core.c 184.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
7
 */
8

9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
15
#include <linux/export.h>
16
#include <linux/nmi.h>
17

18
#include <asm/cpufeature.h>
19
#include <asm/hardirq.h>
20
#include <asm/intel-family.h>
21
#include <asm/intel_pt.h>
22
#include <asm/apic.h>
23
#include <asm/cpu_device_id.h>
24

25
#include "../perf_event.h"
26

27
/*
28
 * Intel PerfMon, used on Core and later.
29
 */
30
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31
{
32 33 34 35 36 37 38 39
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 41
};

42
static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 44 45 46 47 48 49 50 51 52
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

53
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54
{
55 56
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 59 60 61 62 63 64 65
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 68 69 70
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

71
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72
{
73 74
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 77 78 79 80 81 82 83 84 85 86
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

87
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88
{
89 90
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 93 94
	EVENT_EXTRA_END
};

95
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96
{
97 98
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 101 102
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 105 106
	EVENT_CONSTRAINT_END
};

107
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 109 110
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 113 114 115
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 117 118
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 120
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121

122 123 124 125
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
126 127 128 129 130
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

131 132 133
	EVENT_CONSTRAINT_END
};

134 135 136 137 138 139
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
I
Ingo Molnar 已提交
140
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 144 145 146 147 148
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149

150 151 152 153
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
154 155 156 157 158
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

159 160 161
	EVENT_CONSTRAINT_END
};

162
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163
{
164 165 166
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 169 170
	EVENT_EXTRA_END
};

171 172 173 174 175
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

176
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177
{
178 179
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 182 183
	EVENT_CONSTRAINT_END
};

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
	FIXED_EVENT_CONSTRAINT(0x0500, 4),
	FIXED_EVENT_CONSTRAINT(0x0600, 5),
	FIXED_EVENT_CONSTRAINT(0x0700, 6),
	FIXED_EVENT_CONSTRAINT(0x0800, 7),
	FIXED_EVENT_CONSTRAINT(0x0900, 8),
	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
	FIXED_EVENT_CONSTRAINT(0x1000, 15),
	EVENT_CONSTRAINT_END
};

205 206 207 208 209 210 211 212
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

213
static struct event_constraint intel_skl_event_constraints[] = {
214 215 216 217
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
218 219 220 221 222 223 224 225 226 227

	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */

228 229 230
	EVENT_CONSTRAINT_END
};

231
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
232 233
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
234 235 236
	EVENT_EXTRA_END
};

237
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
238 239 240
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
241
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
242 243 244 245
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
246 247 248
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
249
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
250 251 252
	EVENT_EXTRA_END
};

253 254 255 256
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
257 258 259 260 261
	/*
	 * Note the low 8 bits eventsel code is not a continuous field, containing
	 * some #GPing bits. These are masked out.
	 */
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
262 263 264
	EVENT_EXTRA_END
};

K
Kan Liang 已提交
265 266
static struct event_constraint intel_icl_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
267 268
	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
K
Kan Liang 已提交
269 270 271
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
272 273 274 275
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
K
Kan Liang 已提交
276 277 278
	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
279
	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
K
Kan Liang 已提交
280 281
	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
282 283
	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
K
Kan Liang 已提交
284 285 286 287
	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
288
	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
K
Kan Liang 已提交
289 290 291 292 293
	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
294 295
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
K
Kan Liang 已提交
296 297 298 299 300
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
	EVENT_EXTRA_END
};

301 302 303 304
static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
305
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
306 307
	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
308 309 310 311 312
	EVENT_EXTRA_END
};

static struct event_constraint intel_spr_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
313
	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),

	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
	/*
	 * Generally event codes < 0x90 are restricted to counters 0-3.
	 * The 0x2E and 0x3C are exception, which has no restriction.
	 */
	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),

	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
	/*
	 * Generally event codes >= 0x90 are likely to have no restrictions.
	 * The exception are defined as above.
	 */
	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),

	EVENT_CONSTRAINT_END
};


352 353 354
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
355

356
static struct attribute *nhm_mem_events_attrs[] = {
357 358 359 360
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * topdown events for Intel Core CPUs.
 *
 * The events are all in slots, which is a free slot in a 4 wide
 * pipeline. Some events are already reported in slots, for cycle
 * events we multiply by the pipeline width (4).
 *
 * With Hyper Threading on, topdown metrics are either summed or averaged
 * between the threads of a core: (count_t0 + count_t1).
 *
 * For the average case the metric is always scaled to pipeline width,
 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 */

EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
	"event=0xe,umask=0x1");			/* uops_issued.any */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
	"4", "2");

391 392 393 394 395 396 397 398 399
EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
400

401
static struct attribute *snb_events_attrs[] = {
402 403 404 405 406 407 408
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
409 410 411
	NULL,
};

412 413 414 415 416 417
static struct attribute *snb_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
	EVENT_PTR(mem_st_snb),
	NULL,
};

418 419 420 421
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
422
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
423 424 425
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
426
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
427
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
428
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
429
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
430
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
431

432 433 434 435
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
436 437 438 439 440
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

441 442 443
	EVENT_CONSTRAINT_END
};

444
static struct event_constraint intel_bdw_event_constraints[] = {
445 446 447 448
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
449
	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
450 451 452 453 454 455 456
	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
457 458 459
	EVENT_CONSTRAINT_END
};

460 461 462 463 464
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static __initconst const u64 spr_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,
		[ C(RESULT_MISS)   ] = 0xe124,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_MISS)   ] = 0xe424,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,
		[ C(RESULT_MISS)   ] = 0xe12,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,
		[ C(RESULT_MISS)   ] = 0xe13,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = 0xe11,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4c4,
		[ C(RESULT_MISS)   ] = 0x4c5,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
 },
};

static __initconst const u64 spr_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x10001,
		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x10c000001,
		[ C(RESULT_MISS)   ] = 0x3fb3000001,
	},
 },
};

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts.
 * - icache miss does not include decoded icache
 */

#define SKL_DEMAND_DATA_RD		BIT_ULL(0)
#define SKL_DEMAND_RFO			BIT_ULL(1)
#define SKL_ANY_RESPONSE		BIT_ULL(16)
#define SKL_SUPPLIER_NONE		BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
#define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT			BIT_ULL(30)
#define SKL_SNOOP_NONE			BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define SKL_SNOOP_MISS			BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define SKL_SNOOP_HITM			BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
#define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
#define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)

static __initconst const u64 skl_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
661
		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
662 663 664
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
665
		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 skl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
874
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
875
		[ C(RESULT_ACCESS) ] = 0x01b7,
876 877
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
878 879
	},
	[ C(OP_WRITE) ] = {
880
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
881
		[ C(RESULT_ACCESS) ] = 0x01b7,
882 883
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
884 885
	},
	[ C(OP_PREFETCH) ] = {
886
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
887
		[ C(RESULT_ACCESS) ] = 0x01b7,
888 889
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
934 935
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
936 937
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
938 939
	},
	[ C(OP_WRITE) ] = {
940 941
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
942 943
	},
	[ C(OP_PREFETCH) ] = {
944 945
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
946 947 948
	},
 },

949 950
};

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

989 990 991 992 993 994
#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

1147
static __initconst const u64 westmere_hw_cache_event_ids
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1182
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1183
		[ C(RESULT_ACCESS) ] = 0x01b7,
1184 1185
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1186
	},
1187 1188 1189 1190
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1191
	[ C(OP_WRITE) ] = {
1192 1193 1194
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1195
		[ C(RESULT_MISS)   ] = 0x01b7,
1196 1197
	},
	[ C(OP_PREFETCH) ] = {
1198
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1199
		[ C(RESULT_ACCESS) ] = 0x01b7,
1200 1201
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1260 1261
};

1262
/*
1263 1264
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
1265 1266
 */

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

1284 1285
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
1286 1287 1288 1289 1290 1291

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1292
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1293
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1294 1295 1296 1297 1298 1299 1300 1301

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1302 1303
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1304 1305
	},
	[ C(OP_WRITE) ] = {
1306 1307
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1308 1309
	},
	[ C(OP_PREFETCH) ] = {
1310 1311
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1312
	},
1313 1314 1315
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
1316 1317
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1318 1319
	},
	[ C(OP_WRITE) ] = {
1320 1321
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1322 1323
	},
	[ C(OP_PREFETCH) ] = {
1324 1325
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1326 1327
	},
 },
1328 1329
};

1330
static __initconst const u64 nehalem_hw_cache_event_ids
1331 1332 1333 1334 1335 1336
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
1337 1338
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1339 1340
	},
	[ C(OP_WRITE) ] = {
1341 1342
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1365 1366 1367 1368
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1369
	},
1370 1371 1372 1373
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1374
	[ C(OP_WRITE) ] = {
1375 1376 1377 1378
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1379 1380
	},
	[ C(OP_PREFETCH) ] = {
1381 1382 1383 1384
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1443 1444
};

1445
static __initconst const u64 core2_hw_cache_event_ids
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1536
static __initconst const u64 atom_hw_cache_event_ids
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
/* no_alloc_cycles.not_delivered */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
	       "event=0xca,umask=0x50");
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
	       "event=0xc2,umask=0x10");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
	       "event=0xc2,umask=0x10");

static struct attribute *slm_events_attrs[] = {
	EVENT_PTR(td_total_slots_slm),
	EVENT_PTR(td_total_slots_scale_slm),
	EVENT_PTR(td_fetch_bubbles_slm),
	EVENT_PTR(td_fetch_bubbles_scale_slm),
	EVENT_PTR(td_slots_issued_slm),
	EVENT_PTR(td_slots_retired_slm),
	NULL
};

1650 1651 1652
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1653
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1654
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1674
		[ C(RESULT_MISS)   ] = 0,
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
1724
		[ C(RESULT_MISS)   ] = 0,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1756
		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
/* UOPS_NOT_DELIVERED.ANY */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
/* UOPS_RETIRED.ANY */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
/* UOPS_ISSUED.ANY */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");

static struct attribute *glm_events_attrs[] = {
	EVENT_PTR(td_total_slots_glm),
	EVENT_PTR(td_total_slots_scale_glm),
	EVENT_PTR(td_fetch_bubbles_glm),
	EVENT_PTR(td_recovery_bubbles_glm),
	EVENT_PTR(td_slots_issued_glm),
	EVENT_PTR(td_slots_retired_glm),
	NULL
};

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
	EVENT_EXTRA_END
};

#define GLM_DEMAND_DATA_RD		BIT_ULL(0)
#define GLM_DEMAND_RFO			BIT_ULL(1)
#define GLM_ANY_RESPONSE		BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
#define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
#define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 glm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_MISS,
		},
	},
};

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static __initconst const u64 glp_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glp_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
#define TNT_LOCAL_DRAM			BIT_ULL(26)
#define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
#define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
#define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
#define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
#define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)

static __initconst const u64 tnt_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
						  TNT_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");

static struct attribute *tnt_events_attrs[] = {
	EVENT_PTR(td_fe_bound_tnt),
	EVENT_PTR(td_retiring_tnt),
	EVENT_PTR(td_bad_spec_tnt),
	EVENT_PTR(td_be_bound_tnt),
	NULL,
};

2097 2098
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2099 2100
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2101 2102 2103
	EVENT_EXTRA_END
};

2104 2105 2106 2107 2108 2109 2110 2111
static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
	EVENT_EXTRA_END
};

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
#define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL	BIT_ULL(21)
#define KNL_MCDRAM_FAR		BIT_ULL(22)
#define KNL_DDR_LOCAL		BIT_ULL(23)
#define KNL_DDR_FAR		BIT_ULL(24)
#define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
				    KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ		SLM_DMND_READ
#define KNL_L2_WRITE		SLM_DMND_WRITE
#define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
#define KNL_L2_ACCESS		SLM_LLC_ACCESS
#define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
				   KNL_DRAM_ANY | SNB_SNP_ANY | \
						  SNB_NON_DRAM)

static __initconst const u64 knl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = 0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
		},
	},
};

2148
/*
2149 2150 2151 2152 2153 2154
 * Used from PMIs where the LBRs are already disabled.
 *
 * This function could be called consecutively. It is required to remain in
 * disabled state if called consecutively.
 *
 * During consecutive calls, the same disable value will be written to related
2155 2156 2157 2158 2159
 * registers, so the PMU state remains unchanged.
 *
 * intel_bts events don't coexist with intel PMU's BTS events because of
 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2160 2161 2162 2163 2164 2165 2166 2167
 *
 * Avoid PEBS_ENABLE MSR access in PMIs.
 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
 * It doesn't matter if the PEBS is enabled or not.
 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
 * access PEBS_ENABLE MSR in disable_all()/enable_all().
 * However, there are some cases which may change PEBS status, e.g. PMI
 * throttle. The PEBS_ENABLE should be updated where the status changes.
2168
 */
2169
static __always_inline void __intel_pmu_disable_all(bool bts)
2170
{
2171
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2172 2173 2174

