2813

2814
	if (unlikely(ggtt->do_idle_maps)) {
2815
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2816 2817 2818 2819 2820
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2821

2822
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2823
}
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2835 2836
	vma->page_sizes = vma->obj->mm.page_sizes;

2837 2838 2839
	return 0;
}

C
Chris Wilson 已提交
2840
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2841
				  unsigned long color,
2842 2843
				  u64 *start,
				  u64 *end)
2844
{
2845
	if (node->allocated && node->color != color)
2846
		*start += I915_GTT_PAGE_SIZE;
2847

2848 2849 2850 2851 2852
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2853
	node = list_next_entry(node, node_list);
2854
	if (node->color != color)
2855
		*end -= I915_GTT_PAGE_SIZE;
2856
}
B
Ben Widawsky 已提交
2857

2858 2859 2860 2861 2862 2863
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2864
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2865 2866
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2867

2868
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2869 2870 2871 2872
		err = -ENODEV;
		goto err_ppgtt;
	}

2873 2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2882 2883

	i915->mm.aliasing_ppgtt = ppgtt;
2884

2885 2886
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2887

2888 2889
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2890

2891 2892 2893
	return 0;

err_ppgtt:
2894
	i915_ppgtt_put(ppgtt);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2907
	i915_ppgtt_put(ppgtt);
2908

2909 2910
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2911 2912
}

2913
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2914
{
2915 2916 2917 2918 2919 2920 2921 2922 2923
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2924
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2925
	unsigned long hole_start, hole_end;
2926
	struct drm_mm_node *entry;
2927
	int ret;
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2938 2939 2940
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2941

2942
	/* Reserve a mappable slot for our lockless error capture */
2943
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2944 2945 2946
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2947 2948 2949
	if (ret)
		return ret;

2950
	/* Clear any non-preallocated blocks */
2951
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2952 2953
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2954 2955
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2956 2957 2958
	}

	/* And finally clear the reserved guard page */
2959
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2960

2961
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2962
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2963
		if (ret)
2964
			goto err;
2965 2966
	}

2967
	return 0;
2968 2969 2970 2971

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2972 2973
}

2974 2975
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2976
 * @dev_priv: i915 device
2977
 */
2978
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2979
{
2980
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2981
	struct i915_vma *vma, *vn;
2982
	struct pagevec *pvec;
2983

2984
	ggtt->vm.closed = true;
2985 2986

	mutex_lock(&dev_priv->drm.struct_mutex);
2987 2988
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2989 2990
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2991
		WARN_ON(i915_vma_unbind(vma));
2992

2993 2994 2995
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2996
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2997
		intel_vgt_deballoon(dev_priv);
2998
		i915_address_space_fini(&ggtt->vm);
2999 3000
	}

3001
	ggtt->vm.cleanup(&ggtt->vm);
3002

3003
	pvec = &dev_priv->mm.wc_stash.pvec;
3004 3005 3006 3007 3008
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

3009
	mutex_unlock(&dev_priv->drm.struct_mutex);
3010 3011

	arch_phys_wc_del(ggtt->mtrr);
3012
	io_mapping_fini(&ggtt->iomap);
3013 3014

	i915_gem_cleanup_stolen(&dev_priv->drm);
3015
}
3016

3017
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3018 3019 3020 3021 3022 3023
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

3024
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3025 3026 3027 3028 3029
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3030 3031 3032 3033 3034 3035 3036

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3037 3038 3039
	return bdw_gmch_ctl << 20;
}

3040
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3051
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3052
{
3053
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3054
	struct pci_dev *pdev = dev_priv->drm.pdev;
3055
	phys_addr_t phys_addr;
3056
	int ret;
B
Ben Widawsky 已提交
3057 3058

	/* For Modern GENs the PTEs and register space are split in the BAR */
3059
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3060

