core.c 150.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
7
 */
8

9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
15
#include <linux/export.h>
16
#include <linux/nmi.h>
17

18
#include <asm/cpufeature.h>
19
#include <asm/hardirq.h>
20
#include <asm/intel-family.h>
21
#include <asm/intel_pt.h>
22
#include <asm/apic.h>
23
#include <asm/cpu_device_id.h>
24

25
#include "../perf_event.h"
26

27
/*
28
 * Intel PerfMon, used on Core and later.
29
 */
30
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31
{
32 33 34 35 36 37 38 39
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 41
};

42
static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 44 45 46 47 48 49 50 51 52
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

53
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54
{
55 56
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 59 60 61 62 63 64 65
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 68 69 70
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

71
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72
{
73 74
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 77 78 79 80 81 82 83 84 85 86
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

87
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88
{
89 90
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 93 94
	EVENT_EXTRA_END
};

95
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96
{
97 98
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 101 102
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 105 106
	EVENT_CONSTRAINT_END
};

107
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 109 110
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 113 114 115
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 117 118
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 120
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121

122 123 124 125
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
126 127 128 129 130
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

131 132 133
	EVENT_CONSTRAINT_END
};

134 135 136 137 138 139 140 141
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 144 145 146 147 148
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149

150 151 152 153
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
154 155 156 157 158
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

159 160 161
	EVENT_CONSTRAINT_END
};

162
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163
{
164 165 166
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 169 170
	EVENT_EXTRA_END
};

171 172 173 174 175
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

176
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177
{
178 179
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 182 183
	EVENT_CONSTRAINT_END
};

184 185 186 187 188 189 190 191
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

192
static struct event_constraint intel_skl_event_constraints[] = {
193 194 195 196
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 198 199 200 201 202 203 204 205 206

	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */

207 208 209
	EVENT_CONSTRAINT_END
};

210
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 212
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 214 215
	EVENT_EXTRA_END
};

216
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 218 219
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 222 223 224
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 226 227
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 230 231
	EVENT_EXTRA_END
};

232 233 234 235
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 237 238 239 240
	/*
	 * Note the low 8 bits eventsel code is not a continuous field, containing
	 * some #GPing bits. These are masked out.
	 */
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 242 243
	EVENT_EXTRA_END
};

K
Kan Liang 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static struct event_constraint intel_icl_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0),	/* INST_RETIRED.PREC_DIST */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
266 267
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
K
Kan Liang 已提交
268 269 270 271 272
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
	EVENT_EXTRA_END
};

273 274 275
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
276

277
static struct attribute *nhm_mem_events_attrs[] = {
278 279 280 281
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * topdown events for Intel Core CPUs.
 *
 * The events are all in slots, which is a free slot in a 4 wide
 * pipeline. Some events are already reported in slots, for cycle
 * events we multiply by the pipeline width (4).
 *
 * With Hyper Threading on, topdown metrics are either summed or averaged
 * between the threads of a core: (count_t0 + count_t1).
 *
 * For the average case the metric is always scaled to pipeline width,
 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 */

EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
	"event=0xe,umask=0x1");			/* uops_issued.any */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
	"4", "2");

312
static struct attribute *snb_events_attrs[] = {
313 314 315 316 317 318 319
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
320 321 322
	NULL,
};

323 324 325 326 327 328
static struct attribute *snb_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
	EVENT_PTR(mem_st_snb),
	NULL,
};

329 330 331 332
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
334 335 336
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
342

343 344 345 346
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
347 348 349 350 351
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

352 353 354
	EVENT_CONSTRAINT_END
};

355
static struct event_constraint intel_bdw_event_constraints[] = {
356 357 358 359
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
360
	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
361 362 363 364 365 366 367
	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
368 369 370
	EVENT_CONSTRAINT_END
};

371 372 373 374 375
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts.
 * - icache miss does not include decoded icache
 */

#define SKL_DEMAND_DATA_RD		BIT_ULL(0)
#define SKL_DEMAND_RFO			BIT_ULL(1)
#define SKL_ANY_RESPONSE		BIT_ULL(16)
#define SKL_SUPPLIER_NONE		BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
#define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT			BIT_ULL(30)
#define SKL_SNOOP_NONE			BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define SKL_SNOOP_MISS			BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define SKL_SNOOP_HITM			BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
#define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
#define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)

static __initconst const u64 skl_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
470
		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
471 472 473
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
474
		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 skl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
683
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684
		[ C(RESULT_ACCESS) ] = 0x01b7,
685 686
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
687 688
	},
	[ C(OP_WRITE) ] = {
689
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690
		[ C(RESULT_ACCESS) ] = 0x01b7,
691 692
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
693 694
	},
	[ C(OP_PREFETCH) ] = {
695
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696
		[ C(RESULT_ACCESS) ] = 0x01b7,
697 698
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
743 744
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
745 746
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
747 748
	},
	[ C(OP_WRITE) ] = {
749 750
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
751 752
	},
	[ C(OP_PREFETCH) ] = {
753 754
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
755 756 757
	},
 },

758 759
};

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

798 799 800 801 802 803
#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

956
static __initconst const u64 westmere_hw_cache_event_ids
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
991
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992
		[ C(RESULT_ACCESS) ] = 0x01b7,
993 994
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
995
	},
996 997 998 999
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1000
	[ C(OP_WRITE) ] = {
1001 1002 1003
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004
		[ C(RESULT_MISS)   ] = 0x01b7,
1005 1006
	},
	[ C(OP_PREFETCH) ] = {
1007
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008
		[ C(RESULT_ACCESS) ] = 0x01b7,
1009 1010
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1069 1070
};

1071
/*
1072 1073
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
1074 1075
 */

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

1093 1094
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
1095 1096 1097 1098 1099 1100

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1103 1104 1105 1106 1107 1108 1109 1110

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1111 1112
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113 1114
	},
	[ C(OP_WRITE) ] = {
1115 1116
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117 1118
	},
	[ C(OP_PREFETCH) ] = {
1119 1120
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121
	},
1122 1123 1124
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
1125 1126
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127 1128
	},
	[ C(OP_WRITE) ] = {
1129 1130
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131 1132
	},
	[ C(OP_PREFETCH) ] = {
1133 1134
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135 1136
	},
 },
1137 1138
};

1139
static __initconst const u64 nehalem_hw_cache_event_ids
1140 1141 1142 1143 1144 1145
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
1146 1147
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148 1149
	},
	[ C(OP_WRITE) ] = {
1150 1151
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1174 1175 1176 1177
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1178
	},
1179 1180 1181 1182
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1183
	[ C(OP_WRITE) ] = {
1184 1185 1186 1187
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1188 1189
	},
	[ C(OP_PREFETCH) ] = {
1190 1191 1192 1193
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1252 1253
};

1254
static __initconst const u64 core2_hw_cache_event_ids
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1345
static __initconst const u64 atom_hw_cache_event_ids
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
/* no_alloc_cycles.not_delivered */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
	       "event=0xca,umask=0x50");
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
	       "event=0xc2,umask=0x10");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
	       "event=0xc2,umask=0x10");

static struct attribute *slm_events_attrs[] = {
	EVENT_PTR(td_total_slots_slm),
	EVENT_PTR(td_total_slots_scale_slm),
	EVENT_PTR(td_fetch_bubbles_slm),
	EVENT_PTR(td_fetch_bubbles_scale_slm),
	EVENT_PTR(td_slots_issued_slm),
	EVENT_PTR(td_slots_retired_slm),
	NULL
};