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

2175
	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2176
		intel_pmu_disable_bts();
2177 2178
}

2179
static __always_inline void intel_pmu_disable_all(void)
2180
{
2181
	__intel_pmu_disable_all(true);
2182
	intel_pmu_pebs_disable_all();
2183
	intel_pmu_lbr_disable_all();
2184 2185
}

2186
static void __intel_pmu_enable_all(int added, bool pmi)
2187
{
2188
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2189
	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2190

2191
	intel_pmu_lbr_enable_all(pmi);
2192
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2193
	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2194

2195
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2196
		struct perf_event *event =
2197
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2198 2199 2200 2201 2202

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
2203
	}
2204 2205
}

2206 2207
static void intel_pmu_enable_all(int added)
{
2208
	intel_pmu_pebs_enable_all();
2209 2210 2211
	__intel_pmu_enable_all(added, false);
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
				  unsigned int cnt, unsigned long flags)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	intel_pmu_lbr_read();
	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);

	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
	intel_pmu_enable_all(0);
	local_irq_restore(flags);
	return cnt;
}

static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
{
	unsigned long flags;

	/* must not have branches... */
	local_irq_save(flags);
	__intel_pmu_disable_all(false); /* we don't care about BTS */
	__intel_pmu_lbr_disable();
	/*            ... until here */
	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
}

static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
{
	unsigned long flags;

	/* must not have branches... */
	local_irq_save(flags);
	__intel_pmu_disable_all(false); /* we don't care about BTS */
	__intel_pmu_arch_lbr_disable();
	/*            ... until here */
	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
}

2253 2254 2255 2256
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
2257
 *   Intel Errata BD53   (model 44)
2258
 *
2259 2260 2261 2262 2263
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
I
Ingo Molnar 已提交
2264
 * In practice it appears some of these events do in fact count, and
I
Ingo Molnar 已提交
2265
 * we need to program all 4 events.
2266
 */
2267
static void intel_pmu_nhm_workaround(void)
2268
{
2269
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2270 2271 2272 2273 2274 2275 2276 2277
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
2299

2300 2301 2302 2303 2304 2305
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
2306

2307 2308 2309 2310 2311 2312 2313
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2314

2315 2316 2317 2318 2319
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
2320
			__x86_pmu_enable_event(&event->hw,
2321 2322 2323
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2324
	}
2325 2326 2327 2328 2329 2330
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
2331 2332 2333
	intel_pmu_enable_all(added);
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;

	if (cpuc->tfa_shadow != val) {
		cpuc->tfa_shadow = val;
		wrmsrl(MSR_TSX_FORCE_ABORT, val);
	}
}

static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	/*
	 * We're going to use PMC3, make sure TFA is set before we touch it.
	 */
2349
	if (cntr == 3)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		intel_set_tfa(cpuc, true);
}

static void intel_tfa_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * If we find PMC3 is no longer used when we enable the PMU, we can
	 * clear TFA.
	 */
	if (!test_bit(3, cpuc->active_mask))
		intel_set_tfa(cpuc, false);

	intel_pmu_enable_all(added);
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

static inline void intel_set_masks(struct perf_event *event, int idx)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (event->attr.exclude_host)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	if (event->attr.exclude_guest)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	if (event_is_checkpointed(event))
		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static inline void intel_clear_masks(struct perf_event *event, int idx)
2399
{
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static void intel_pmu_disable_fixed(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
2410
	u64 ctrl_val, mask;
2411
	int idx = hwc->idx;
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

		/*
		 * When there are other active TopDown events,
		 * don't disable the fixed counter 3.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;
		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}
2424

2425 2426 2427
	intel_clear_masks(event, idx);

	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2428 2429
	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
2430
	wrmsrl(hwc->config_base, ctrl_val);
2431 2432
}

2433
static void intel_pmu_disable_event(struct perf_event *event)
2434
{
2435
	struct hw_perf_event *hwc = &event->hw;
2436
	int idx = hwc->idx;
2437

2438 2439
	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2440 2441
		intel_clear_masks(event, idx);
		x86_pmu_disable_event(event);
2442 2443
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2444
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2445
		intel_pmu_disable_fixed(event);
2446 2447
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
2448 2449
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
2450 2451
		return;
	case INTEL_PMC_IDX_FIXED_VLBR:
2452
		intel_clear_masks(event, idx);
2453 2454 2455 2456 2457 2458 2459
		break;
	default:
		intel_clear_masks(event, idx);
		pr_warn("Failed to disable the event with invalid index %d\n",
			idx);
		return;
	}
2460

2461 2462 2463 2464 2465 2466
	/*
	 * Needs to be called after x86_pmu_disable_event,
	 * so we don't trigger the event without PEBS bit set.
	 */
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_disable(event);
2467 2468
}

2469 2470 2471 2472 2473 2474
static void intel_pmu_assign_event(struct perf_event *event, int idx)
{
	if (is_pebs_pt(event))
		perf_report_aux_output_id(event, idx);
}

2475 2476 2477 2478 2479 2480 2481 2482
static void intel_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		intel_pmu_lbr_del(event);
	if (event->attr.precise_ip)
		intel_pmu_pebs_del(event);
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static int icl_set_topdown_event_period(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	s64 left = local64_read(&hwc->period_left);

	/*
	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
	 * Software should start both registers, PERF_METRICS and fixed
	 * counter 3, from zero.
	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
	 * After that, both MSRs will be cleared for each read.
	 * Don't need to clear them again.
	 */
	if (left == x86_pmu.max_period) {
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
		wrmsrl(MSR_PERF_METRICS, 0);
2499 2500 2501 2502 2503 2504 2505
		hwc->saved_slots = 0;
		hwc->saved_metric = 0;
	}

	if ((hwc->saved_slots) && is_slots_event(event)) {
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2506 2507 2508 2509 2510 2511 2512
	}

	perf_event_update_userpage(event);

	return 0;
}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
static int adl_set_topdown_event_period(struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->cpu_type != hybrid_big)
		return 0;

	return icl_set_topdown_event_period(event);
}

2523 2524 2525 2526 2527 2528
static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
{
	u32 val;

	/*
	 * The metric is reported as an 8bit integer fraction
I
Ingo Molnar 已提交
2529
	 * summing up to 0xff.
2530 2531 2532 2533 2534 2535
	 * slots-in-metric = (Metric / 0xff) * slots
	 */
	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
	return  mul_u64_u32_div(slots, val, 0xff);
}

2536
static u64 icl_get_topdown_value(struct perf_event *event,
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
				       u64 slots, u64 metrics)
{
	int idx = event->hw.idx;
	u64 delta;

	if (is_metric_idx(idx))
		delta = icl_get_metrics_event_value(metrics, slots, idx);
	else
		delta = slots;

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	return delta;
}

static void __icl_update_topdown_event(struct perf_event *event,
				       u64 slots, u64 metrics,
				       u64 last_slots, u64 last_metrics)
{
	u64 delta, last = 0;

	delta = icl_get_topdown_value(event, slots, metrics);
	if (last_slots)
		last = icl_get_topdown_value(event, last_slots, last_metrics);

	/*
	 * The 8bit integer fraction of metric may be not accurate,
	 * especially when the changes is very small.
	 * For example, if only a few bad_spec happens, the fraction
	 * may be reduced from 1 to 0. If so, the bad_spec event value
	 * will be 0 which is definitely less than the last value.
	 * Avoid update event->count for this case.
	 */
	if (delta > last) {
		delta -= last;
		local64_add(delta, &event->count);
	}
}

2574 2575
static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
				      u64 metrics, int metric_end)
2576 2577 2578 2579 2580 2581 2582 2583
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *other;
	int idx;

	event->hw.saved_slots = slots;
	event->hw.saved_metric = metrics;

2584
	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2585 2586 2587 2588 2589 2590
		if (!is_topdown_idx(idx))
			continue;
		other = cpuc->events[idx];
		other->hw.saved_slots = slots;
		other->hw.saved_metric = metrics;
	}
2591 2592 2593 2594 2595 2596 2597 2598
}

/*
 * Update all active Topdown events.
 *
 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
 * modify by a NMI. PMU has to be disabled before calling this function.
 */
2599 2600

static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2601 2602 2603 2604
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *other;
	u64 slots, metrics;
2605
	bool reset = true;
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	int idx;

	/* read Fixed counter 3 */
	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
	if (!slots)
		return 0;

	/* read PERF_METRICS */
	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);

2616
	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2617 2618 2619
		if (!is_topdown_idx(idx))
			continue;
		other = cpuc->events[idx];
2620 2621 2622
		__icl_update_topdown_event(other, slots, metrics,
					   event ? event->hw.saved_slots : 0,
					   event ? event->hw.saved_metric : 0);
2623 2624 2625 2626 2627 2628
	}

	/*
	 * Check and update this event, which may have been cleared
	 * in active_mask e.g. x86_pmu_stop()
	 */
2629 2630 2631 2632
	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
		__icl_update_topdown_event(event, slots, metrics,
					   event->hw.saved_slots,
					   event->hw.saved_metric);
2633

2634 2635 2636 2637 2638 2639 2640 2641
		/*
		 * In x86_pmu_stop(), the event is cleared in active_mask first,
		 * then drain the delta, which indicates context switch for
		 * counting.
		 * Save metric and slots for context switch.
		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
		 * Because the values will be restored in next schedule in.
		 */
2642
		update_saved_topdown_regs(event, slots, metrics, metric_end);
2643 2644 2645 2646 2647 2648 2649 2650
		reset = false;
	}

	if (reset) {
		/* The fixed counter 3 has to be written before the PERF_METRICS. */
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
		wrmsrl(MSR_PERF_METRICS, 0);
		if (event)
2651
			update_saved_topdown_regs(event, 0, 0, metric_end);
2652
	}
2653 2654 2655 2656

	return slots;
}

2657 2658
static u64 icl_update_topdown_event(struct perf_event *event)
{
2659 2660
	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
						 x86_pmu.num_topdown_events - 1);
2661 2662
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static u64 adl_update_topdown_event(struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->cpu_type != hybrid_big)
		return 0;

	return icl_update_topdown_event(event);
}


2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
static void intel_pmu_read_topdown_event(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/* Only need to call update_topdown_event() once for group read. */
	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
	    !is_slots_event(event))
		return;

	perf_pmu_disable(event->pmu);
	x86_pmu.update_topdown_event(event);
	perf_pmu_enable(event->pmu);
}

2688 2689 2690 2691
static void intel_pmu_read_event(struct perf_event *event)
{
	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
		intel_pmu_auto_reload_read(event);
2692 2693
	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
		intel_pmu_read_topdown_event(event);
2694 2695 2696 2697
	else
		x86_perf_event_update(event);
}

2698
static void intel_pmu_enable_fixed(struct perf_event *event)
2699
{
2700 2701
	struct hw_perf_event *hwc = &event->hw;
	u64 ctrl_val, mask, bits = 0;
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	int idx = hwc->idx;

	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
		/*
		 * When there are other active TopDown events,
		 * don't enable the fixed counter 3 again.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;

		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}

	intel_set_masks(event, idx);
2717 2718

	/*
2719
	 * Enable IRQ generation (0x8), if not PEBS,
2720 2721 2722
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
2723 2724
	if (!event->attr.precise_ip)
		bits |= 0x8;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

2736
	idx -= INTEL_PMC_IDX_FIXED;
2737 2738 2739
	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

2740 2741 2742 2743 2744
	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
	}

2745 2746 2747
	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
2748
	wrmsrl(hwc->config_base, ctrl_val);
2749 2750
}

2751
static void intel_pmu_enable_event(struct perf_event *event)
2752
{
2753
	struct hw_perf_event *hwc = &event->hw;
2754
	int idx = hwc->idx;
2755

2756 2757 2758
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_enable(event);

2759 2760
	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2761 2762
		intel_set_masks(event, idx);
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2763 2764
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2765
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2766
		intel_pmu_enable_fixed(event);
2767 2768
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
2769 2770 2771
		if (!__this_cpu_read(cpu_hw_events.enabled))
			return;
		intel_pmu_enable_bts(hwc->config);
2772 2773
		break;
	case INTEL_PMC_IDX_FIXED_VLBR:
2774
		intel_set_masks(event, idx);
2775 2776 2777 2778 2779
		break;
	default:
		pr_warn("Failed to enable the event with invalid index %d\n",
			idx);
	}
2780 2781
}

2782 2783 2784 2785 2786 2787 2788 2789
static void intel_pmu_add_event(struct perf_event *event)
{
	if (event->attr.precise_ip)
		intel_pmu_pebs_add(event);
	if (needs_branch_stack(event))
		intel_pmu_lbr_add(event);
}