I
Imre Deak 已提交
3061
	/*
3062 3063 3064
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3065 3066 3067
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3068
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3069
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3070
	else
3071
		ggtt->gsm = ioremap_wc(phys_addr, size);
3072
	if (!ggtt->gsm) {
3073
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3074 3075 3076
		return -ENOMEM;
	}

3077
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3078
	if (ret) {
B
Ben Widawsky 已提交
3079 3080
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3081
		iounmap(ggtt->gsm);
3082
		return ret;
B
Ben Widawsky 已提交
3083 3084
	}

3085
	return 0;
B
Ben Widawsky 已提交
3086 3087
}

3088 3089
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3090
{
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3134
	struct intel_ppat_entry *entry = NULL;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3157
		if (!entry)
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3234
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3272 3273
}

B
Ben Widawsky 已提交
3274 3275 3276
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3277
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3278
{
3279 3280 3281 3282
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3283

3284
	if (!USES_PPGTT(ppat->i915)) {
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3298 3299 3300
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3301

3302 3303 3304 3305 3306 3307 3308 3309
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3310 3311
}

3312
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3313
{
3314 3315 3316 3317
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3318 3319 3320 3321 3322 3323 3324

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3336 3337
	 */

3338 3339 3340 3341 3342 3343 3344 3345
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3346 3347
}

3348 3349 3350 3351 3352
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3353
	cleanup_scratch_page(vm);
3354 3355
}

3356 3357
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3358 3359 3360 3361 3362
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3363
	if (INTEL_GEN(dev_priv) >= 10)
3364
		cnl_setup_private_ppat(ppat);
3365
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3366
		chv_setup_private_ppat(ppat);
3367
	else
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3379 3380
}

3381
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3382
{
3383
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3384
	struct pci_dev *pdev = dev_priv->drm.pdev;
3385
	unsigned int size;
B
Ben Widawsky 已提交
3386
	u16 snb_gmch_ctl;
3387
	int err;
B
Ben Widawsky 已提交
3388 3389

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3390 3391 3392 3393
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3394

3395 3396 3397 3398 3399
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3400

3401
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3402
	if (IS_CHERRYVIEW(dev_priv))
3403
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3404
	else
3405
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3406

3407 3408 3409 3410
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3411
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3412
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3413

3414
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3415

3416 3417
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3418 3419 3420 3421
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3422 3423
	}

3424 3425
	ggtt->invalidate = gen6_ggtt_invalidate;

3426 3427 3428 3429 3430
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3431 3432
	setup_private_pat(dev_priv);

3433
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3434 3435
}

3436
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3437
{
3438
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3439
	struct pci_dev *pdev = dev_priv->drm.pdev;
3440
	unsigned int size;
3441
	u16 snb_gmch_ctl;
3442
	int err;
3443

3444 3445 3446 3447
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3448

3449 3450
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3451
	 */
3452
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3453
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3454
		return -ENXIO;
3455 3456
	}

3457 3458 3459 3460 3461
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3462
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3463

3464
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3465
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3466

3467 3468 3469 3470
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3471

3472 3473
	ggtt->invalidate = gen6_ggtt_invalidate;

3474
	if (HAS_EDRAM(dev_priv))
3475
		ggtt->vm.pte_encode = iris_pte_encode;
3476
	else if (IS_HASWELL(dev_priv))
3477
		ggtt->vm.pte_encode = hsw_pte_encode;
3478
	else if (IS_VALLEYVIEW(dev_priv))
3479
		ggtt->vm.pte_encode = byt_pte_encode;
3480
	else if (INTEL_GEN(dev_priv) >= 7)
3481
		ggtt->vm.pte_encode = ivb_pte_encode;
3482
	else
3483
		ggtt->vm.pte_encode = snb_pte_encode;
3484

3485 3486 3487 3488 3489
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3490
	return ggtt_probe_common(ggtt, size);
3491 3492
}

3493
static void i915_gmch_remove(struct i915_address_space *vm)
3494
{
3495
	intel_gmch_remove();
3496
}
3497

3498
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3499
{
3500
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3501
	phys_addr_t gmadr_base;
3502 3503
	int ret;