1459 1460 1461
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483
		[ C(RESULT_MISS)   ] = 0,
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
1533
		[ C(RESULT_MISS)   ] = 0,
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565
		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
/* UOPS_NOT_DELIVERED.ANY */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
/* UOPS_RETIRED.ANY */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
/* UOPS_ISSUED.ANY */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");

static struct attribute *glm_events_attrs[] = {
	EVENT_PTR(td_total_slots_glm),
	EVENT_PTR(td_total_slots_scale_glm),
	EVENT_PTR(td_fetch_bubbles_glm),
	EVENT_PTR(td_recovery_bubbles_glm),
	EVENT_PTR(td_slots_issued_glm),
	EVENT_PTR(td_slots_retired_glm),
	NULL
};

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
	EVENT_EXTRA_END
};

#define GLM_DEMAND_DATA_RD		BIT_ULL(0)
#define GLM_DEMAND_RFO			BIT_ULL(1)
#define GLM_ANY_RESPONSE		BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
#define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
#define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 glm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_MISS,
		},
	},
};

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static __initconst const u64 glp_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glp_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
#define TNT_LOCAL_DRAM			BIT_ULL(26)
#define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
#define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
#define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
#define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
#define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)

static __initconst const u64 tnt_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
						  TNT_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895 1896
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1897 1898 1899
	EVENT_EXTRA_END
};

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
#define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL	BIT_ULL(21)
#define KNL_MCDRAM_FAR		BIT_ULL(22)
#define KNL_DDR_LOCAL		BIT_ULL(23)
#define KNL_DDR_FAR		BIT_ULL(24)
#define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
				    KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ		SLM_DMND_READ
#define KNL_L2_WRITE		SLM_DMND_WRITE
#define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
#define KNL_L2_ACCESS		SLM_LLC_ACCESS
#define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
				   KNL_DRAM_ANY | SNB_SNP_ANY | \
						  SNB_NON_DRAM)

static __initconst const u64 knl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = 0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
		},
	},
};

1936
/*
1937 1938 1939 1940 1941 1942
 * Used from PMIs where the LBRs are already disabled.
 *
 * This function could be called consecutively. It is required to remain in
 * disabled state if called consecutively.
 *
 * During consecutive calls, the same disable value will be written to related
1943 1944 1945 1946 1947
 * registers, so the PMU state remains unchanged.
 *
 * intel_bts events don't coexist with intel PMU's BTS events because of
 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948 1949 1950 1951 1952 1953 1954 1955
 *
 * Avoid PEBS_ENABLE MSR access in PMIs.
 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
 * It doesn't matter if the PEBS is enabled or not.
 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
 * access PEBS_ENABLE MSR in disable_all()/enable_all().
 * However, there are some cases which may change PEBS status, e.g. PMI
 * throttle. The PEBS_ENABLE should be updated where the status changes.
1956 1957
 */
static void __intel_pmu_disable_all(void)
1958
{
1959
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960 1961 1962

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

1963
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1964
		intel_pmu_disable_bts();
1965 1966 1967 1968 1969
}

static void intel_pmu_disable_all(void)
{
	__intel_pmu_disable_all();
1970
	intel_pmu_pebs_disable_all();
1971
	intel_pmu_lbr_disable_all();
1972 1973
}

1974
static void __intel_pmu_enable_all(int added, bool pmi)
1975
{
1976
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977

1978
	intel_pmu_lbr_enable_all(pmi);
1979 1980
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1981

1982
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1983
		struct perf_event *event =
1984
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1985 1986 1987 1988 1989

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
1990
	}
1991 1992
}

1993 1994
static void intel_pmu_enable_all(int added)
{
1995
	intel_pmu_pebs_enable_all();
1996 1997 1998
	__intel_pmu_enable_all(added, false);
}

1999 2000 2001 2002
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
2003
 *   Intel Errata BD53   (model 44)
2004
 *
2005 2006 2007 2008 2009 2010
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
I
Ingo Molnar 已提交
2011
 * we need to program all 4 events.
2012
 */
2013
static void intel_pmu_nhm_workaround(void)
2014
{
2015
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2016 2017 2018 2019 2020 2021 2022 2023
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
2045

2046 2047 2048 2049 2050 2051
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
2052

2053 2054 2055 2056 2057 2058 2059
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2060

2061 2062 2063 2064 2065
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
2066
			__x86_pmu_enable_event(&event->hw,
2067 2068 2069
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2070
	}
2071 2072 2073 2074 2075 2076
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
2077 2078 2079
	intel_pmu_enable_all(added);
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;

	if (cpuc->tfa_shadow != val) {
		cpuc->tfa_shadow = val;
		wrmsrl(MSR_TSX_FORCE_ABORT, val);
	}
}

static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	/*
	 * We're going to use PMC3, make sure TFA is set before we touch it.
	 */
2095
	if (cntr == 3)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		intel_set_tfa(cpuc, true);
}

static void intel_tfa_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * If we find PMC3 is no longer used when we enable the PMU, we can
	 * clear TFA.
	 */
	if (!test_bit(3, cpuc->active_mask))
		intel_set_tfa(cpuc, false);

	intel_pmu_enable_all(added);
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static void enable_counter_freeze(void)
{
	update_debugctlmsr(get_debugctlmsr() |
			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
}

static void disable_counter_freeze(void)
{
	update_debugctlmsr(get_debugctlmsr() &
			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

static inline void intel_set_masks(struct perf_event *event, int idx)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (event->attr.exclude_host)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	if (event->attr.exclude_guest)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	if (event_is_checkpointed(event))
		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static inline void intel_clear_masks(struct perf_event *event, int idx)
2157
{
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static void intel_pmu_disable_fixed(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
2168
	u64 ctrl_val, mask;
2169
	int idx = hwc->idx;
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

		/*
		 * When there are other active TopDown events,
		 * don't disable the fixed counter 3.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;
		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}
2182

2183 2184 2185
	intel_clear_masks(event, idx);

	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2186 2187
	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
2188
	wrmsrl(hwc->config_base, ctrl_val);
2189 2190
}

2191
static void intel_pmu_disable_event(struct perf_event *event)
2192
{
2193
	struct hw_perf_event *hwc = &event->hw;
2194
	int idx = hwc->idx;
2195

2196 2197
	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2198 2199
		intel_clear_masks(event, idx);
		x86_pmu_disable_event(event);
2200 2201
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2202
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2203
		intel_pmu_disable_fixed(event);
2204 2205
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
2206 2207
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
2208 2209
		return;
	case INTEL_PMC_IDX_FIXED_VLBR:
2210
		intel_clear_masks(event, idx);
2211 2212 2213 2214 2215 2216 2217
		break;
	default:
		intel_clear_masks(event, idx);
		pr_warn("Failed to disable the event with invalid index %d\n",
			idx);
		return;
	}
2218

2219 2220 2221 2222 2223 2224
	/*
	 * Needs to be called after x86_pmu_disable_event,
	 * so we don't trigger the event without PEBS bit set.
	 */
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_disable(event);
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234
static void intel_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		intel_pmu_lbr_del(event);
	if (event->attr.precise_ip)
		intel_pmu_pebs_del(event);
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static void intel_pmu_read_topdown_event(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/* Only need to call update_topdown_event() once for group read. */
	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
	    !is_slots_event(event))
		return;

	perf_pmu_disable(event->pmu);
	x86_pmu.update_topdown_event(event);
	perf_pmu_enable(event->pmu);
}

2249 2250 2251 2252
static void intel_pmu_read_event(struct perf_event *event)
{
	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
		intel_pmu_auto_reload_read(event);
2253 2254
	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
		intel_pmu_read_topdown_event(event);
2255 2256 2257 2258
	else
		x86_perf_event_update(event);
}

2259
static void intel_pmu_enable_fixed(struct perf_event *event)
2260
{
2261 2262
	struct hw_perf_event *hwc = &event->hw;
	u64 ctrl_val, mask, bits = 0;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	int idx = hwc->idx;

	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
		/*
		 * When there are other active TopDown events,
		 * don't enable the fixed counter 3 again.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;