2790 2791 2792 2793
/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
2794
int intel_pmu_save_and_restart(struct perf_event *event)
2795
{
2796
	x86_perf_event_update(event);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
2808
	return x86_perf_event_set_period(event);
2809 2810 2811 2812
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
2813
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2814
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2815 2816
	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
	int num_counters = hybrid(cpuc->pmu, num_counters);
2817 2818 2819
	unsigned long flags;
	int idx;

2820
	if (!num_counters)
2821 2822 2823 2824
		return;

	local_irq_save(flags);

2825
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2826

2827
	for (idx = 0; idx < num_counters; idx++) {
2828 2829
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2830
	}
2831
	for (idx = 0; idx < num_counters_fixed; idx++) {
2832
		if (fixed_counter_disabled(idx, cpuc->pmu))
2833
			continue;
2834
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2835
	}
2836

2837 2838 2839
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	/* Ack all overflows and disable fixed counters */
	if (x86_pmu.version >= 2) {
		intel_pmu_ack_status(intel_pmu_get_status());
		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
	}

	/* Reset LBRs and LBR freezing */
	if (x86_pmu.lbr_nr) {
		update_debugctlmsr(get_debugctlmsr() &
			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
	}

2852 2853 2854
	local_irq_restore(flags);
}

2855
static int handle_pmi_common(struct pt_regs *regs, u64 status)
2856 2857
{
	struct perf_sample_data data;
2858 2859 2860
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int bit;
	int handled = 0;
2861
	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2862 2863

	inc_irq_stat(apic_perf_irqs);
2864

2865
	/*
2866 2867
	 * Ignore a range of extra bits in status that do not indicate
	 * overflow by themselves.
2868
	 */
2869 2870 2871 2872
	status &= ~(GLOBAL_STATUS_COND_CHG |
		    GLOBAL_STATUS_ASIF |
		    GLOBAL_STATUS_LBRS_FROZEN);
	if (!status)
2873
		return 0;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	/*
	 * In case multiple PEBS events are sampled at the same time,
	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
	 * having their bits set in the status register. This is a sign
	 * that there was at least one PEBS record pending at the time
	 * of the PMU interrupt. PEBS counters must only be processed
	 * via the drain_pebs() calls and not via the regular sample
	 * processing loop coming after that the function, otherwise
	 * phony regular samples may be generated in the sampling buffer
	 * not marked with the EXACT tag. Another possibility is to have
2885
	 * one PEBS event and at least one non-PEBS event which overflows
2886 2887 2888 2889 2890 2891 2892 2893
	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
	 * not be set, yet the overflow status bit for the PEBS counter will
	 * be on Skylake.
	 *
	 * To avoid this problem, we systematically ignore the PEBS-enabled
	 * counters from the GLOBAL_STATUS mask and we always process PEBS
	 * events via drain_pebs().
	 */
2894 2895 2896 2897
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		status &= ~cpuc->pebs_enabled;
	else
		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2898

2899 2900 2901
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
2902
	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2903 2904
		u64 pebs_enabled = cpuc->pebs_enabled;

2905
		handled++;
2906
		x86_pmu.drain_pebs(regs, &data);
2907
		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

		/*
		 * PMI throttle may be triggered, which stops the PEBS event.
		 * Although cpuc->pebs_enabled is updated accordingly, the
		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
		 * cpuc->enabled has been forced to 0 in PMI.
		 * Update the MSR if pebs_enabled is changed.
		 */
		if (pebs_enabled != cpuc->pebs_enabled)
			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2918
	}
2919

2920 2921 2922
	/*
	 * Intel PT
	 */
2923
	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2924
		handled++;
2925
		if (!perf_guest_handle_intel_pt_intr())
L
Luwei Kang 已提交
2926
			intel_pt_interrupt();
2927 2928
	}

2929
	/*
I
Ingo Molnar 已提交
2930
	 * Intel Perf metrics
2931 2932 2933 2934 2935 2936 2937
	 */
	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
		handled++;
		if (x86_pmu.update_topdown_event)
			x86_pmu.update_topdown_event(NULL);
	}

2938
	/*
2939 2940 2941
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
2942
	 */
2943
	status |= cpuc->intel_cp_status;
2944

2945
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2946 2947
		struct perf_event *event = cpuc->events[bit];

2948 2949
		handled++;

2950 2951 2952 2953 2954 2955
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

2956
		perf_sample_data_init(&data, 0, event->hw.last_period);
2957

2958 2959 2960
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

2961
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2962
			x86_pmu_stop(event, 0);
2963 2964
	}

2965 2966 2967 2968 2969 2970 2971 2972 2973
	return handled;
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
2974 2975 2976
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	int loops;
	u64 status;
	int handled;
	int pmu_enabled;

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	/*
2988 2989 2990 2991 2992 2993
	 * In general, the early ACK is only applied for old platforms.
	 * For the big core starts from Haswell, the late ACK should be
	 * applied.
	 * For the small core after Tremont, we have to do the ACK right
	 * before re-enabling counters, which is in the middle of the
	 * NMI handler.
2994
	 */
2995
	if (!late_ack && !mid_ack)
2996 2997 2998
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	intel_bts_disable_local();
	cpuc->enabled = 0;
2999
	__intel_pmu_disable_all(true);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	handled = intel_pmu_drain_bts_buffer();
	handled += intel_bts_interrupt();
	status = intel_pmu_get_status();
	if (!status)
		goto done;

	loops = 0;
again:
	intel_pmu_lbr_read();
	intel_pmu_ack_status(status);
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}

	handled += handle_pmi_common(regs, status);

3024 3025 3026 3027 3028 3029 3030
	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

3031
done:
3032 3033
	if (mid_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
3034
	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3035 3036
	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
3037
		__intel_pmu_enable_all(0, true);
3038
	intel_bts_enable_local();
3039

3040 3041 3042 3043 3044
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
3045
	if (late_ack)
3046
		apic_write(APIC_LVTPC, APIC_DM_NMI);
3047
	return handled;
3048 3049 3050
}

static struct event_constraint *
3051
intel_bts_constraints(struct perf_event *event)
3052
{
3053
	if (unlikely(intel_pmu_has_bts(event)))
3054
		return &bts_constraint;
3055

3056 3057 3058
	return NULL;
}

3059 3060 3061 3062 3063 3064 3065 3066
/*
 * Note: matches a fake event, like Fixed2.
 */
static struct event_constraint *
intel_vlbr_constraints(struct perf_event *event)
{
	struct event_constraint *c = &vlbr_constraint;

3067 3068
	if (unlikely(constraint_match(c, event->hw.config))) {
		event->hw.flags |= c->flags;
3069
		return c;
3070
	}
3071 3072 3073 3074

	return NULL;
}

3075 3076
static int intel_alt_er(struct cpu_hw_events *cpuc,
			int idx, u64 config)
3077
{
3078
	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3079 3080
	int alt_idx = idx;

3081
	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3082
		return idx;
3083

3084
	if (idx == EXTRA_REG_RSP_0)
3085
		alt_idx = EXTRA_REG_RSP_1;
3086 3087

	if (idx == EXTRA_REG_RSP_1)
3088
		alt_idx = EXTRA_REG_RSP_0;
3089

3090
	if (config & ~extra_regs[alt_idx].valid_mask)
3091 3092 3093
		return idx;

	return alt_idx;
3094 3095 3096 3097
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
3098
	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3099 3100 3101
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
3102
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3103
		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3104
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3105 3106
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3107
		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3108
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3109 3110 3111
	}
}

3112 3113 3114 3115 3116 3117 3118
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
3119
static struct event_constraint *
3120
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3121 3122
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
3123
{
3124
	struct event_constraint *c = &emptyconstraint;
3125
	struct er_account *era;
3126
	unsigned long flags;
3127
	int idx = reg->idx;
3128

3129 3130 3131 3132 3133 3134
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
3135
		return NULL; /* call x86_get_event_constraint() */
3136

3137
again:
3138
	era = &cpuc->shared_regs->regs[idx];
3139 3140 3141 3142 3143
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
3144 3145 3146

	if (!atomic_read(&era->ref) || era->config == reg->config) {

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

3170 3171 3172 3173 3174 3175 3176
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

3177
		/*
3178 3179
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
3180
		 */
3181
		c = NULL;
3182
	} else {
3183
		idx = intel_alt_er(cpuc, idx, reg->config);
3184 3185 3186 3187
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
3188
	}
3189
	raw_spin_unlock_irqrestore(&era->lock, flags);
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
3201 3202 3203 3204 3205 3206
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
3207
	 */
3208
	if (!reg->alloc || cpuc->is_fake)
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
3241
	return c;
3242 3243
}

3244
struct event_constraint *
3245 3246
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
3247
{
3248
	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3249 3250
	struct event_constraint *c;

3251 3252
	if (event_constraints) {
		for_each_event_constraint(c, event_constraints) {
3253
			if (constraint_match(c, event->hw.config)) {
3254
				event->hw.flags |= c->flags;
3255
				return c;
3256
			}
3257 3258 3259
		}
	}

3260
	return &hybrid_var(cpuc->pmu, unconstrained);
3261 3262
}

3263
static struct event_constraint *
3264
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3265
			    struct perf_event *event)
3266 3267 3268
{
	struct event_constraint *c;

3269 3270 3271 3272
	c = intel_vlbr_constraints(event);
	if (c)
		return c;

3273 3274 3275 3276
	c = intel_bts_constraints(event);
	if (c)
		return c;

3277
	c = intel_shared_regs_constraints(cpuc, event);
3278 3279 3280
	if (c)
		return c;

3281
	c = intel_pebs_constraints(event);
3282 3283 3284
	if (c)
		return c;

3285
	return x86_get_event_constraints(cpuc, idx, event);
3286 3287
}

3288 3289 3290 3291
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3292
	struct intel_excl_states *xl;
3293 3294 3295 3296 3297
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
3298
	if (cpuc->is_fake || !is_ht_workaround_enabled())
3299
		return;
3300

3301 3302 3303
	/*
	 * no exclusion needed
	 */
3304
	if (WARN_ON_ONCE(!excl_cntrs))
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = true;
	/*
	 * lock shared state until we are done scheduling
	 * in stop_event_scheduling()
	 * makes scheduling appear as a transaction
	 */
	raw_spin_lock(&excl_cntrs->lock);
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct event_constraint *c = cpuc->event_constraint[idx];
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
		return;

	xl = &excl_cntrs->states[tid];

	lockdep_assert_held(&excl_cntrs->lock);

3338
	if (c->flags & PERF_X86_EVENT_EXCL)
3339
		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3340
	else
3341
		xl->state[cntr] = INTEL_EXCL_SHARED;
3342 3343
}

3344 3345 3346 3347
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3348
	struct intel_excl_states *xl;
3349 3350 3351 3352 3353
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
3354
	if (cpuc->is_fake || !is_ht_workaround_enabled())
3355 3356 3357 3358
		return;
	/*
	 * no exclusion needed
	 */
3359
	if (WARN_ON_ONCE(!excl_cntrs))
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = false;
	/*
	 * release shared state lock (acquired in intel_start_scheduling())
	 */
	raw_spin_unlock(&excl_cntrs->lock);
}

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
	WARN_ON_ONCE(!cpuc->constraint_list);

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
		struct event_constraint *cx;

		/*
		 * grab pre-allocated constraint entry
		 */
		cx = &cpuc->constraint_list[idx];

		/*
		 * initialize dynamic constraint
		 * with static constraint
		 */
		*cx = *c;

		/*
		 * mark constraint as dynamic
		 */
		cx->flags |= PERF_X86_EVENT_DYNAMIC;
		c = cx;
	}

	return c;
}

3400 3401 3402 3403 3404
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			   int idx, struct event_constraint *c)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3405
	struct intel_excl_states *xlo;
3406
	int tid = cpuc->excl_thread_id;
3407
	int is_excl, i, w;
3408 3409 3410 3411 3412

	/*
	 * validating a group does not require
	 * enforcing cross-thread  exclusion
	 */
3413 3414 3415 3416 3417 3418
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return c;

	/*
	 * no exclusion needed
	 */
3419
	if (WARN_ON_ONCE(!excl_cntrs))
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		return c;

	/*
	 * because we modify the constraint, we need
	 * to make a copy. Static constraints come
	 * from static const tables.
	 *
	 * only needed when constraint has not yet
	 * been cloned (marked dynamic)
	 */
3430
	c = dyn_constraint(cpuc, c, idx);
3431 3432 3433 3434 3435 3436 3437 3438

	/*
	 * From here on, the constraint is dynamic.
	 * Either it was just allocated above, or it
	 * was allocated during a earlier invocation
	 * of this function
	 */