3504
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3505 3506 3507 3508 3509
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3510
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3511

3512 3513 3514 3515
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3516
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3517 3518 3519 3520
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3521

3522 3523
	ggtt->invalidate = gmch_ggtt_invalidate;

3524 3525 3526 3527 3528
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3529
	if (unlikely(ggtt->do_idle_maps))
3530 3531
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3532 3533 3534
	return 0;
}

3535
/**
3536
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3537
 * @dev_priv: i915 device
3538
 */
3539
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3540
{
3541
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3542 3543
	int ret;

3544 3545
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3546

3547 3548 3549 3550 3551 3552
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3553
	if (ret)
3554 3555
		return ret;

3556 3557 3558 3559 3560
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3561
	if (USES_GUC(dev_priv)) {
3562 3563 3564
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3565 3566
	}

3567
	if ((ggtt->vm.total - 1) >> 32) {
3568
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3569
			  " of address space! Found %lldM!\n",
3570 3571 3572 3573
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3574 3575
	}

3576
	if (ggtt->mappable_end > ggtt->vm.total) {
3577
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3578
			  " aperture=%pa, total=%llx\n",
3579 3580
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3581 3582
	}

3583
	/* GMADR is the PCI mmio aperture into the global GTT. */
3584
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3585
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3586
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3587
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3588
	if (intel_vtd_active())
3589
		DRM_INFO("VT-d active for gfx access\n");
3590 3591

	return 0;
3592 3593 3594 3595
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3596
 * @dev_priv: i915 device
3597
 */
3598
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3599 3600 3601 3602
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3603 3604
	stash_init(&dev_priv->mm.wc_stash);

3605 3606 3607 3608
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3609
	 */
C
Chris Wilson 已提交
3610
	mutex_lock(&dev_priv->drm.struct_mutex);
3611
	i915_address_space_init(&ggtt->vm, dev_priv);
3612 3613 3614 3615

	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3616
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3617
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3618
	mutex_unlock(&dev_priv->drm.struct_mutex);
3619

3620 3621
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3622
				dev_priv->ggtt.mappable_end)) {
3623 3624 3625 3626
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3627
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3628

3629 3630 3631 3632
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3633
	ret = i915_gem_init_stolen(dev_priv);
3634 3635 3636 3637
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3638 3639

out_gtt_cleanup:
3640
	ggtt->vm.cleanup(&ggtt->vm);
3641
	return ret;
3642
}
3643

3644
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3645
{
3646
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3647 3648 3649 3650 3651
		return -EIO;

	return 0;
}

3652 3653
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3654 3655
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3656
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3657 3658

	i915_ggtt_invalidate(i915);
3659 3660 3661 3662
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3663 3664 3665 3666
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3667 3668 3669 3670
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3671 3672

	i915_ggtt_invalidate(i915);
3673 3674
}

3675
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3676
{
3677
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3678
	struct i915_vma *vma, *vn;
3679

3680
	i915_check_and_clear_faults(dev_priv);
3681 3682

	/* First fill our portion of the GTT with scratch pages */
3683
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3684

3685
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3686 3687

	/* clflush objects bound into the GGTT and rebind them. */
3688 3689
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3690
		struct drm_i915_gem_object *obj = vma->obj;
3691

3692 3693
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3694

3695 3696
		if (!i915_vma_unbind(vma))
			continue;
3697

3698 3699 3700 3701 3702
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3703
	}
3704

3705
	ggtt->vm.closed = false;
3706
	i915_ggtt_invalidate(dev_priv);
3707

3708
	if (INTEL_GEN(dev_priv) >= 8) {
3709
		struct intel_ppat *ppat = &dev_priv->ppat;
3710

3711 3712
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3713 3714 3715 3716
		return;
	}
}