		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}

	intel_set_masks(event, idx);
2278 2279

	/*
2280
	 * Enable IRQ generation (0x8), if not PEBS,
2281 2282 2283
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
2284 2285
	if (!event->attr.precise_ip)
		bits |= 0x8;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

2297
	idx -= INTEL_PMC_IDX_FIXED;
2298 2299 2300
	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

2301 2302 2303 2304 2305
	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
	}

2306 2307 2308
	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
2309
	wrmsrl(hwc->config_base, ctrl_val);
2310 2311
}

2312
static void intel_pmu_enable_event(struct perf_event *event)
2313
{
2314
	struct hw_perf_event *hwc = &event->hw;
2315
	int idx = hwc->idx;
2316

2317 2318 2319
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_enable(event);

2320 2321
	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2322 2323
		intel_set_masks(event, idx);
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2324 2325
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2326
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2327
		intel_pmu_enable_fixed(event);
2328 2329
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
2330 2331 2332
		if (!__this_cpu_read(cpu_hw_events.enabled))
			return;
		intel_pmu_enable_bts(hwc->config);
2333 2334
		break;
	case INTEL_PMC_IDX_FIXED_VLBR:
2335
		intel_set_masks(event, idx);
2336 2337 2338 2339 2340
		break;
	default:
		pr_warn("Failed to enable the event with invalid index %d\n",
			idx);
	}
2341 2342
}

2343 2344 2345 2346 2347 2348 2349 2350
static void intel_pmu_add_event(struct perf_event *event)
{
	if (event->attr.precise_ip)
		intel_pmu_pebs_add(event);
	if (needs_branch_stack(event))
		intel_pmu_lbr_add(event);
}

2351 2352 2353 2354
/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
2355
int intel_pmu_save_and_restart(struct perf_event *event)
2356
{
2357
	x86_perf_event_update(event);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
2369
	return x86_perf_event_set_period(event);
2370 2371 2372 2373
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
2374
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2375 2376 2377
	unsigned long flags;
	int idx;

2378
	if (!x86_pmu.num_counters)
2379 2380 2381 2382
		return;

	local_irq_save(flags);

2383
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2384

2385
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2386 2387
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2388
	}
2389
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2390
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2391

2392 2393 2394
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	/* Ack all overflows and disable fixed counters */
	if (x86_pmu.version >= 2) {
		intel_pmu_ack_status(intel_pmu_get_status());
		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
	}

	/* Reset LBRs and LBR freezing */
	if (x86_pmu.lbr_nr) {
		update_debugctlmsr(get_debugctlmsr() &
			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
	}

2407 2408 2409
	local_irq_restore(flags);
}

2410
static int handle_pmi_common(struct pt_regs *regs, u64 status)
2411 2412
{
	struct perf_sample_data data;
2413 2414 2415
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int bit;
	int handled = 0;
2416 2417

	inc_irq_stat(apic_perf_irqs);
2418

2419
	/*
2420 2421
	 * Ignore a range of extra bits in status that do not indicate
	 * overflow by themselves.
2422
	 */
2423 2424 2425 2426
	status &= ~(GLOBAL_STATUS_COND_CHG |
		    GLOBAL_STATUS_ASIF |
		    GLOBAL_STATUS_LBRS_FROZEN);
	if (!status)
2427
		return 0;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	/*
	 * In case multiple PEBS events are sampled at the same time,
	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
	 * having their bits set in the status register. This is a sign
	 * that there was at least one PEBS record pending at the time
	 * of the PMU interrupt. PEBS counters must only be processed
	 * via the drain_pebs() calls and not via the regular sample
	 * processing loop coming after that the function, otherwise
	 * phony regular samples may be generated in the sampling buffer
	 * not marked with the EXACT tag. Another possibility is to have
	 * one PEBS event and at least one non-PEBS event whic hoverflows
	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
	 * not be set, yet the overflow status bit for the PEBS counter will
	 * be on Skylake.
	 *
	 * To avoid this problem, we systematically ignore the PEBS-enabled
	 * counters from the GLOBAL_STATUS mask and we always process PEBS
	 * events via drain_pebs().
	 */
2448 2449 2450 2451
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		status &= ~cpuc->pebs_enabled;
	else
		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2452

2453 2454 2455
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
2456
	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2457 2458
		u64 pebs_enabled = cpuc->pebs_enabled;

2459
		handled++;
2460
		x86_pmu.drain_pebs(regs);
2461
		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

		/*
		 * PMI throttle may be triggered, which stops the PEBS event.
		 * Although cpuc->pebs_enabled is updated accordingly, the
		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
		 * cpuc->enabled has been forced to 0 in PMI.
		 * Update the MSR if pebs_enabled is changed.
		 */
		if (pebs_enabled != cpuc->pebs_enabled)
			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2472
	}
2473

2474 2475 2476
	/*
	 * Intel PT
	 */
2477
	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2478
		handled++;
L
Luwei Kang 已提交
2479 2480 2481 2482 2483
		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
			perf_guest_cbs->handle_intel_pt_intr))
			perf_guest_cbs->handle_intel_pt_intr();
		else
			intel_pt_interrupt();
2484 2485
	}

2486 2487 2488 2489 2490 2491 2492 2493 2494
	/*
	 * Intel Perf mertrics
	 */
	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
		handled++;
		if (x86_pmu.update_topdown_event)
			x86_pmu.update_topdown_event(NULL);
	}

2495
	/*
2496 2497 2498
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
2499
	 */
2500
	status |= cpuc->intel_cp_status;
2501

2502
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2503 2504
		struct perf_event *event = cpuc->events[bit];

2505 2506
		handled++;

2507 2508 2509 2510 2511 2512
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

2513
		perf_sample_data_init(&data, 0, event->hw.last_period);
2514

2515 2516 2517
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

2518
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2519
			x86_pmu_stop(event, 0);
2520 2521
	}

2522 2523 2524
	return handled;
}

2525
static bool disable_counter_freezing = true;
2526 2527
static int __init intel_perf_counter_freezing_setup(char *s)
{
2528 2529 2530 2531 2532 2533
	bool res;

	if (kstrtobool(s, &res))
		return -EINVAL;

	disable_counter_freezing = !res;
2534 2535
	return 1;
}
2536
__setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

/*
 * Simplified handler for Arch Perfmon v4:
 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
 * This is done automatically on PMU ack.
 * - Ack the PMU only after the APIC.
 */

static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int handled = 0;
	bool bts = false;
	u64 status;
	int pmu_enabled = cpuc->enabled;
	int loops = 0;

	/* PMU has been disabled because of counter freezing */
	cpuc->enabled = 0;
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
		bts = true;
		intel_bts_disable_local();
		handled = intel_pmu_drain_bts_buffer();
		handled += intel_bts_interrupt();
	}
	status = intel_pmu_get_status();
	if (!status)
		goto done;
again:
	intel_pmu_lbr_read();
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}


	handled += handle_pmi_common(regs, status);
done:
	/* Ack the PMI in the APIC */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

	/*
	 * The counters start counting immediately while ack the status.
	 * Make it as close as possible to IRET. This avoids bogus
	 * freezing on Skylake CPUs.
	 */
	if (status) {
		intel_pmu_ack_status(status);
	} else {
		/*
		 * CPU may issues two PMIs very close to each other.
		 * When the PMI handler services the first one, the
		 * GLOBAL_STATUS is already updated to reflect both.
		 * When it IRETs, the second PMI is immediately
		 * handled and it sees clear status. At the meantime,
		 * there may be a third PMI, because the freezing bit
		 * isn't set since the ack in first PMI handlers.
		 * Double check if there is more work to be done.
		 */
		status = intel_pmu_get_status();
		if (status)
			goto again;
	}

	if (bts)
		intel_bts_enable_local();
	cpuc->enabled = pmu_enabled;
	return handled;
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc;
	int loops;
	u64 status;
	int handled;
	int pmu_enabled;

	cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	/*
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
	 */
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	intel_bts_disable_local();
	cpuc->enabled = 0;
	__intel_pmu_disable_all();
	handled = intel_pmu_drain_bts_buffer();
	handled += intel_bts_interrupt();
	status = intel_pmu_get_status();
	if (!status)
		goto done;

	loops = 0;
again:
	intel_pmu_lbr_read();
	intel_pmu_ack_status(status);
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}

	handled += handle_pmi_common(regs, status);