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	/*
	 * state of sibling HT
	 */
	xlo = &excl_cntrs->states[tid ^ 1];

	/*
	 * event requires exclusive counter access
	 * across HT threads
	 */
	is_excl = c->flags & PERF_X86_EVENT_EXCL;
	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
		if (!cpuc->n_excl++)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
	}

3455 3456 3457 3458 3459 3460 3461 3462
	/*
	 * Modify static constraint with current dynamic
	 * state of thread
	 *
	 * EXCLUSIVE: sibling counter measuring exclusive event
	 * SHARED   : sibling counter measuring non-exclusive event
	 * UNUSED   : sibling counter unused
	 */
3463
	w = c->weight;
3464
	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3465 3466 3467 3468 3469
		/*
		 * exclusive event in sibling counter
		 * our corresponding counter cannot be used
		 * regardless of our event
		 */
3470
		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3471
			__clear_bit(i, c->idxmsk);
3472 3473 3474
			w--;
			continue;
		}
3475 3476 3477 3478 3479
		/*
		 * if measuring an exclusive event, sibling
		 * measuring non-exclusive, then counter cannot
		 * be used
		 */
3480
		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3481
			__clear_bit(i, c->idxmsk);
3482 3483 3484
			w--;
			continue;
		}
3485 3486 3487 3488 3489 3490 3491
	}

	/*
	 * if we return an empty mask, then switch
	 * back to static empty constraint to avoid
	 * the cost of freeing later on
	 */
3492
	if (!w)
3493
		c = &emptyconstraint;
3494

3495 3496
	c->weight = w;

3497
	return c;
3498 3499 3500 3501 3502 3503
}

static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
3504
	struct event_constraint *c1, *c2;
3505

3506
	c1 = cpuc->event_constraint[idx];
3507

3508 3509 3510 3511 3512
	/*
	 * first time only
	 * - static constraint: no change across incremental scheduling calls
	 * - dynamic constraint: handled by intel_get_excl_constraints()
	 */
3513
	c2 = __intel_get_event_constraints(cpuc, idx, event);
3514 3515
	if (c1) {
	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3516 3517 3518 3519
		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
		c1->weight = c2->weight;
		c2 = c1;
	}
3520 3521

	if (cpuc->excl_cntrs)
3522
		return intel_get_excl_constraints(cpuc, event, idx, c2);
3523

3524
	return c2;
3525 3526 3527 3528 3529 3530 3531 3532
}

static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
		struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	int tid = cpuc->excl_thread_id;
3533
	struct intel_excl_states *xl;
3534 3535 3536 3537 3538 3539 3540

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake)
		return;

3541
	if (WARN_ON_ONCE(!excl_cntrs))
3542 3543
		return;

3544 3545 3546 3547 3548
	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
		if (!--cpuc->n_excl)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
	}
3549 3550

	/*
3551 3552
	 * If event was actually assigned, then mark the counter state as
	 * unused now.
3553
	 */
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	if (hwc->idx >= 0) {
		xl = &excl_cntrs->states[tid];

		/*
		 * put_constraint may be called from x86_schedule_events()
		 * which already has the lock held so here make locking
		 * conditional.
		 */
		if (!xl->sched_started)
			raw_spin_lock(&excl_cntrs->lock);
3564

3565
		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3566

3567 3568 3569
		if (!xl->sched_started)
			raw_spin_unlock(&excl_cntrs->lock);
	}
3570 3571
}

3572 3573
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3574 3575
					struct perf_event *event)
{
3576
	struct hw_perf_event_extra *reg;
3577

3578 3579 3580
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3581 3582 3583 3584

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3585
}
3586

3587 3588 3589 3590
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
3591 3592 3593 3594 3595 3596

	/*
	 * is PMU has exclusive counter restrictions, then
	 * all events are subject to and must call the
	 * put_excl_constraints() routine
	 */
3597
	if (cpuc->excl_cntrs)
3598 3599 3600
		intel_put_excl_constraints(cpuc, event);
}

3601
static void intel_pebs_aliases_core2(struct perf_event *event)
3602
{
3603
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
3622 3623
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3651 3652 3653 3654

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
3655 3656
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
		 * (0x01c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * The PREC_DIST event has special support to minimize sample
		 * shadowing effects. One drawback is that it can be
		 * only programmed on counter 1, but that seems like an
		 * acceptable trade off.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_ivb(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_snb(event);
	return intel_pebs_aliases_precdist(event);
}

static void intel_pebs_aliases_skl(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_core2(event);
	return intel_pebs_aliases_precdist(event);
}

3695
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3696
{
3697
	unsigned long flags = x86_pmu.large_pebs_flags;
3698 3699 3700

	if (event->attr.use_clockid)
		flags &= ~PERF_SAMPLE_TIME;
3701 3702
	if (!event->attr.exclude_kernel)
		flags &= ~PERF_SAMPLE_REGS_USER;
K
Kan Liang 已提交
3703
	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3704
		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3705 3706 3707
	return flags;
}

3708 3709 3710 3711
static int intel_pmu_bts_config(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;

3712
	if (unlikely(intel_pmu_has_bts(event))) {
3713 3714 3715 3716 3717 3718 3719 3720
		/* BTS is not supported by this architecture. */
		if (!x86_pmu.bts_active)
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;

3721 3722 3723 3724
		/* BTS is not allowed for precise events. */
		if (attr->precise_ip)
			return -EOPNOTSUPP;

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
	}

	return 0;
}

static int core_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	return intel_pmu_bts_config(event);
}

3745 3746 3747 3748 3749 3750 3751 3752 3753
#define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
					 ((x86_pmu.num_topdown_events - 1) << 8))

static bool is_available_metric_event(struct perf_event *event)
{
	return is_metric_event(event) &&
		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
}

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
static inline bool is_mem_loads_event(struct perf_event *event)
{
	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
}

static inline bool is_mem_loads_aux_event(struct perf_event *event)
{
	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
}

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static inline bool require_mem_loads_aux_event(struct perf_event *event)
{
	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
		return false;

	if (is_hybrid())
		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;

	return true;
}

3775 3776 3777 3778 3779 3780
static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
{
	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);

	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
}
3781

3782 3783 3784 3785
static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

3786 3787 3788 3789
	if (ret)
		return ret;

	ret = intel_pmu_bts_config(event);
3790 3791 3792
	if (ret)
		return ret;

3793
	if (event->attr.precise_ip) {
3794 3795 3796
		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
			return -EINVAL;

3797
		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3798
			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3799
			if (!(event->attr.sample_type &
3800
			      ~intel_pmu_large_pebs_flags(event))) {
3801
				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3802 3803
				event->attach_state |= PERF_ATTACH_SCHED_CB;
			}
3804
		}
3805 3806
		if (x86_pmu.pebs_aliases)
			x86_pmu.pebs_aliases(event);
3807 3808 3809

		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3810
	}
3811

3812
	if (needs_branch_stack(event)) {
3813 3814 3815
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
3816
		event->attach_state |= PERF_ATTACH_SCHED_CB;
3817 3818 3819 3820

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
3821
		if (!unlikely(intel_pmu_has_bts(event))) {
3822 3823 3824 3825 3826 3827
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
3828 3829
	}

3830 3831 3832 3833 3834 3835 3836
	if (event->attr.aux_output) {
		if (!event->attr.precise_ip)
			return -EINVAL;

		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
	}

K
Kan Liang 已提交
3837 3838
	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
	    (event->attr.type == PERF_TYPE_HW_CACHE))
3839 3840
		return 0;

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	/*
	 * Config Topdown slots and metric events
	 *
	 * The slots event on Fixed Counter 3 can support sampling,
	 * which will be handled normally in x86_perf_event_update().
	 *
	 * Metric events don't support sampling and require being paired
	 * with a slots event as group leader. When the slots event
	 * is used in a metrics group, it too cannot support sampling.
	 */
3851
	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
		if (event->attr.config1 || event->attr.config2)
			return -EINVAL;

		/*
		 * The TopDown metrics events and slots event don't
		 * support any filters.
		 */
		if (event->attr.config & X86_ALL_EVENT_FLAGS)
			return -EINVAL;

3862
		if (is_available_metric_event(event)) {
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
			struct perf_event *leader = event->group_leader;

			/* The metric events don't support sampling. */
			if (is_sampling_event(event))
				return -EINVAL;

			/* The metric events require a slots group leader. */
			if (!is_slots_event(leader))
				return -EINVAL;

			/*
			 * The leader/SLOTS must not be a sampling event for
			 * metric use; hardware requires it starts at 0 when used
			 * in conjunction with MSR_PERF_METRICS.
			 */
			if (is_sampling_event(leader))
				return -EINVAL;

			event->event_caps |= PERF_EV_CAP_SIBLING;
			/*
			 * Only once we have a METRICs sibling do we
			 * need TopDown magic.
			 */
			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
		}
	}

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	/*
	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
	 * doesn't function quite right. As a work-around it needs to always be
	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
	 * The actual count of this second event is irrelevant it just needs
	 * to be active to make the first event function correctly.
	 *
	 * In a group, the auxiliary event must be in front of the load latency
	 * event. The rule is to simplify the implementation of the check.
	 * That's because perf cannot have a complete group at the moment.
	 */
3902
	if (require_mem_loads_aux_event(event) &&
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
	    is_mem_loads_event(event)) {
		struct perf_event *leader = event->group_leader;
		struct perf_event *sibling = NULL;

		if (!is_mem_loads_aux_event(leader)) {
			for_each_sibling_event(sibling, leader) {
				if (is_mem_loads_aux_event(sibling))
					break;
			}
			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
				return -ENODATA;
		}
	}

3918 3919 3920 3921 3922 3923
	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

3924 3925 3926
	ret = perf_allow_cpu(&event->attr);
	if (ret)
		return ret;
3927 3928 3929 3930 3931 3932

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

3933 3934
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
3935
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3936
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3937
	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3938 3939

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3940 3941
	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		arr[0].guest &= ~cpuc->pebs_enabled;
	else
		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
	*nr = 1;

	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
		/*
		 * If PMU counter has PEBS enabled it is not enough to
		 * disable counter on a guest entry since PEBS memory
		 * write can overshoot guest entry and corrupt guest
		 * memory. Disabling PEBS solves the problem.
		 *
		 * Don't do this if the CPU already enforces it.
		 */
		arr[1].msr = MSR_IA32_PEBS_ENABLE;
		arr[1].host = cpuc->pebs_enabled;
		arr[1].guest = 0;
		*nr = 2;
	}
3962 3963 3964 3965 3966 3967

	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
3968
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
4002
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
4050 4051 4052
	return 0;
}

4053 4054 4055
static struct event_constraint counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);

4056 4057 4058
static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

K
Kan Liang 已提交
4059 4060 4061
static struct event_constraint fixed0_constraint =
			FIXED_EVENT_CONSTRAINT(0x00c0, 0);

4062 4063 4064
static struct event_constraint fixed0_counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);

4065
static struct event_constraint *
4066 4067
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
4068
{
4069 4070 4071
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

K
Kan Liang 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	/*
	 * Fixed counter 0 has less skid.
	 * Force instruction:ppp in Fixed counter 0
	 */
	if ((event->attr.precise_ip == 3) &&
	    constraint_match(&fixed0_constraint, event->hw.config))
		return &fixed0_constraint;

	return hsw_get_event_constraints(cpuc, idx, event);
}

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = icl_get_event_constraints(cpuc, idx, event);

	/*
	 * The :ppp indicates the Precise Distribution (PDist) facility, which
	 * is only supported on the GP counter 0. If a :ppp event which is not
	 * available on the GP counter 0, error out.
4110
	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4111
	 */
4112 4113
	if ((event->attr.precise_ip == 3) &&
	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4114 4115 4116 4117 4118 4119 4120 4121 4122
		if (c->idxmsk64 & BIT_ULL(0))
			return &counter0_constraint;

		return &emptyconstraint;
	}

	return c;
}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
	if (event->attr.precise_ip == 3)
		return &counter0_constraint;

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

4138 4139 4140 4141 4142 4143
static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

4144 4145
	c = intel_get_event_constraints(cpuc, idx, event);

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	/*
	 * :ppp means to do reduced skid PEBS,
	 * which is available on PMC0 and fixed counter 0.
	 */
	if (event->attr.precise_ip == 3) {
		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
		if (constraint_match(&fixed0_constraint, event->hw.config))
			return &fixed0_counter0_constraint;

		return &counter0_constraint;
	}

	return c;
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
static bool allow_tsx_force_abort = true;

static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);

	/*
	 * Without TFA we must not use PMC3.
	 */
4172
	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4173 4174 4175 4176 4177 4178 4179 4180
		c = dyn_constraint(cpuc, c, idx);
		c->idxmsk64 &= ~(1ULL << 3);
		c->weight--;
	}

	return c;
}

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->cpu_type == hybrid_big)
		return spr_get_event_constraints(cpuc, idx, event);
	else if (pmu->cpu_type == hybrid_small)
		return tnt_get_event_constraints(cpuc, idx, event);