3717
static struct scatterlist *
3718
rotate_pages(const dma_addr_t *in, unsigned int offset,
3719
	     unsigned int width, unsigned int height,
3720
	     unsigned int stride,
3721
	     struct sg_table *st, struct scatterlist *sg)
3722 3723 3724 3725 3726
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3727
		src_idx = stride * (height - 1) + column;
3728 3729 3730 3731 3732 3733 3734
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3735
			sg_dma_address(sg) = in[offset + src_idx];
3736 3737
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3738
			src_idx -= stride;
3739 3740
		}
	}
3741 3742

	return sg;
3743 3744
}

3745 3746 3747
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3748
{
3749
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3750
	unsigned int size = intel_rotation_info_size(rot_info);
3751 3752
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3753 3754 3755
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3756
	struct scatterlist *sg;
3757
	int ret = -ENOMEM;
3758 3759

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3760
	page_addr_list = kvmalloc_array(n_pages,
3761
					sizeof(dma_addr_t),
3762
					GFP_KERNEL);
3763 3764 3765 3766 3767 3768 3769 3770
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3771
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3772 3773 3774 3775 3776
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3777
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3778
		page_addr_list[i++] = dma_addr;
3779

3780
	GEM_BUG_ON(i != n_pages);
3781 3782 3783
	st->nents = 0;
	sg = st->sgl;

3784 3785 3786 3787
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3788 3789
	}

M
Michal Hocko 已提交
3790
	kvfree(page_addr_list);
3791 3792 3793 3794 3795 3796

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3797
	kvfree(page_addr_list);
3798

3799 3800
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3801

3802 3803
	return ERR_PTR(ret);
}
3804

3805
static noinline struct sg_table *
3806 3807 3808 3809
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3810
	struct scatterlist *sg, *iter;
3811
	unsigned int count = view->partial.size;
3812
	unsigned int offset;
3813 3814 3815 3816 3817 3818
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3819
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3820 3821 3822
	if (ret)
		goto err_sg_alloc;

3823
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3824 3825
	GEM_BUG_ON(!iter);

3826 3827
	sg = st->sgl;
	st->nents = 0;
3828 3829
	do {
		unsigned int len;
3830

3831 3832 3833 3834 3835 3836
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3837 3838

		st->nents++;
3839 3840 3841 3842 3843
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3844

3845 3846 3847 3848
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3849 3850 3851 3852 3853 3854 3855

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3856
static int
3857
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3858
{
3859
	int ret;
3860

3861 3862 3863 3864 3865 3866 3867
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3868
	switch (vma->ggtt_view.type) {
3869 3870 3871
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3872 3873
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3874 3875
		return 0;

3876
	case I915_GGTT_VIEW_ROTATED:
3877
		vma->pages =
3878 3879 3880 3881
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3882
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3883 3884
		break;
	}
3885

3886 3887
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3888 3889
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3890 3891
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3892
	}
3893
	return ret;
3894 3895
}

3896 3897
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3932
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3933
	GEM_BUG_ON(drm_mm_node_allocated(node));
3934 3935 3936 3937 3938 3939 3940 3941 3942

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3943 3944 3945
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3946 3947 3948 3949 3950 3951 3952
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3978 3979
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3980 3981 3982 3983 3984 3985 3986 3987 3988
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3989
 *         must be #I915_GTT_PAGE_SIZE aligned
3990 3991 3992
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3993 3994 3995 3996 3997 3998
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3999 4000
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4017
	enum drm_mm_insert_mode mode;
4018
	u64 offset;
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4029
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4030
	GEM_BUG_ON(drm_mm_node_allocated(node));
4031 4032 4033 4034 4035 4036 4037

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4038 4039
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4040
		mode = DRM_MM_INSERT_HIGHEST;
4041 4042
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4054 4055 4056
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4057 4058 4059
	if (err != -ENOSPC)
		return err;

4060 4061 4062 4063 4064 4065 4066 4067 4068
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4069 4070 4071
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4101 4102 4103 4104 4105
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4106 4107 4108
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4109
}
4110 4111 4112

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4113
#include "selftests/i915_gem_gtt.c"
4114
#endif