2666 2667 2668 2669 2670 2671 2672
	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

2673
done:
2674
	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2675 2676
	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
2677
		__intel_pmu_enable_all(0, true);
2678
	intel_bts_enable_local();
2679

2680 2681 2682 2683 2684 2685 2686
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
2687
	return handled;
2688 2689 2690
}

static struct event_constraint *
2691
intel_bts_constraints(struct perf_event *event)
2692
{
2693
	if (unlikely(intel_pmu_has_bts(event)))
2694
		return &bts_constraint;
2695

2696 2697 2698
	return NULL;
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/*
 * Note: matches a fake event, like Fixed2.
 */
static struct event_constraint *
intel_vlbr_constraints(struct perf_event *event)
{
	struct event_constraint *c = &vlbr_constraint;

	if (unlikely(constraint_match(c, event->hw.config)))
		return c;

	return NULL;
}

2713
static int intel_alt_er(int idx, u64 config)
2714
{
2715 2716
	int alt_idx = idx;

2717
	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2718
		return idx;
2719

2720
	if (idx == EXTRA_REG_RSP_0)
2721
		alt_idx = EXTRA_REG_RSP_1;
2722 2723

	if (idx == EXTRA_REG_RSP_1)
2724
		alt_idx = EXTRA_REG_RSP_0;
2725

2726 2727 2728 2729
	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
		return idx;

	return alt_idx;
2730 2731 2732 2733 2734 2735 2736
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
2737
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2738
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2739
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2740 2741
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2742
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2743
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2744 2745 2746
	}
}

2747 2748 2749 2750 2751 2752 2753
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
2754
static struct event_constraint *
2755
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2756 2757
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
2758
{
2759
	struct event_constraint *c = &emptyconstraint;
2760
	struct er_account *era;
2761
	unsigned long flags;
2762
	int idx = reg->idx;
2763

2764 2765 2766 2767 2768 2769
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
2770
		return NULL; /* call x86_get_event_constraint() */
2771

2772
again:
2773
	era = &cpuc->shared_regs->regs[idx];
2774 2775 2776 2777 2778
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
2779 2780 2781

	if (!atomic_read(&era->ref) || era->config == reg->config) {

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

2805 2806 2807 2808 2809 2810 2811
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

2812
		/*
2813 2814
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
2815
		 */
2816
		c = NULL;
2817
	} else {
2818
		idx = intel_alt_er(idx, reg->config);
2819 2820 2821 2822
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
2823
	}
2824
	raw_spin_unlock_irqrestore(&era->lock, flags);
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
2836 2837 2838 2839 2840 2841
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
2842
	 */
2843
	if (!reg->alloc || cpuc->is_fake)
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
2876
	return c;
2877 2878
}

2879
struct event_constraint *
2880 2881
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
2882 2883 2884 2885 2886
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2887
			if (constraint_match(c, event->hw.config)) {
2888
				event->hw.flags |= c->flags;
2889
				return c;
2890
			}
2891 2892 2893 2894 2895 2896
		}
	}

	return &unconstrained;
}

2897
static struct event_constraint *
2898
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2899
			    struct perf_event *event)
2900 2901 2902
{
	struct event_constraint *c;

2903 2904 2905 2906
	c = intel_vlbr_constraints(event);
	if (c)
		return c;

2907 2908 2909 2910
	c = intel_bts_constraints(event);
	if (c)
		return c;

2911
	c = intel_shared_regs_constraints(cpuc, event);
2912 2913 2914
	if (c)
		return c;

2915
	c = intel_pebs_constraints(event);
2916 2917 2918
	if (c)
		return c;

2919
	return x86_get_event_constraints(cpuc, idx, event);
2920 2921
}

2922 2923 2924 2925
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2926
	struct intel_excl_states *xl;
2927 2928 2929 2930 2931
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
2932
	if (cpuc->is_fake || !is_ht_workaround_enabled())
2933
		return;
2934

2935 2936 2937
	/*
	 * no exclusion needed
	 */
2938
	if (WARN_ON_ONCE(!excl_cntrs))
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = true;
	/*
	 * lock shared state until we are done scheduling
	 * in stop_event_scheduling()
	 * makes scheduling appear as a transaction
	 */
	raw_spin_lock(&excl_cntrs->lock);
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct event_constraint *c = cpuc->event_constraint[idx];
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
		return;

	xl = &excl_cntrs->states[tid];

	lockdep_assert_held(&excl_cntrs->lock);

2972
	if (c->flags & PERF_X86_EVENT_EXCL)
2973
		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2974
	else
2975
		xl->state[cntr] = INTEL_EXCL_SHARED;
2976 2977
}

2978 2979 2980 2981
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2982
	struct intel_excl_states *xl;
2983 2984 2985 2986 2987
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
2988
	if (cpuc->is_fake || !is_ht_workaround_enabled())
2989 2990 2991 2992
		return;
	/*
	 * no exclusion needed
	 */
2993
	if (WARN_ON_ONCE(!excl_cntrs))
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = false;
	/*
	 * release shared state lock (acquired in intel_start_scheduling())
	 */
	raw_spin_unlock(&excl_cntrs->lock);
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
	WARN_ON_ONCE(!cpuc->constraint_list);

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
		struct event_constraint *cx;

		/*
		 * grab pre-allocated constraint entry
		 */
		cx = &cpuc->constraint_list[idx];

		/*
		 * initialize dynamic constraint
		 * with static constraint
		 */
		*cx = *c;

		/*
		 * mark constraint as dynamic
		 */
		cx->flags |= PERF_X86_EVENT_DYNAMIC;
		c = cx;
	}

	return c;
}

3034 3035 3036 3037 3038
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			   int idx, struct event_constraint *c)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3039
	struct intel_excl_states *xlo;
3040
	int tid = cpuc->excl_thread_id;
3041
	int is_excl, i, w;
3042 3043 3044 3045 3046

	/*
	 * validating a group does not require
	 * enforcing cross-thread  exclusion
	 */
3047 3048 3049 3050 3051 3052
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return c;

	/*
	 * no exclusion needed
	 */
3053
	if (WARN_ON_ONCE(!excl_cntrs))
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		return c;

	/*
	 * because we modify the constraint, we need
	 * to make a copy. Static constraints come
	 * from static const tables.
	 *
	 * only needed when constraint has not yet
	 * been cloned (marked dynamic)
	 */
3064
	c = dyn_constraint(cpuc, c, idx);
3065 3066 3067 3068 3069 3070 3071 3072

	/*
	 * From here on, the constraint is dynamic.
	 * Either it was just allocated above, or it
	 * was allocated during a earlier invocation
	 * of this function
	 */

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	/*
	 * state of sibling HT
	 */
	xlo = &excl_cntrs->states[tid ^ 1];

	/*
	 * event requires exclusive counter access
	 * across HT threads
	 */
	is_excl = c->flags & PERF_X86_EVENT_EXCL;
	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
		if (!cpuc->n_excl++)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
	}