	WARN_ON(1);
	return &emptyconstraint;
}

static int adl_hw_config(struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->cpu_type == hybrid_big)
		return hsw_hw_config(event);
	else if (pmu->cpu_type == hybrid_small)
		return intel_pmu_hw_config(event);

	WARN_ON(1);
	return -EOPNOTSUPP;
}

static u8 adl_get_hybrid_cpu_type(void)
{
	return hybrid_big;
}

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
4229
static u64 bdw_limit_period(struct perf_event *event, u64 left)
4230 4231 4232 4233 4234
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (left < 128)
			left = 128;
4235
		left &= ~0x3fULL;
4236 4237 4238 4239
	}
	return left;
}

4240 4241 4242 4243 4244
static u64 nhm_limit_period(struct perf_event *event, u64 left)
{
	return max(left, 32ULL);
}

4245 4246 4247 4248 4249 4250 4251 4252
static u64 spr_limit_period(struct perf_event *event, u64 left)
{
	if (event->attr.precise_ip == 3)
		return max(left, 128ULL);

	return left;
}

4253 4254 4255 4256 4257 4258 4259
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4260 4261
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

4273 4274 4275 4276 4277 4278 4279
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

4280
static struct intel_shared_regs *allocate_shared_regs(int cpu)
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
	struct intel_excl_cntrs *c;

	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
			 GFP_KERNEL, cpu_to_node(cpu));
	if (c) {
		raw_spin_lock_init(&c->lock);
		c->core_id = -1;
	}
	return c;
}

4312

4313 4314
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
4315 4316
	cpuc->pebs_record_size = x86_pmu.pebs_record_size;

4317
	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4318 4319
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
4320
			goto err;
4321
	}
4322

4323
	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4324 4325
		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);

4326
		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4327
		if (!cpuc->constraint_list)
4328
			goto err_shared_regs;
4329
	}
4330

4331
	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4332
		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4333 4334 4335
		if (!cpuc->excl_cntrs)
			goto err_constraint_list;

4336 4337
		cpuc->excl_thread_id = 0;
	}
4338

4339
	return 0;
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349

err_constraint_list:
	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;

err_shared_regs:
	kfree(cpuc->shared_regs);
	cpuc->shared_regs = NULL;

err:
4350
	return -ENOMEM;
4351 4352
}

4353 4354 4355 4356 4357
static int intel_pmu_cpu_prepare(int cpu)
{
	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
static void flip_smm_bit(void *data)
{
	unsigned long set = *(unsigned long *)data;

	if (set > 0) {
		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	} else {
		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	}
}

K
Kan Liang 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
static bool init_hybrid_pmu(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	u8 cpu_type = get_this_hybrid_cpu_type();
	struct x86_hybrid_pmu *pmu = NULL;
	int i;

	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
		cpu_type = x86_pmu.get_hybrid_cpu_type();

	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
			pmu = &x86_pmu.hybrid_pmu[i];
			break;
		}
	}
	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
		cpuc->pmu = NULL;
		return false;
	}

	/* Only check and dump the PMU information for the first CPU */
	if (!cpumask_empty(&pmu->supported_cpus))
		goto end;

	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
		return false;

	pr_info("%s PMU driver: ", pmu->name);

	if (pmu->intel_cap.pebs_output_pt_available)
		pr_cont("PEBS-via-PT ");

	pr_cont("\n");

	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
			     pmu->intel_ctrl);

end:
	cpumask_set_cpu(cpu, &pmu->supported_cpus);
	cpuc->pmu = &pmu->pmu;

	x86_pmu_update_cpu_context(&pmu->pmu, cpu);

	return true;
}

4418 4419
static void intel_pmu_cpu_starting(int cpu)
{
4420 4421 4422 4423
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

K
Kan Liang 已提交
4424 4425 4426
	if (is_hybrid() && !init_hybrid_pmu(cpu))
		return;

4427 4428 4429 4430 4431 4432
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

4433 4434
	cpuc->lbr_sel = NULL;

4435 4436 4437 4438 4439 4440
	if (x86_pmu.flags & PMU_FL_TFA) {
		WARN_ON_ONCE(cpuc->tfa_shadow);
		cpuc->tfa_shadow = ~0ULL;
		intel_set_tfa(cpuc, false);
	}

4441 4442
	if (x86_pmu.version > 1)
		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4443

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	/*
	 * Disable perf metrics if any added CPU doesn't support it.
	 *
	 * Turn off the check for a hybrid architecture, because the
	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
	 * the architecture features. The perf metrics is a model-specific
	 * feature for now. The corresponding bit should always be 0 on
	 * a hybrid platform, e.g., Alder Lake.
	 */
	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4454 4455 4456 4457 4458 4459 4460 4461 4462
		union perf_capabilities perf_cap;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
		if (!perf_cap.perf_metrics) {
			x86_pmu.intel_cap.perf_metrics = 0;
			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
		}
	}

4463
	if (!cpuc->shared_regs)
4464 4465
		return;

4466
	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4467
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4468
			struct intel_shared_regs *pc;
4469

4470 4471
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
P
Peter Zijlstra 已提交
4472
				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4473 4474 4475
				cpuc->shared_regs = pc;
				break;
			}
4476
		}
4477 4478
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
4479 4480
	}

4481 4482
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4483 4484

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4485
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4486
			struct cpu_hw_events *sibling;
4487 4488
			struct intel_excl_cntrs *c;

4489 4490
			sibling = &per_cpu(cpu_hw_events, i);
			c = sibling->excl_cntrs;
4491 4492 4493
			if (c && c->core_id == core_id) {
				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
				cpuc->excl_cntrs = c;
4494 4495
				if (!sibling->excl_thread_id)
					cpuc->excl_thread_id = 1;
4496 4497 4498 4499 4500 4501
				break;
			}
		}
		cpuc->excl_cntrs->core_id = core_id;
		cpuc->excl_cntrs->refcnt++;
	}
4502 4503
}

4504
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4505
{
4506
	struct intel_excl_cntrs *c;
4507

4508 4509 4510 4511 4512 4513
	c = cpuc->excl_cntrs;
	if (c) {
		if (c->core_id == -1 || --c->refcnt == 0)
			kfree(c);
		cpuc->excl_cntrs = NULL;
	}
4514 4515 4516

	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;
4517
}
4518

4519
static void intel_pmu_cpu_dying(int cpu)
4520 4521 4522 4523
{
	fini_debug_store_on_cpu(cpu);
}

4524
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4525 4526 4527 4528 4529 4530 4531 4532
{
	struct intel_shared_regs *pc;

	pc = cpuc->shared_regs;
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->shared_regs = NULL;
4533 4534
	}

4535 4536 4537 4538 4539
	free_excl_cntrs(cpuc);
}

static void intel_pmu_cpu_dead(int cpu)
{
K
Kan Liang 已提交
4540 4541 4542 4543 4544 4545
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	intel_cpuc_finish(cpuc);

	if (is_hybrid() && cpuc->pmu)
		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4546 4547
}

4548 4549 4550
static void intel_pmu_sched_task(struct perf_event_context *ctx,
				 bool sched_in)
{
4551 4552
	intel_pmu_pebs_sched_task(ctx, sched_in);
	intel_pmu_lbr_sched_task(ctx, sched_in);
4553 4554
}

4555 4556 4557 4558 4559 4560
static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
				    struct perf_event_context *next)
{
	intel_pmu_lbr_swap_task_ctx(prev, next);
}

4561 4562 4563 4564 4565
static int intel_pmu_check_period(struct perf_event *event, u64 value)
{
	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
}

4566 4567 4568 4569 4570 4571 4572
static void intel_aux_output_init(void)
{
	/* Refer also intel_pmu_aux_output_match() */
	if (x86_pmu.intel_cap.pebs_output_pt_available)
		x86_pmu.assign = intel_pmu_assign_event;
}

4573 4574
static int intel_pmu_aux_output_match(struct perf_event *event)
{
4575
	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4576 4577 4578 4579 4580 4581
	if (!x86_pmu.intel_cap.pebs_output_pt_available)
		return 0;

	return is_intel_pt_event(event);
}

4582 4583 4584 4585 4586 4587 4588 4589
static int intel_pmu_filter_match(struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
	unsigned int cpu = smp_processor_id();

	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
}

4590 4591
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

4592 4593
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

4594 4595
PMU_FORMAT_ATTR(frontend, "config1:0-23");

4596 4597 4598 4599 4600 4601 4602 4603
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
4604 4605 4606 4607
	NULL,
};

static struct attribute *hsw_format_attr[] = {
4608 4609
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
4610 4611 4612 4613
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623
static struct attribute *nhm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};

static struct attribute *slm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	NULL
4624 4625
};

4626 4627 4628 4629 4630
static struct attribute *skl_format_attr[] = {
	&format_attr_frontend.attr,
	NULL,
};

4631 4632 4633 4634 4635 4636 4637
static __initconst const struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
4638
	.hw_config		= core_pmu_hw_config,
4639 4640 4641 4642 4643 4644
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
4645
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4646

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	/*
	 * Intel PMCs cannot be accessed sanely above 32-bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL<<31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.event_constraints	= intel_core_event_constraints,
	.guest_get_msrs		= core_guest_get_msrs,
	.format_attrs		= intel_arch_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	/*
	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
	 * together with PMU version 1 and thus be using core_pmu with
	 * shared_regs. We need following callbacks here to allocate
	 * it properly.
	 */
	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
4669
	.cpu_dead		= intel_pmu_cpu_dead,
4670 4671

	.check_period		= intel_pmu_check_period,
4672 4673

	.lbr_reset		= intel_pmu_lbr_reset_64,
4674
	.lbr_read		= intel_pmu_lbr_read_64,
4675 4676
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
4677 4678
};

4679
static __initconst const struct x86_pmu intel_pmu = {
4680 4681 4682 4683 4684 4685
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
4686 4687
	.add			= intel_pmu_add_event,
	.del			= intel_pmu_del_event,
4688
	.read			= intel_pmu_read_event,
4689
	.hw_config		= intel_pmu_hw_config,
4690
	.schedule_events	= x86_schedule_events,
4691 4692 4693 4694 4695
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
4696
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4697 4698 4699 4700 4701 4702
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
4703
	.get_event_constraints	= intel_get_event_constraints,
4704
	.put_event_constraints	= intel_put_event_constraints,
4705
	.pebs_aliases		= intel_pebs_aliases_core2,
4706

4707
	.format_attrs		= intel_arch3_formats_attr,
4708
	.events_sysfs_show	= intel_event_sysfs_show,
4709

4710
	.cpu_prepare		= intel_pmu_cpu_prepare,
4711 4712
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
4713 4714
	.cpu_dead		= intel_pmu_cpu_dead,

4715
	.guest_get_msrs		= intel_guest_get_msrs,
4716
	.sched_task		= intel_pmu_sched_task,
4717
	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4718 4719

	.check_period		= intel_pmu_check_period,
4720 4721

	.aux_output_match	= intel_pmu_aux_output_match,
4722 4723

	.lbr_reset		= intel_pmu_lbr_reset_64,
4724
	.lbr_read		= intel_pmu_lbr_read_64,
4725 4726
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

	/*
	 * SMM has access to all 4 rings and while traditionally SMM code only
	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
	 *
	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
	 * between SMM or not, this results in what should be pure userspace
	 * counters including SMM data.
	 *
	 * This is a clear privilege issue, therefore globally disable
	 * counting SMM by default.
	 */
	.attr_freeze_on_smi	= 1,
4740 4741
};

4742
static __init void intel_clovertown_quirk(void)
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
4758
	 *	 a pebs_event_reset[0] value and coping with the lost events.
4759 4760 4761 4762
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
4763
	pr_warn("PEBS disabled due to CPU errata\n");
4764 4765 4766 4767
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

4768
static const struct x86_cpu_desc isolation_ucodes[] = {
4769
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4770
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4771
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4772 4773
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4774
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4775
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4776 4777 4778 4779
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4780
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4781 4782
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4783 4784 4785
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4786
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4787 4788
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4789 4790 4791 4792
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4793 4794 4795 4796
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	{}
};

static void intel_check_pebs_isolation(void)
{
	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
}

static __init void intel_pebs_isolation_quirk(void)
{
	WARN_ON_ONCE(x86_pmu.check_microcode);
	x86_pmu.check_microcode = intel_check_pebs_isolation;
	intel_check_pebs_isolation();
}

4812 4813 4814 4815 4816 4817
static const struct x86_cpu_desc pebs_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
	{}
};
4818

4819 4820 4821
static bool intel_snb_pebs_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4822 4823 4824 4825
}

static void intel_snb_check_microcode(void)
{
4826
	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

4841 4842 4843 4844 4845 4846 4847
static bool is_lbr_from(unsigned long msr)
{
	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;

	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
}

4848 4849 4850 4851 4852 4853 4854 4855
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

4856 4857
	/*
	 * Disable the check for real HW, so we don't
I
Ingo Molnar 已提交
4858
	 * mess with potentially enabled registers:
4859
	 */
4860
	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4861 4862
		return true;

4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
4875 4876 4877 4878

	if (is_lbr_from(msr))
		val_tmp = lbr_from_signext_quirk_wr(val_tmp);

4879 4880 4881 4882
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

4883 4884 4885 4886
	/*
	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
	 * should equal rdmsrl()'s even with the quirk.
	 */
4887 4888 4889
	if (val_new != val_tmp)
		return false;

4890 4891 4892
	if (is_lbr_from(msr))
		val_old = lbr_from_signext_quirk_wr(val_old);

4893 4894 4895 4896 4897 4898 4899 4900
	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

4901
static __init void intel_sandybridge_quirk(void)
4902
{
4903
	x86_pmu.check_microcode = intel_snb_check_microcode;
4904
	cpus_read_lock();
4905
	intel_snb_check_microcode();
4906
	cpus_read_unlock();
4907 4908
}

4909 4910 4911 4912 4913 4914 4915 4916
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4917 4918
};

4919 4920 4921 4922
static __init void intel_arch_events_quirk(void)
{
	int bit;

I
Ingo Molnar 已提交
4923
	/* disable event that reported as not present by cpuid */
4924 4925
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4926 4927
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
4946
		pr_info("CPU erratum AAJ80 worked around\n");
4947 4948 4949
	}
}

4950 4951 4952 4953 4954 4955 4956
/*
 * enable software workaround for errata:
 * SNB: BJ122
 * IVB: BV98
 * HSW: HSD29
 *
 * Only needed when HT is enabled. However detecting
4957 4958 4959 4960
 * if HT is enabled is difficult (model specific). So instead,
 * we enable the workaround in the early boot, and verify if
 * it is needed in a later initcall phase once we have valid
 * topology information to check if HT is actually enabled
4961 4962 4963
 */
static __init void intel_ht_bug(void)
{
4964
	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4965 4966

	x86_pmu.start_scheduling = intel_start_scheduling;
4967
	x86_pmu.commit_scheduling = intel_commit_scheduling;
4968 4969 4970
	x86_pmu.stop_scheduling = intel_stop_scheduling;
}

4971 4972
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4973

4974
/* Haswell special events */
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4987

4988
static struct attribute *hsw_events_attrs[] = {
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
	NULL
};

4999 5000 5001 5002 5003 5004
static struct attribute *hsw_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

5005
static struct attribute *hsw_tsx_events_attrs[] = {
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
5018 5019 5020
	NULL
};

K
Kan Liang 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");

static struct attribute *icl_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

5032 5033 5034 5035 5036 5037 5038 5039 5040
static struct attribute *icl_td_events_attrs[] = {
	EVENT_PTR(slots),
	EVENT_PTR(td_retiring),
	EVENT_PTR(td_bad_spec),
	EVENT_PTR(td_fe_bound),
	EVENT_PTR(td_be_bound),
	NULL,
};

K
Kan Liang 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
static struct attribute *icl_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_capacity_read),
	EVENT_PTR(el_capacity_write),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};

5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094

EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");

static struct attribute *spr_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_spr),
	EVENT_PTR(mem_ld_aux),
	NULL,
};

static struct attribute *spr_td_events_attrs[] = {
	EVENT_PTR(slots),
	EVENT_PTR(td_retiring),
	EVENT_PTR(td_bad_spec),
	EVENT_PTR(td_fe_bound),
	EVENT_PTR(td_be_bound),
	EVENT_PTR(td_heavy_ops),
	EVENT_PTR(td_br_mispredict),
	EVENT_PTR(td_fetch_lat),
	EVENT_PTR(td_mem_bound),
	NULL,
};

static struct attribute *spr_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};

5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
static ssize_t freeze_on_smi_show(struct device *cdev,
				  struct device_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
}

static DEFINE_MUTEX(freeze_on_smi_mutex);

static ssize_t freeze_on_smi_store(struct device *cdev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	if (val > 1)
		return -EINVAL;

	mutex_lock(&freeze_on_smi_mutex);

	if (x86_pmu.attr_freeze_on_smi == val)
		goto done;

	x86_pmu.attr_freeze_on_smi = val;

5125
	cpus_read_lock();
5126
	on_each_cpu(flip_smm_bit, &val, 1);
5127
	cpus_read_unlock();
5128 5129 5130 5131 5132 5133
done:
	mutex_unlock(&freeze_on_smi_mutex);

	return count;
}

5134 5135 5136 5137 5138 5139 5140 5141 5142
static void update_tfa_sched(void *ignored)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * check if PMC3 is used
	 * and if so force schedule out for all event types all contexts
	 */
	if (test_bit(3, cpuc->active_mask))
5143
		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
}

static ssize_t show_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
}

static ssize_t set_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      const char *buf, size_t count)
{
	bool val;
	ssize_t ret;

	ret = kstrtobool(buf, &val);
	if (ret)
		return ret;

	/* no change */
	if (val == allow_tsx_force_abort)
		return count;

	allow_tsx_force_abort = val;

5170
	cpus_read_lock();
5171
	on_each_cpu(update_tfa_sched, NULL, 1);
5172
	cpus_read_unlock();
5173 5174 5175 5176 5177

	return count;
}


5178 5179
static DEVICE_ATTR_RW(freeze_on_smi);

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
static ssize_t branches_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

static struct attribute *lbr_attrs[] = {
	&dev_attr_branches.attr,
	NULL
};

static char pmu_name_str[30];

static ssize_t pmu_name_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
}

static DEVICE_ATTR_RO(pmu_name);

static struct attribute *intel_pmu_caps_attrs[] = {
P
Peter Zijlstra 已提交
5206 5207
       &dev_attr_pmu_name.attr,
       NULL
5208 5209
};

5210 5211 5212
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
		   show_sysctl_tfa,
		   set_sysctl_tfa);
5213

5214 5215
static struct attribute *intel_pmu_attrs[] = {
	&dev_attr_freeze_on_smi.attr,
5216
	&dev_attr_allow_tsx_force_abort.attr,
5217 5218 5219
	NULL,
};

5220 5221
static umode_t
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5222
{
5223 5224
	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
}
5225

5226 5227 5228 5229 5230
static umode_t
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.pebs ? attr->mode : 0;
}
5231

5232 5233 5234 5235 5236 5237
static umode_t
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.lbr_nr ? attr->mode : 0;
}

5238 5239 5240 5241 5242 5243
static umode_t
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.version >= 2 ? attr->mode : 0;
}

5244 5245 5246 5247 5248 5249 5250 5251 5252
static umode_t
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	if (attr == &dev_attr_allow_tsx_force_abort.attr)
		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;

	return attr->mode;
}

5253 5254 5255
static struct attribute_group group_events_td  = {
	.name = "events",
};
5256

5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
static struct attribute_group group_events_mem = {
	.name       = "events",
	.is_visible = pebs_is_visible,
};

static struct attribute_group group_events_tsx = {
	.name       = "events",
	.is_visible = tsx_is_visible,
};

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
static struct attribute_group group_caps_gen = {
	.name  = "caps",
	.attrs = intel_pmu_caps_attrs,
};

static struct attribute_group group_caps_lbr = {
	.name       = "caps",
	.attrs	    = lbr_attrs,
	.is_visible = lbr_is_visible,
};

5278 5279 5280 5281 5282
static struct attribute_group group_format_extra = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

5283 5284 5285 5286 5287
static struct attribute_group group_format_extra_skl = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

5288
static struct attribute_group group_default = {
5289 5290
	.attrs      = intel_pmu_attrs,
	.is_visible = default_is_visible,
5291 5292
};

5293 5294 5295 5296
static const struct attribute_group *attr_update[] = {
	&group_events_td,
	&group_events_mem,
	&group_events_tsx,
5297 5298
	&group_caps_gen,
	&group_caps_lbr,
5299
	&group_format_extra,
5300
	&group_format_extra_skl,
5301
	&group_default,
5302 5303 5304
	NULL,
};

5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);

static struct attribute *adl_hybrid_events_attrs[] = {
	EVENT_PTR(slots_adl),
	EVENT_PTR(td_retiring_adl),
	EVENT_PTR(td_bad_spec_adl),
	EVENT_PTR(td_fe_bound_adl),
	EVENT_PTR(td_be_bound_adl),
	EVENT_PTR(td_heavy_ops_adl),
	EVENT_PTR(td_br_mis_adl),
	EVENT_PTR(td_fetch_lat_adl),
	EVENT_PTR(td_mem_bound_adl),
	NULL,
};

/* Must be in IDX order */
EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);

static struct attribute *adl_hybrid_mem_attrs[] = {
	EVENT_PTR(mem_ld_adl),
	EVENT_PTR(mem_st_adl),
	EVENT_PTR(mem_ld_aux_adl),
	NULL,
};

EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);

static struct attribute *adl_hybrid_tsx_attrs[] = {
	EVENT_PTR(tx_start_adl),
	EVENT_PTR(tx_abort_adl),
	EVENT_PTR(tx_commit_adl),
	EVENT_PTR(tx_capacity_read_adl),
	EVENT_PTR(tx_capacity_write_adl),
	EVENT_PTR(tx_conflict_adl),
	EVENT_PTR(cycles_t_adl),
	EVENT_PTR(cycles_ct_adl),
	NULL,
};

FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
FORMAT_ATTR_HYBRID(frontend,    hybrid_big);

static struct attribute *adl_hybrid_extra_attr_rtm[] = {
	FORMAT_HYBRID_PTR(in_tx),
	FORMAT_HYBRID_PTR(in_tx_cp),
	FORMAT_HYBRID_PTR(offcore_rsp),
	FORMAT_HYBRID_PTR(ldlat),
	FORMAT_HYBRID_PTR(frontend),
	NULL,
};

static struct attribute *adl_hybrid_extra_attr[] = {
	FORMAT_HYBRID_PTR(offcore_rsp),
	FORMAT_HYBRID_PTR(ldlat),
	FORMAT_HYBRID_PTR(frontend),
	NULL,
};

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
{
	struct device *dev = kobj_to_dev(kobj);
	struct x86_hybrid_pmu *pmu =
		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
	struct perf_pmu_events_hybrid_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);

	return pmu->cpu_type & pmu_attr->pmu_type;
}

static umode_t hybrid_events_is_visible(struct kobject *kobj,
					struct attribute *attr, int i)
{
	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
}

static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
{
	int cpu = cpumask_first(&pmu->supported_cpus);

	return (cpu >= nr_cpu_ids) ? -1 : cpu;
}

static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
				     struct attribute *attr, int i)
{
	struct device *dev = kobj_to_dev(kobj);
	struct x86_hybrid_pmu *pmu =
		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
	int cpu = hybrid_find_supported_cpu(pmu);

	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
}

static umode_t hybrid_format_is_visible(struct kobject *kobj,
					struct attribute *attr, int i)
{
	struct device *dev = kobj_to_dev(kobj);
	struct x86_hybrid_pmu *pmu =
		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
	struct perf_pmu_format_hybrid_attr *pmu_attr =
		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
	int cpu = hybrid_find_supported_cpu(pmu);

	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
}

static struct attribute_group hybrid_group_events_td  = {
	.name		= "events",
	.is_visible	= hybrid_events_is_visible,
};

static struct attribute_group hybrid_group_events_mem = {
	.name		= "events",
	.is_visible	= hybrid_events_is_visible,
};

static struct attribute_group hybrid_group_events_tsx = {
	.name		= "events",
	.is_visible	= hybrid_tsx_is_visible,
};

static struct attribute_group hybrid_group_format_extra = {
	.name		= "format",
	.is_visible	= hybrid_format_is_visible,
};

static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct x86_hybrid_pmu *pmu =
		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);

	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
}

static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
static struct attribute *intel_hybrid_cpus_attrs[] = {
	&dev_attr_cpus.attr,
	NULL,
};

static struct attribute_group hybrid_group_cpus = {
	.attrs		= intel_hybrid_cpus_attrs,
};

static const struct attribute_group *hybrid_attr_update[] = {
	&hybrid_group_events_td,
	&hybrid_group_events_mem,
	&hybrid_group_events_tsx,
	&group_caps_gen,
	&group_caps_lbr,
	&hybrid_group_format_extra,
	&group_default,
	&hybrid_group_cpus,
	NULL,
};