3089 3090 3091 3092 3093 3094 3095 3096
	/*
	 * Modify static constraint with current dynamic
	 * state of thread
	 *
	 * EXCLUSIVE: sibling counter measuring exclusive event
	 * SHARED   : sibling counter measuring non-exclusive event
	 * UNUSED   : sibling counter unused
	 */
3097
	w = c->weight;
3098
	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3099 3100 3101 3102 3103
		/*
		 * exclusive event in sibling counter
		 * our corresponding counter cannot be used
		 * regardless of our event
		 */
3104
		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3105
			__clear_bit(i, c->idxmsk);
3106 3107 3108
			w--;
			continue;
		}
3109 3110 3111 3112 3113
		/*
		 * if measuring an exclusive event, sibling
		 * measuring non-exclusive, then counter cannot
		 * be used
		 */
3114
		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3115
			__clear_bit(i, c->idxmsk);
3116 3117 3118
			w--;
			continue;
		}
3119 3120 3121 3122 3123 3124 3125
	}

	/*
	 * if we return an empty mask, then switch
	 * back to static empty constraint to avoid
	 * the cost of freeing later on
	 */
3126
	if (!w)
3127
		c = &emptyconstraint;
3128

3129 3130
	c->weight = w;

3131
	return c;
3132 3133 3134 3135 3136 3137
}

static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
3138
	struct event_constraint *c1, *c2;
3139

3140
	c1 = cpuc->event_constraint[idx];
3141

3142 3143 3144 3145 3146
	/*
	 * first time only
	 * - static constraint: no change across incremental scheduling calls
	 * - dynamic constraint: handled by intel_get_excl_constraints()
	 */
3147
	c2 = __intel_get_event_constraints(cpuc, idx, event);
3148 3149
	if (c1) {
	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3150 3151 3152 3153
		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
		c1->weight = c2->weight;
		c2 = c1;
	}
3154 3155

	if (cpuc->excl_cntrs)
3156
		return intel_get_excl_constraints(cpuc, event, idx, c2);
3157

3158
	return c2;
3159 3160 3161 3162 3163 3164 3165 3166
}

static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
		struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	int tid = cpuc->excl_thread_id;
3167
	struct intel_excl_states *xl;
3168 3169 3170 3171 3172 3173 3174

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake)
		return;

3175
	if (WARN_ON_ONCE(!excl_cntrs))
3176 3177
		return;

3178 3179 3180 3181 3182
	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
		if (!--cpuc->n_excl)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
	}
3183 3184

	/*
3185 3186
	 * If event was actually assigned, then mark the counter state as
	 * unused now.
3187
	 */
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	if (hwc->idx >= 0) {
		xl = &excl_cntrs->states[tid];

		/*
		 * put_constraint may be called from x86_schedule_events()
		 * which already has the lock held so here make locking
		 * conditional.
		 */
		if (!xl->sched_started)
			raw_spin_lock(&excl_cntrs->lock);
3198

3199
		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3200

3201 3202 3203
		if (!xl->sched_started)
			raw_spin_unlock(&excl_cntrs->lock);
	}
3204 3205
}

3206 3207
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3208 3209
					struct perf_event *event)
{
3210
	struct hw_perf_event_extra *reg;
3211

3212 3213 3214
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3215 3216 3217 3218

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3219
}
3220

3221 3222 3223 3224
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
3225 3226 3227 3228 3229 3230

	/*
	 * is PMU has exclusive counter restrictions, then
	 * all events are subject to and must call the
	 * put_excl_constraints() routine
	 */
3231
	if (cpuc->excl_cntrs)
3232 3233 3234
		intel_put_excl_constraints(cpuc, event);
}

3235
static void intel_pebs_aliases_core2(struct perf_event *event)
3236
{
3237
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
3256 3257
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3285 3286 3287 3288

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
3289 3290
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
		 * (0x01c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * The PREC_DIST event has special support to minimize sample
		 * shadowing effects. One drawback is that it can be
		 * only programmed on counter 1, but that seems like an
		 * acceptable trade off.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_ivb(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_snb(event);
	return intel_pebs_aliases_precdist(event);
}

static void intel_pebs_aliases_skl(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_core2(event);
	return intel_pebs_aliases_precdist(event);
}

3329
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3330
{
3331
	unsigned long flags = x86_pmu.large_pebs_flags;
3332 3333 3334

	if (event->attr.use_clockid)
		flags &= ~PERF_SAMPLE_TIME;
3335 3336
	if (!event->attr.exclude_kernel)
		flags &= ~PERF_SAMPLE_REGS_USER;
K
Kan Liang 已提交
3337
	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3338
		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3339 3340 3341
	return flags;
}

3342 3343 3344 3345
static int intel_pmu_bts_config(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;

3346
	if (unlikely(intel_pmu_has_bts(event))) {
3347 3348 3349 3350 3351 3352 3353 3354
		/* BTS is not supported by this architecture. */
		if (!x86_pmu.bts_active)
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;

3355 3356 3357 3358
		/* BTS is not allowed for precise events. */
		if (attr->precise_ip)
			return -EOPNOTSUPP;

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
	}

	return 0;
}

static int core_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	return intel_pmu_bts_config(event);
}

3379 3380 3381 3382
static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

3383 3384 3385 3386
	if (ret)
		return ret;

	ret = intel_pmu_bts_config(event);
3387 3388 3389
	if (ret)
		return ret;

3390
	if (event->attr.precise_ip) {
3391
		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3392
			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3393
			if (!(event->attr.sample_type &
3394 3395
			      ~intel_pmu_large_pebs_flags(event)))
				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3396
		}
3397 3398
		if (x86_pmu.pebs_aliases)
			x86_pmu.pebs_aliases(event);
3399 3400 3401

		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3402
	}
3403

3404
	if (needs_branch_stack(event)) {
3405 3406 3407
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
3408 3409 3410 3411

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
3412
		if (!unlikely(intel_pmu_has_bts(event))) {
3413 3414 3415 3416 3417 3418
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
3419 3420
	}

3421 3422 3423 3424 3425 3426 3427
	if (event->attr.aux_output) {
		if (!event->attr.precise_ip)
			return -EINVAL;

		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
	}

3428 3429 3430
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	/*
	 * Config Topdown slots and metric events
	 *
	 * The slots event on Fixed Counter 3 can support sampling,
	 * which will be handled normally in x86_perf_event_update().
	 *
	 * Metric events don't support sampling and require being paired
	 * with a slots event as group leader. When the slots event
	 * is used in a metrics group, it too cannot support sampling.
	 */
	if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
		if (event->attr.config1 || event->attr.config2)
			return -EINVAL;

		/*
		 * The TopDown metrics events and slots event don't
		 * support any filters.
		 */
		if (event->attr.config & X86_ALL_EVENT_FLAGS)
			return -EINVAL;

		if (is_metric_event(event)) {
			struct perf_event *leader = event->group_leader;

			/* The metric events don't support sampling. */
			if (is_sampling_event(event))
				return -EINVAL;

			/* The metric events require a slots group leader. */
			if (!is_slots_event(leader))
				return -EINVAL;

			/*
			 * The leader/SLOTS must not be a sampling event for
			 * metric use; hardware requires it starts at 0 when used
			 * in conjunction with MSR_PERF_METRICS.
			 */
			if (is_sampling_event(leader))
				return -EINVAL;

			event->event_caps |= PERF_EV_CAP_SIBLING;
			/*
			 * Only once we have a METRICs sibling do we
			 * need TopDown magic.
			 */
			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;

			event->hw.flags &= ~PERF_X86_EVENT_RDPMC_ALLOWED;
		}
	}

3483 3484 3485 3486 3487 3488
	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

3489 3490 3491
	ret = perf_allow_cpu(&event->attr);
	if (ret)
		return ret;
3492 3493 3494 3495 3496 3497

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

3498 3499 3500 3501 3502
#ifdef CONFIG_RETPOLINE
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
#endif