5483
static struct attribute *empty_attrs;
5484

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
static void intel_pmu_check_num_counters(int *num_counters,
					 int *num_counters_fixed,
					 u64 *intel_ctrl, u64 fixed_mask)
{
	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     *num_counters, INTEL_PMC_MAX_GENERIC);
		*num_counters = INTEL_PMC_MAX_GENERIC;
	}
	*intel_ctrl = (1ULL << *num_counters) - 1;

	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
}

5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
					      int num_counters,
					      int num_counters_fixed,
					      u64 intel_ctrl)
{
	struct event_constraint *c;

	if (!event_constraints)
		return;

	/*
	 * event on fixed counter2 (REF_CYCLES) only works on this
	 * counter, so do not extend mask to generic counters
	 */
	for_each_event_constraint(c, event_constraints) {
		/*
		 * Don't extend the topdown slots and metrics
		 * events to the generic counters.
		 */
		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
			/*
			 * Disable topdown slots and metrics events,
			 * if slots event is not in CPUID.
			 */
			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
				c->idxmsk64 = 0;
			c->weight = hweight64(c->idxmsk64);
			continue;
		}

		if (c->cmask == FIXED_EVENT_FLAGS) {
			/* Disabled fixed counters which are not in CPUID */
			c->idxmsk64 &= intel_ctrl;

5539 5540 5541 5542 5543
			/*
			 * Don't extend the pseudo-encoding to the
			 * generic counters
			 */
			if (!use_fixed_pseudo_encoding(c->code))
5544 5545 5546 5547 5548 5549 5550 5551
				c->idxmsk64 |= (1ULL << num_counters) - 1;
		}
		c->idxmsk64 &=
			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
		c->weight = hweight64(c->idxmsk64);
	}
}

5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
{
	struct extra_reg *er;

	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (!extra_regs)
		return;

	for (er = extra_regs; er->msr; er++) {
		er->extra_msr_access = check_msr(er->msr, 0x11UL);
		/* Disable LBR select mapping */
		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
			x86_pmu.lbr_sel_map = NULL;
	}
}

K
Kan Liang 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
{
	struct x86_hybrid_pmu *pmu;
	int i;

	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
		pmu = &x86_pmu.hybrid_pmu[i];

		intel_pmu_check_num_counters(&pmu->num_counters,
					     &pmu->num_counters_fixed,
					     &pmu->intel_ctrl,
					     fixed_mask);

		if (pmu->intel_cap.perf_metrics) {
			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
		}

		if (pmu->intel_cap.pebs_output_pt_available)
			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;

		intel_pmu_check_event_constraints(pmu->event_constraints,
						  pmu->num_counters,
						  pmu->num_counters_fixed,
						  pmu->intel_ctrl);

		intel_pmu_check_extra_regs(pmu->extra_regs);
	}
}

5602
__init int intel_pmu_init(void)
5603
{
5604
	struct attribute **extra_skl_attr = &empty_attrs;
5605 5606 5607 5608
	struct attribute **extra_attr = &empty_attrs;
	struct attribute **td_attr    = &empty_attrs;
	struct attribute **mem_attr   = &empty_attrs;
	struct attribute **tsx_attr   = &empty_attrs;
5609 5610
	union cpuid10_edx edx;
	union cpuid10_eax eax;
5611
	union cpuid10_ebx ebx;
5612
	unsigned int fixed_mask;
5613
	bool pmem = false;
5614
	int version, i;
5615
	char *name;
5616
	struct x86_hybrid_pmu *pmu;
5617 5618

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5619 5620 5621
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
5622 5623
		case 0xb:
			return knc_pmu_init();
5624 5625 5626
		case 0xf:
			return p4_pmu_init();
		}
5627 5628 5629 5630 5631 5632 5633
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
5634
	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5635
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5636 5637 5638 5639 5640 5641 5642 5643 5644
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
5645 5646 5647
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5648

5649 5650 5651
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

5652 5653
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

5654 5655
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5656
	 * assume at least 3 events, when not running in a hypervisor:
5657
	 */
5658
	if (version > 1 && version < 5) {
5659 5660 5661 5662
		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);

		x86_pmu.num_counters_fixed =
			max((int)edx.split.num_counters_fixed, assume);
5663 5664 5665 5666

		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
	} else if (version >= 5)
		x86_pmu.num_counters_fixed = fls(fixed_mask);
5667

5668
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5669 5670 5671 5672 5673 5674
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

5675
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5676
		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5677 5678
		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
	}
5679

5680 5681 5682
	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
		intel_pmu_arch_lbr_init();

5683 5684
	intel_ds_init();

5685 5686
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

5687 5688 5689 5690 5691 5692
	if (version >= 5) {
		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
		if (x86_pmu.intel_cap.anythread_deprecated)
			pr_cont(" AnyThread deprecated, ");
	}

5693 5694 5695 5696
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
5697
	case INTEL_FAM6_CORE_YONAH:
5698
		pr_cont("Core events, ");
5699
		name = "core";
5700 5701
		break;

5702
	case INTEL_FAM6_CORE2_MEROM:
5703
		x86_add_quirk(intel_clovertown_quirk);
5704
		fallthrough;
5705

5706 5707 5708
	case INTEL_FAM6_CORE2_MEROM_L:
	case INTEL_FAM6_CORE2_PENRYN:
	case INTEL_FAM6_CORE2_DUNNINGTON:
5709 5710 5711
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

5712 5713
		intel_pmu_lbr_init_core();

5714
		x86_pmu.event_constraints = intel_core2_event_constraints;
5715
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5716
		pr_cont("Core2 events, ");
5717
		name = "core2";
5718 5719
		break;

5720 5721 5722
	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_NEHALEM_EP:
	case INTEL_FAM6_NEHALEM_EX:
5723 5724
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5725 5726
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5727

5728 5729
		intel_pmu_lbr_init_nhm();

5730
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5731
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5732
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5733
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5734
		x86_pmu.limit_period = nhm_limit_period;
5735

5736
		mem_attr = nhm_mem_events_attrs;
5737

5738
		/* UOPS_ISSUED.STALLED_CYCLES */
5739 5740
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5741
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5742 5743
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5744

5745
		intel_pmu_pebs_data_source_nhm();
5746
		x86_add_quirk(intel_nehalem_quirk);
5747
		x86_pmu.pebs_no_tlb = 1;
5748
		extra_attr = nhm_format_attr;
5749

5750
		pr_cont("Nehalem events, ");
5751
		name = "nehalem";
5752
		break;
5753

5754 5755 5756 5757 5758
	case INTEL_FAM6_ATOM_BONNELL:
	case INTEL_FAM6_ATOM_BONNELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL:
	case INTEL_FAM6_ATOM_SALTWELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5759 5760 5761
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

5762 5763
		intel_pmu_lbr_init_atom();

5764
		x86_pmu.event_constraints = intel_gen_event_constraints;
5765
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5766
		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5767
		pr_cont("Atom events, ");
5768
		name = "bonnell";
5769 5770
		break;

5771
	case INTEL_FAM6_ATOM_SILVERMONT:
5772
	case INTEL_FAM6_ATOM_SILVERMONT_D:
5773
	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5774
	case INTEL_FAM6_ATOM_AIRMONT:
5775
	case INTEL_FAM6_ATOM_AIRMONT_MID:
5776 5777 5778 5779 5780
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

5781
		intel_pmu_lbr_init_slm();
5782 5783 5784 5785

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
5786
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5787
		td_attr = slm_events_attrs;
5788
		extra_attr = slm_format_attr;
5789
		pr_cont("Silvermont events, ");
5790
		name = "silvermont";
5791 5792
		break;

5793
	case INTEL_FAM6_ATOM_GOLDMONT:
5794
	case INTEL_FAM6_ATOM_GOLDMONT_D:
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 * :pp is identical to :ppp
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
5812
		x86_pmu.lbr_pt_coexist = true;
5813
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5814
		td_attr = glm_events_attrs;
5815
		extra_attr = slm_format_attr;
5816
		pr_cont("Goldmont events, ");
5817
		name = "goldmont";
5818 5819
		break;

5820
	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5838
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5839
		x86_pmu.get_event_constraints = glp_get_event_constraints;
5840
		td_attr = glm_events_attrs;
5841 5842
		/* Goldmont Plus has 4-wide pipeline */
		event_attr_td_total_slots_scale_glm.event_str = "4";
5843
		extra_attr = slm_format_attr;
5844
		pr_cont("Goldmont plus events, ");
5845
		name = "goldmont_plus";
5846 5847
		break;

5848
	case INTEL_FAM6_ATOM_TREMONT_D:
5849
	case INTEL_FAM6_ATOM_TREMONT:
5850
	case INTEL_FAM6_ATOM_TREMONT_L:
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_tnt_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5871
		td_attr = tnt_events_attrs;
5872 5873 5874 5875 5876
		extra_attr = slm_format_attr;
		pr_cont("Tremont events, ");
		name = "Tremont";
		break;

5877 5878 5879
	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_WESTMERE_EP:
	case INTEL_FAM6_WESTMERE_EX:
5880 5881
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5882 5883
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5884

5885 5886
		intel_pmu_lbr_init_nhm();

5887
		x86_pmu.event_constraints = intel_westmere_event_constraints;
5888
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5889
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5890
		x86_pmu.extra_regs = intel_westmere_extra_regs;
5891
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5892

5893
		mem_attr = nhm_mem_events_attrs;
5894

5895
		/* UOPS_ISSUED.STALLED_CYCLES */
5896 5897
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5898
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5899 5900
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5901

5902
		intel_pmu_pebs_data_source_nhm();
5903
		extra_attr = nhm_format_attr;
5904
		pr_cont("Westmere events, ");
5905
		name = "westmere";
5906
		break;
5907

5908 5909
	case INTEL_FAM6_SANDYBRIDGE:
	case INTEL_FAM6_SANDYBRIDGE_X:
5910
		x86_add_quirk(intel_sandybridge_quirk);
5911
		x86_add_quirk(intel_ht_bug);
5912 5913
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5914 5915
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5916

5917
		intel_pmu_lbr_init_snb();
5918 5919

		x86_pmu.event_constraints = intel_snb_event_constraints;
5920
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5921
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5922
		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5923 5924 5925
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
5926 5927


5928
		/* all extra regs are per-cpu when HT is on */
5929 5930
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5931

5932
		td_attr  = snb_events_attrs;
5933
		mem_attr = snb_mem_events_attrs;
5934

5935
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5936 5937
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5938
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5939 5940
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5941

5942 5943
		extra_attr = nhm_format_attr;

5944
		pr_cont("SandyBridge events, ");
5945
		name = "sandybridge";
5946
		break;
5947

5948 5949
	case INTEL_FAM6_IVYBRIDGE:
	case INTEL_FAM6_IVYBRIDGE_X:
5950
		x86_add_quirk(intel_ht_bug);
5951 5952
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5953 5954 5955
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

5956 5957 5958 5959 5960
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

5961
		x86_pmu.event_constraints = intel_ivb_event_constraints;
5962
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5963 5964
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5965
		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5966 5967 5968
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
5969
		/* all extra regs are per-cpu when HT is on */
5970 5971
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5972

5973
		td_attr  = snb_events_attrs;
5974
		mem_attr = snb_mem_events_attrs;
5975

5976 5977 5978 5979
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

5980 5981
		extra_attr = nhm_format_attr;

5982
		pr_cont("IvyBridge events, ");
5983
		name = "ivybridge";
5984 5985
		break;

5986

5987
	case INTEL_FAM6_HASWELL:
5988
	case INTEL_FAM6_HASWELL_X:
5989
	case INTEL_FAM6_HASWELL_L:
5990
	case INTEL_FAM6_HASWELL_G:
5991
		x86_add_quirk(intel_ht_bug);
5992
		x86_add_quirk(intel_pebs_isolation_quirk);
5993
		x86_pmu.late_ack = true;
5994 5995
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5996

5997
		intel_pmu_lbr_init_hsw();
5998 5999

		x86_pmu.event_constraints = intel_hsw_event_constraints;
6000
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6001
		x86_pmu.extra_regs = intel_snbep_extra_regs;
6002 6003
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
6004
		/* all extra regs are per-cpu when HT is on */
6005 6006
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6007 6008 6009

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6010
		x86_pmu.lbr_double_abort = true;
6011 6012
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
6013
		td_attr  = hsw_events_attrs;
6014 6015
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
6016
		pr_cont("Haswell events, ");
6017
		name = "haswell";
6018 6019
		break;

6020
	case INTEL_FAM6_BROADWELL:
6021
	case INTEL_FAM6_BROADWELL_D:
6022
	case INTEL_FAM6_BROADWELL_G:
6023
	case INTEL_FAM6_BROADWELL_X:
6024
		x86_add_quirk(intel_pebs_isolation_quirk);
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

6039
		intel_pmu_lbr_init_hsw();
6040 6041

		x86_pmu.event_constraints = intel_bdw_event_constraints;
6042
		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6043
		x86_pmu.extra_regs = intel_snbep_extra_regs;
6044 6045
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
6046
		/* all extra regs are per-cpu when HT is on */
6047 6048
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6049 6050 6051

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6052
		x86_pmu.limit_period = bdw_limit_period;
6053 6054
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
6055
		td_attr  = hsw_events_attrs;
6056 6057
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
6058
		pr_cont("Broadwell events, ");
6059
		name = "broadwell";
6060 6061
		break;

6062
	case INTEL_FAM6_XEON_PHI_KNL:
P
Piotr Luc 已提交
6063
	case INTEL_FAM6_XEON_PHI_KNM:
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
		memcpy(hw_cache_event_ids,
		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs,
		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_knl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_knl_extra_regs;

		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6077
		extra_attr = slm_format_attr;
P
Piotr Luc 已提交
6078
		pr_cont("Knights Landing/Mill events, ");
6079
		name = "knights-landing";
6080 6081
		break;

6082 6083
	case INTEL_FAM6_SKYLAKE_X:
		pmem = true;
6084
		fallthrough;
6085
	case INTEL_FAM6_SKYLAKE_L:
6086
	case INTEL_FAM6_SKYLAKE:
6087
	case INTEL_FAM6_KABYLAKE_L:
6088
	case INTEL_FAM6_KABYLAKE:
6089 6090
	case INTEL_FAM6_COMETLAKE_L:
	case INTEL_FAM6_COMETLAKE:
6091
		x86_add_quirk(intel_pebs_isolation_quirk);
6092 6093 6094 6095 6096
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_skl();

6097 6098 6099 6100 6101 6102
		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
		event_attr_td_recovery_bubbles.event_str_noht =
			"event=0xd,umask=0x1,cmask=1";
		event_attr_td_recovery_bubbles.event_str_ht =
			"event=0xd,umask=0x1,cmask=1,any=1";

6103 6104 6105
		x86_pmu.event_constraints = intel_skl_event_constraints;
		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_skl_extra_regs;
6106 6107
		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
		x86_pmu.pebs_prec_dist = true;
6108 6109 6110 6111 6112 6113
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6114 6115
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
6116
		extra_skl_attr = skl_format_attr;
6117
		td_attr  = hsw_events_attrs;
6118 6119
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
6120
		intel_pmu_pebs_data_source_skl(pmem);
6121

6122 6123 6124 6125 6126 6127 6128
		/*
		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
		 * TSX force abort hooks are not required on these systems. Only deploy
		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
		 */
		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6129 6130 6131 6132 6133 6134
			x86_pmu.flags |= PMU_FL_TFA;
			x86_pmu.get_event_constraints = tfa_get_event_constraints;
			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
		}

6135
		pr_cont("Skylake events, ");
6136
		name = "skylake";
6137 6138
		break;

6139
	case INTEL_FAM6_ICELAKE_X:
6140
	case INTEL_FAM6_ICELAKE_D:
6141
		pmem = true;
6142
		fallthrough;
6143
	case INTEL_FAM6_ICELAKE_L:
6144
	case INTEL_FAM6_ICELAKE:
6145 6146
	case INTEL_FAM6_TIGERLAKE_L:
	case INTEL_FAM6_TIGERLAKE:
6147
	case INTEL_FAM6_ROCKETLAKE:
K
Kan Liang 已提交
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_icl_event_constraints;
		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_icl_extra_regs;
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = icl_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
6166
		extra_skl_attr = skl_format_attr;
6167
		mem_attr = icl_events_attrs;
6168
		td_attr = icl_td_events_attrs;
6169
		tsx_attr = icl_tsx_events_attrs;
6170
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
K
Kan Liang 已提交
6171
		x86_pmu.lbr_pt_coexist = true;
6172
		intel_pmu_pebs_data_source_skl(pmem);
6173
		x86_pmu.num_topdown_events = 4;
6174 6175
		x86_pmu.update_topdown_event = icl_update_topdown_event;
		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
K
Kan Liang 已提交
6176 6177 6178 6179
		pr_cont("Icelake events, ");
		name = "icelake";
		break;

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
	case INTEL_FAM6_SAPPHIRERAPIDS_X:
		pmem = true;
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		x86_pmu.event_constraints = intel_spr_event_constraints;
		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
		x86_pmu.extra_regs = intel_spr_extra_regs;
		x86_pmu.limit_period = spr_limit_period;
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.pebs_block = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = spr_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		extra_skl_attr = skl_format_attr;
		mem_attr = spr_events_attrs;
		td_attr = spr_td_events_attrs;
		tsx_attr = spr_tsx_events_attrs;
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
		x86_pmu.lbr_pt_coexist = true;
		intel_pmu_pebs_data_source_skl(pmem);
		x86_pmu.num_topdown_events = 8;
		x86_pmu.update_topdown_event = icl_update_topdown_event;
		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
		pr_cont("Sapphire Rapids events, ");
		name = "sapphire_rapids";
		break;

6217 6218
	case INTEL_FAM6_ALDERLAKE:
	case INTEL_FAM6_ALDERLAKE_L:
6219
	case INTEL_FAM6_ALDERLAKE_N:
6220
	case INTEL_FAM6_RAPTORLAKE:
6221
	case INTEL_FAM6_RAPTORLAKE_P:
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
		/*
		 * Alder Lake has 2 types of CPU, core and atom.
		 *
		 * Initialize the common PerfMon capabilities here.
		 */
		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
					     sizeof(struct x86_hybrid_pmu),
					     GFP_KERNEL);
		if (!x86_pmu.hybrid_pmu)
			return -ENOMEM;
		static_branch_enable(&perf_is_hybrid);
		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;

		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.pebs_block = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
		x86_pmu.lbr_pt_coexist = true;
		intel_pmu_pebs_data_source_skl(false);
6245
		x86_pmu.pebs_latency_data = adl_latency_data_small;
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
		x86_pmu.num_topdown_events = 8;
		x86_pmu.update_topdown_event = adl_update_topdown_event;
		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;

		x86_pmu.filter_match = intel_pmu_filter_match;
		x86_pmu.get_event_constraints = adl_get_event_constraints;
		x86_pmu.hw_config = adl_hw_config;
		x86_pmu.limit_period = spr_limit_period;
		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
		/*
		 * The rtm_abort_event is used to check whether to enable GPRs
		 * for the RTM abort event. Atom doesn't have the RTM abort
		 * event. There is no harmful to set it in the common
		 * x86_pmu.rtm_abort_event.
		 */
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);

		td_attr = adl_hybrid_events_attrs;
		mem_attr = adl_hybrid_mem_attrs;
		tsx_attr = adl_hybrid_tsx_attrs;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;

		/* Initialize big core specific PerfMon capabilities.*/
		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
		pmu->name = "cpu_core";
		pmu->cpu_type = hybrid_big;
6273
		pmu->late_ack = true;
6274 6275 6276 6277 6278 6279 6280
		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
			pmu->num_counters = x86_pmu.num_counters + 2;
			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
		} else {
			pmu->num_counters = x86_pmu.num_counters;
			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
		}
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293

		/*
		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
		 * mistakenly add extra counters for P-cores. Correct the number of
		 * counters here.
		 */
		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
			pmu->num_counters = x86_pmu.num_counters;
			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
		}

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
		pmu->unconstrained = (struct event_constraint)
					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
							   0, pmu->num_counters, 0, 0);
		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
		pmu->intel_cap.perf_metrics = 1;
		pmu->intel_cap.pebs_output_pt_available = 0;

		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
		pmu->event_constraints = intel_spr_event_constraints;
		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
		pmu->extra_regs = intel_spr_extra_regs;

		/* Initialize Atom core specific PerfMon capabilities.*/
		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
		pmu->name = "cpu_atom";
		pmu->cpu_type = hybrid_small;
6312
		pmu->mid_ack = true;
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
		pmu->num_counters = x86_pmu.num_counters;
		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
		pmu->max_pebs_events = x86_pmu.max_pebs_events;
		pmu->unconstrained = (struct event_constraint)
					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
							   0, pmu->num_counters, 0, 0);
		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
		pmu->intel_cap.perf_metrics = 0;
		pmu->intel_cap.pebs_output_pt_available = 1;

		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
		pmu->event_constraints = intel_slm_event_constraints;
		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
		pmu->extra_regs = intel_grt_extra_regs;
		pr_cont("Alderlake Hybrid events, ");
		name = "alderlake_hybrid";
		break;

6333
	default:
6334 6335 6336 6337
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
6338
			name = "generic_arch_v1";
6339
			break;
6340 6341 6342
		case 2:
		case 3:
		case 4:
6343 6344 6345 6346 6347
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
6348
			name = "generic_arch_v2+";
6349
			break;
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
		default:
			/*
			 * The default constraints for v5 and up can support up to
			 * 16 fixed counters. For the fixed counters 4 and later,
			 * the pseudo-encoding is applied.
			 * The constraints may be cut according to the CPUID enumeration
			 * by inserting the EVENT_CONSTRAINT_END.
			 */
			if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
				x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
			intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			name = "generic_arch_v5+";
			break;
6365
		}
6366
	}
6367

6368
	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6369

6370 6371 6372 6373 6374 6375
	if (!is_hybrid()) {
		group_events_td.attrs  = td_attr;
		group_events_mem.attrs = mem_attr;
		group_events_tsx.attrs = tsx_attr;
		group_format_extra.attrs = extra_attr;
		group_format_extra_skl.attrs = extra_skl_attr;
6376

6377 6378 6379 6380 6381 6382
		x86_pmu.attr_update = attr_update;
	} else {
		hybrid_group_events_td.attrs  = td_attr;
		hybrid_group_events_mem.attrs = mem_attr;
		hybrid_group_events_tsx.attrs = tsx_attr;
		hybrid_group_format_extra.attrs = extra_attr;
6383

6384
		x86_pmu.attr_update = hybrid_attr_update;
6385 6386
	}

6387 6388 6389 6390
	intel_pmu_check_num_counters(&x86_pmu.num_counters,
				     &x86_pmu.num_counters_fixed,
				     &x86_pmu.intel_ctrl,
				     (u64)fixed_mask);
6391

6392 6393 6394 6395
	/* AnyThread may be deprecated on arch perfmon v5 or later */
	if (x86_pmu.intel_cap.anythread_deprecated)
		x86_pmu.format_attrs = intel_arch_formats_attr;

6396 6397 6398 6399
	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
					  x86_pmu.num_counters,
					  x86_pmu.num_counters_fixed,
					  x86_pmu.intel_ctrl);
6400 6401 6402 6403 6404 6405
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
6406
	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6407 6408 6409 6410 6411 6412 6413
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

6414
	if (x86_pmu.lbr_nr) {
6415 6416
		intel_pmu_lbr_init();

6417
		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6418

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
		/* only support branch_stack snapshot for perfmon >= v2 */
		if (x86_pmu.disable_all == intel_pmu_disable_all) {
			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
				static_call_update(perf_snapshot_branch_stack,
						   intel_pmu_snapshot_arch_branch_stack);
			} else {
				static_call_update(perf_snapshot_branch_stack,
						   intel_pmu_snapshot_branch_stack);
			}
		}
	}

6431
	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6432

6433 6434
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
6435
		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6436 6437 6438 6439
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

6440
	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6441 6442
		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;

K
Kan Liang 已提交
6443 6444 6445
	if (is_hybrid())
		intel_pmu_check_hybrid_pmus((u64)fixed_mask);

6446 6447
	intel_aux_output_init();

6448 6449
	return 0;
}
6450 6451 6452 6453 6454 6455 6456 6457 6458

/*
 * HT bug: phase 2 init
 * Called once we have valid topology information to check
 * whether or not HT is enabled
 * If HT is off, then we disable the workaround
 */
static __init int fixup_ht_bug(void)
{
6459
	int c;
6460 6461 6462 6463 6464 6465
	/*
	 * problem not present on this CPU model, nothing to do
	 */
	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
		return 0;

6466
	if (topology_max_smt_threads() > 1) {
6467 6468 6469 6470
		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
		return 0;
	}

6471 6472 6473
	cpus_read_lock();

	hardlockup_detector_perf_stop();
6474 6475 6476 6477

	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);

	x86_pmu.start_scheduling = NULL;
6478
	x86_pmu.commit_scheduling = NULL;
6479 6480
	x86_pmu.stop_scheduling = NULL;

6481
	hardlockup_detector_perf_restart();
6482

6483
	for_each_online_cpu(c)
6484
		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6485

6486
	cpus_read_unlock();
6487 6488 6489 6490
	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
	return 0;
}
subsys_initcall(fixup_ht_bug)