3503 3504
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
3505 3506 3507 3508 3509 3510
#ifdef CONFIG_RETPOLINE
	if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
		return intel_guest_get_msrs(nr);
	else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
		return core_guest_get_msrs(nr);
#endif
3511 3512 3513 3514 3515 3516 3517 3518 3519
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
3520
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3521 3522 3523 3524 3525
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		arr[0].guest &= ~cpuc->pebs_enabled;
	else
		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
	*nr = 1;

	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
		/*
		 * If PMU counter has PEBS enabled it is not enough to
		 * disable counter on a guest entry since PEBS memory
		 * write can overshoot guest entry and corrupt guest
		 * memory. Disabling PEBS solves the problem.
		 *
		 * Don't do this if the CPU already enforces it.
		 */
		arr[1].msr = MSR_IA32_PEBS_ENABLE;
		arr[1].host = cpuc->pebs_enabled;
		arr[1].guest = 0;
		*nr = 2;
	}
3546 3547 3548 3549 3550 3551

	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
3552
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
3586
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
3634 3635 3636
	return 0;
}

3637 3638 3639
static struct event_constraint counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);

3640 3641 3642
static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

K
Kan Liang 已提交
3643 3644 3645
static struct event_constraint fixed0_constraint =
			FIXED_EVENT_CONSTRAINT(0x00c0, 0);

3646 3647 3648
static struct event_constraint fixed0_counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);

3649
static struct event_constraint *
3650 3651
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
3652
{
3653 3654 3655
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

K
Kan Liang 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	/*
	 * Fixed counter 0 has less skid.
	 * Force instruction:ppp in Fixed counter 0
	 */
	if ((event->attr.precise_ip == 3) &&
	    constraint_match(&fixed0_constraint, event->hw.config))
		return &fixed0_constraint;

	return hsw_get_event_constraints(cpuc, idx, event);
}

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
	if (event->attr.precise_ip == 3)
		return &counter0_constraint;

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/*
	 * :ppp means to do reduced skid PEBS,
	 * which is available on PMC0 and fixed counter 0.
	 */
	if (event->attr.precise_ip == 3) {
		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
		if (constraint_match(&fixed0_constraint, event->hw.config))
			return &fixed0_counter0_constraint;

		return &counter0_constraint;
	}

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
static bool allow_tsx_force_abort = true;

static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);

	/*
	 * Without TFA we must not use PMC3.
	 */
3731
	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3732 3733 3734 3735 3736 3737 3738 3739
		c = dyn_constraint(cpuc, c, idx);
		c->idxmsk64 &= ~(1ULL << 3);
		c->weight--;
	}

	return c;
}

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
3755
static u64 bdw_limit_period(struct perf_event *event, u64 left)
3756 3757 3758 3759 3760
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (left < 128)
			left = 128;
3761
		left &= ~0x3fULL;
3762 3763 3764 3765
	}
	return left;
}

3766 3767 3768 3769 3770
static u64 nhm_limit_period(struct perf_event *event, u64 left)
{
	return max(left, 32ULL);
}

3771 3772 3773 3774 3775 3776 3777
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3778 3779
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

3791 3792 3793 3794 3795 3796 3797
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

3798
static struct intel_shared_regs *allocate_shared_regs(int cpu)
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
	struct intel_excl_cntrs *c;

	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
			 GFP_KERNEL, cpu_to_node(cpu));
	if (c) {
		raw_spin_lock_init(&c->lock);
		c->core_id = -1;
	}
	return c;
}

3830

3831 3832
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
3833 3834
	cpuc->pebs_record_size = x86_pmu.pebs_record_size;

3835 3836 3837
	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
3838
			goto err;
3839
	}
3840

3841
	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3842 3843
		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);

3844
		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3845
		if (!cpuc->constraint_list)
3846
			goto err_shared_regs;
3847
	}
3848

3849
	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3850
		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3851 3852 3853
		if (!cpuc->excl_cntrs)
			goto err_constraint_list;

3854 3855
		cpuc->excl_thread_id = 0;
	}
3856

3857
	return 0;
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

err_constraint_list:
	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;

err_shared_regs:
	kfree(cpuc->shared_regs);
	cpuc->shared_regs = NULL;

err:
3868
	return -ENOMEM;
3869 3870
}

3871 3872 3873 3874 3875
static int intel_pmu_cpu_prepare(int cpu)
{
	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
static void flip_smm_bit(void *data)
{
	unsigned long set = *(unsigned long *)data;

	if (set > 0) {
		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	} else {
		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	}
}

3889 3890
static void intel_pmu_cpu_starting(int cpu)
{
3891 3892 3893 3894
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

3895 3896 3897 3898 3899 3900
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

3901 3902
	cpuc->lbr_sel = NULL;

3903 3904 3905 3906 3907 3908
	if (x86_pmu.flags & PMU_FL_TFA) {
		WARN_ON_ONCE(cpuc->tfa_shadow);
		cpuc->tfa_shadow = ~0ULL;
		intel_set_tfa(cpuc, false);
	}

3909 3910
	if (x86_pmu.version > 1)
		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3911

3912 3913 3914
	if (x86_pmu.counter_freezing)
		enable_counter_freeze();

3915
	if (!cpuc->shared_regs)
3916 3917
		return;

3918
	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3919
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3920
			struct intel_shared_regs *pc;
3921

3922 3923
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
P
Peter Zijlstra 已提交
3924
				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3925 3926 3927
				cpuc->shared_regs = pc;
				break;
			}
3928
		}
3929 3930
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
3931 3932
	}

3933 3934
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3935 3936

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3937
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3938
			struct cpu_hw_events *sibling;
3939 3940
			struct intel_excl_cntrs *c;

3941 3942
			sibling = &per_cpu(cpu_hw_events, i);
			c = sibling->excl_cntrs;
3943 3944 3945
			if (c && c->core_id == core_id) {
				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
				cpuc->excl_cntrs = c;
3946 3947
				if (!sibling->excl_thread_id)
					cpuc->excl_thread_id = 1;
3948 3949 3950 3951 3952 3953
				break;
			}
		}
		cpuc->excl_cntrs->core_id = core_id;
		cpuc->excl_cntrs->refcnt++;
	}
3954 3955
}

3956
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3957
{
3958
	struct intel_excl_cntrs *c;
3959

3960 3961 3962 3963 3964 3965
	c = cpuc->excl_cntrs;
	if (c) {
		if (c->core_id == -1 || --c->refcnt == 0)
			kfree(c);
		cpuc->excl_cntrs = NULL;
	}
3966 3967 3968

	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;
3969
}
3970

3971
static void intel_pmu_cpu_dying(int cpu)
3972 3973 3974 3975 3976 3977 3978
{
	fini_debug_store_on_cpu(cpu);

	if (x86_pmu.counter_freezing)
		disable_counter_freeze();
}

3979
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3980 3981 3982 3983 3984 3985 3986 3987
{
	struct intel_shared_regs *pc;

	pc = cpuc->shared_regs;
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->shared_regs = NULL;
3988 3989
	}

3990 3991 3992 3993 3994 3995
	free_excl_cntrs(cpuc);
}

static void intel_pmu_cpu_dead(int cpu)
{
	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3996 3997
}

3998 3999 4000
static void intel_pmu_sched_task(struct perf_event_context *ctx,
				 bool sched_in)
{
4001 4002
	intel_pmu_pebs_sched_task(ctx, sched_in);
	intel_pmu_lbr_sched_task(ctx, sched_in);
4003 4004
}

4005 4006 4007 4008 4009 4010
static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
				    struct perf_event_context *next)
{
	intel_pmu_lbr_swap_task_ctx(prev, next);
}

4011 4012 4013 4014 4015
static int intel_pmu_check_period(struct perf_event *event, u64 value)
{
	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
}

4016 4017 4018 4019 4020 4021 4022 4023
static int intel_pmu_aux_output_match(struct perf_event *event)
{
	if (!x86_pmu.intel_cap.pebs_output_pt_available)
		return 0;

	return is_intel_pt_event(event);
}

4024 4025
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

4026 4027
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

4028 4029
PMU_FORMAT_ATTR(frontend, "config1:0-23");

4030 4031 4032 4033 4034 4035 4036 4037
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
4038 4039 4040 4041
	NULL,
};

static struct attribute *hsw_format_attr[] = {
4042 4043
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
4044 4045 4046 4047
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};
4048

4049 4050 4051 4052 4053 4054 4055 4056 4057
static struct attribute *nhm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};

static struct attribute *slm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	NULL
4058 4059
};

4060 4061 4062 4063 4064
static struct attribute *skl_format_attr[] = {
	&format_attr_frontend.attr,
	NULL,
};

4065 4066 4067 4068 4069 4070 4071
static __initconst const struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
4072
	.hw_config		= core_pmu_hw_config,
4073 4074 4075 4076 4077 4078
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
4079
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4080

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	/*
	 * Intel PMCs cannot be accessed sanely above 32-bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL<<31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.event_constraints	= intel_core_event_constraints,
	.guest_get_msrs		= core_guest_get_msrs,
	.format_attrs		= intel_arch_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	/*
	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
	 * together with PMU version 1 and thus be using core_pmu with
	 * shared_regs. We need following callbacks here to allocate
	 * it properly.
	 */
	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
4103
	.cpu_dead		= intel_pmu_cpu_dead,
4104 4105

	.check_period		= intel_pmu_check_period,
4106 4107

	.lbr_reset		= intel_pmu_lbr_reset_64,
4108
	.lbr_read		= intel_pmu_lbr_read_64,
4109 4110
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
4111 4112
};

4113
static __initconst const struct x86_pmu intel_pmu = {
4114 4115 4116 4117 4118 4119
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
4120 4121
	.add			= intel_pmu_add_event,
	.del			= intel_pmu_del_event,
4122
	.read			= intel_pmu_read_event,
4123
	.hw_config		= intel_pmu_hw_config,
4124
	.schedule_events	= x86_schedule_events,
4125 4126 4127 4128 4129
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
4130
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4131 4132 4133 4134 4135 4136
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
4137
	.get_event_constraints	= intel_get_event_constraints,
4138
	.put_event_constraints	= intel_put_event_constraints,
4139
	.pebs_aliases		= intel_pebs_aliases_core2,
4140

4141
	.format_attrs		= intel_arch3_formats_attr,
4142
	.events_sysfs_show	= intel_event_sysfs_show,
4143

4144
	.cpu_prepare		= intel_pmu_cpu_prepare,
4145 4146
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
4147 4148
	.cpu_dead		= intel_pmu_cpu_dead,

4149
	.guest_get_msrs		= intel_guest_get_msrs,
4150
	.sched_task		= intel_pmu_sched_task,
4151
	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4152 4153

	.check_period		= intel_pmu_check_period,
4154 4155

	.aux_output_match	= intel_pmu_aux_output_match,
4156 4157

	.lbr_reset		= intel_pmu_lbr_reset_64,
4158
	.lbr_read		= intel_pmu_lbr_read_64,
4159 4160
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
4161 4162
};

4163
static __init void intel_clovertown_quirk(void)
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
4179
	 *	 a pebs_event_reset[0] value and coping with the lost events.
4180 4181 4182 4183
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
4184
	pr_warn("PEBS disabled due to CPU errata\n");
4185 4186 4187 4188
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

4189
static const struct x86_cpu_desc isolation_ucodes[] = {
4190
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4191
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4192
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4193 4194
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4195
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4196
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4197 4198 4199 4200
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4201 4202 4203
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4204
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4205 4206
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4207 4208 4209 4210
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4211 4212 4213 4214
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	{}
};

static void intel_check_pebs_isolation(void)
{
	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
}

static __init void intel_pebs_isolation_quirk(void)
{
	WARN_ON_ONCE(x86_pmu.check_microcode);
	x86_pmu.check_microcode = intel_check_pebs_isolation;
	intel_check_pebs_isolation();
}

4230 4231 4232 4233 4234 4235
static const struct x86_cpu_desc pebs_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
	{}
};
4236

4237 4238 4239
static bool intel_snb_pebs_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4240 4241 4242 4243
}

static void intel_snb_check_microcode(void)
{
4244
	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

4259 4260 4261 4262 4263 4264 4265
static bool is_lbr_from(unsigned long msr)
{
	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;

	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
}

4266 4267 4268 4269 4270 4271 4272 4273
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

4274 4275 4276 4277
	/*
	 * Disable the check for real HW, so we don't
	 * mess with potentionaly enabled registers:
	 */
4278
	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4279 4280
		return true;

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
4293 4294 4295 4296

	if (is_lbr_from(msr))
		val_tmp = lbr_from_signext_quirk_wr(val_tmp);

4297 4298 4299 4300
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

4301 4302 4303 4304
	/*
	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
	 * should equal rdmsrl()'s even with the quirk.
	 */
4305 4306 4307
	if (val_new != val_tmp)
		return false;

4308 4309 4310
	if (is_lbr_from(msr))
		val_old = lbr_from_signext_quirk_wr(val_old);

4311 4312 4313 4314 4315 4316 4317 4318
	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

4319
static __init void intel_sandybridge_quirk(void)
4320
{
4321
	x86_pmu.check_microcode = intel_snb_check_microcode;
4322
	cpus_read_lock();
4323
	intel_snb_check_microcode();
4324
	cpus_read_unlock();
4325 4326
}

4327 4328 4329 4330 4331 4332 4333 4334
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4335 4336
};

4337 4338 4339 4340 4341 4342 4343
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4344 4345
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
4364
		pr_info("CPU erratum AAJ80 worked around\n");
4365 4366 4367
	}
}

4368
static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4369 4370 4371
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4372
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,	 1, 0x00000028),
4373 4374
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4375 4376
	{}
};
4377

4378 4379 4380
static bool intel_counter_freezing_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4381 4382
}

4383
static __init void intel_counter_freezing_quirk(void)
4384 4385 4386 4387 4388 4389 4390 4391 4392
{
	/* Check if it's already disabled */
	if (disable_counter_freezing)
		return;

	/*
	 * If the system starts with the wrong ucode, leave the
	 * counter-freezing feature permanently disabled.
	 */
4393
	if (intel_counter_freezing_broken()) {
4394 4395 4396 4397 4398 4399 4400
		pr_info("PMU counter freezing disabled due to CPU errata,"
			"please upgrade microcode\n");
		x86_pmu.counter_freezing = false;
		x86_pmu.handle_irq = intel_pmu_handle_irq;
	}
}

4401 4402 4403 4404 4405 4406 4407
/*
 * enable software workaround for errata:
 * SNB: BJ122
 * IVB: BV98
 * HSW: HSD29
 *
 * Only needed when HT is enabled. However detecting
4408 4409 4410 4411
 * if HT is enabled is difficult (model specific). So instead,
 * we enable the workaround in the early boot, and verify if
 * it is needed in a later initcall phase once we have valid
 * topology information to check if HT is actually enabled
4412 4413 4414
 */
static __init void intel_ht_bug(void)
{
4415
	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4416 4417

	x86_pmu.start_scheduling = intel_start_scheduling;
4418
	x86_pmu.commit_scheduling = intel_commit_scheduling;
4419 4420 4421
	x86_pmu.stop_scheduling = intel_stop_scheduling;
}

4422 4423
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4424

4425
/* Haswell special events */
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4438

4439
static struct attribute *hsw_events_attrs[] = {
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
	NULL
};

4450 4451 4452 4453 4454 4455
static struct attribute *hsw_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

4456
static struct attribute *hsw_tsx_events_attrs[] = {
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
4469 4470 4471
	NULL
};

K
Kan Liang 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");

static struct attribute *icl_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

static struct attribute *icl_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_capacity_read),
	EVENT_PTR(el_capacity_write),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
static ssize_t freeze_on_smi_show(struct device *cdev,
				  struct device_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
}

static DEFINE_MUTEX(freeze_on_smi_mutex);

static ssize_t freeze_on_smi_store(struct device *cdev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	if (val > 1)
		return -EINVAL;

	mutex_lock(&freeze_on_smi_mutex);

	if (x86_pmu.attr_freeze_on_smi == val)
		goto done;

	x86_pmu.attr_freeze_on_smi = val;

	get_online_cpus();
	on_each_cpu(flip_smm_bit, &val, 1);
	put_online_cpus();
done:
	mutex_unlock(&freeze_on_smi_mutex);

	return count;
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
static void update_tfa_sched(void *ignored)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * check if PMC3 is used
	 * and if so force schedule out for all event types all contexts
	 */
	if (test_bit(3, cpuc->active_mask))
		perf_pmu_resched(x86_get_pmu());
}

static ssize_t show_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
}

static ssize_t set_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      const char *buf, size_t count)
{
	bool val;
	ssize_t ret;

	ret = kstrtobool(buf, &val);
	if (ret)
		return ret;

	/* no change */
	if (val == allow_tsx_force_abort)
		return count;

	allow_tsx_force_abort = val;

	get_online_cpus();
	on_each_cpu(update_tfa_sched, NULL, 1);
	put_online_cpus();

	return count;
}


4584 4585
static DEVICE_ATTR_RW(freeze_on_smi);

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
static ssize_t branches_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

static struct attribute *lbr_attrs[] = {
	&dev_attr_branches.attr,
	NULL
};

static char pmu_name_str[30];

static ssize_t pmu_name_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
}

static DEVICE_ATTR_RO(pmu_name);

static struct attribute *intel_pmu_caps_attrs[] = {
P
Peter Zijlstra 已提交
4612 4613
       &dev_attr_pmu_name.attr,
       NULL
4614 4615
};

4616 4617 4618
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
		   show_sysctl_tfa,
		   set_sysctl_tfa);
4619

4620 4621
static struct attribute *intel_pmu_attrs[] = {
	&dev_attr_freeze_on_smi.attr,
4622
	&dev_attr_allow_tsx_force_abort.attr,
4623 4624 4625
	NULL,
};

4626 4627
static umode_t
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4628
{
4629 4630
	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
}
4631

4632 4633 4634 4635 4636
static umode_t
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.pebs ? attr->mode : 0;
}
4637

4638 4639 4640 4641 4642 4643
static umode_t
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.lbr_nr ? attr->mode : 0;
}

4644 4645 4646 4647 4648 4649
static umode_t
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.version >= 2 ? attr->mode : 0;
}

4650 4651 4652 4653 4654 4655 4656 4657 4658
static umode_t
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	if (attr == &dev_attr_allow_tsx_force_abort.attr)
		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;

	return attr->mode;
}

4659 4660 4661
static struct attribute_group group_events_td  = {
	.name = "events",
};
4662

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
static struct attribute_group group_events_mem = {
	.name       = "events",
	.is_visible = pebs_is_visible,
};

static struct attribute_group group_events_tsx = {
	.name       = "events",
	.is_visible = tsx_is_visible,
};

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
static struct attribute_group group_caps_gen = {
	.name  = "caps",
	.attrs = intel_pmu_caps_attrs,
};

static struct attribute_group group_caps_lbr = {
	.name       = "caps",
	.attrs	    = lbr_attrs,
	.is_visible = lbr_is_visible,
};

4684 4685 4686 4687 4688
static struct attribute_group group_format_extra = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

4689 4690 4691 4692 4693
static struct attribute_group group_format_extra_skl = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

4694
static struct attribute_group group_default = {
4695 4696
	.attrs      = intel_pmu_attrs,
	.is_visible = default_is_visible,
4697 4698
};

4699 4700 4701 4702
static const struct attribute_group *attr_update[] = {
	&group_events_td,
	&group_events_mem,
	&group_events_tsx,
4703 4704
	&group_caps_gen,
	&group_caps_lbr,
4705
	&group_format_extra,
4706
	&group_format_extra_skl,
4707
	&group_default,
4708 4709 4710 4711
	NULL,
};

static struct attribute *empty_attrs;
4712

4713
__init int intel_pmu_init(void)
4714
{
4715
	struct attribute **extra_skl_attr = &empty_attrs;
4716 4717 4718 4719
	struct attribute **extra_attr = &empty_attrs;
	struct attribute **td_attr    = &empty_attrs;
	struct attribute **mem_attr   = &empty_attrs;
	struct attribute **tsx_attr   = &empty_attrs;
4720 4721
	union cpuid10_edx edx;
	union cpuid10_eax eax;
4722
	union cpuid10_ebx ebx;
4723
	struct event_constraint *c;
4724
	unsigned int unused;
4725
	struct extra_reg *er;
4726
	bool pmem = false;
4727
	int version, i;
4728
	char *name;
4729 4730

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4731 4732 4733
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
4734 4735
		case 0xb:
			return knc_pmu_init();
4736 4737 4738
		case 0xf:
			return p4_pmu_init();
		}
4739 4740 4741 4742 4743 4744 4745
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
4746 4747
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4748 4749 4750 4751 4752 4753 4754 4755 4756
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
4757 4758 4759
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4760

4761 4762 4763
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

4764 4765
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

4766 4767
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4768
	 * assume at least 3 events, when not running in a hypervisor:
4769
	 */
4770 4771 4772 4773 4774 4775
	if (version > 1) {
		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);

		x86_pmu.num_counters_fixed =
			max((int)edx.split.num_counters_fixed, assume);
	}
4776

4777 4778 4779
	if (version >= 4)
		x86_pmu.counter_freezing = !disable_counter_freezing;

4780
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4781 4782 4783 4784 4785 4786
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

4787
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4788
		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4789 4790
		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
	}
4791

4792 4793 4794
	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
		intel_pmu_arch_lbr_init();

4795 4796
	intel_ds_init();

4797 4798
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

4799 4800 4801 4802
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
4803
	case INTEL_FAM6_CORE_YONAH:
4804
		pr_cont("Core events, ");
4805
		name = "core";
4806 4807
		break;

4808
	case INTEL_FAM6_CORE2_MEROM:
4809
		x86_add_quirk(intel_clovertown_quirk);
4810 4811
		/* fall through */

4812 4813 4814
	case INTEL_FAM6_CORE2_MEROM_L:
	case INTEL_FAM6_CORE2_PENRYN:
	case INTEL_FAM6_CORE2_DUNNINGTON:
4815 4816 4817
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

4818 4819
		intel_pmu_lbr_init_core();

4820
		x86_pmu.event_constraints = intel_core2_event_constraints;
4821
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4822
		pr_cont("Core2 events, ");
4823
		name = "core2";
4824 4825
		break;

4826 4827 4828
	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_NEHALEM_EP:
	case INTEL_FAM6_NEHALEM_EX:
4829 4830
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
4831 4832
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
4833

4834 4835
		intel_pmu_lbr_init_nhm();

4836
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4837
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4838
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4839
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4840
		x86_pmu.limit_period = nhm_limit_period;
4841

4842
		mem_attr = nhm_mem_events_attrs;
4843

4844
		/* UOPS_ISSUED.STALLED_CYCLES */
4845 4846
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4847
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4848 4849
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4850

4851
		intel_pmu_pebs_data_source_nhm();
4852
		x86_add_quirk(intel_nehalem_quirk);
4853
		x86_pmu.pebs_no_tlb = 1;
4854
		extra_attr = nhm_format_attr;
4855

4856
		pr_cont("Nehalem events, ");
4857
		name = "nehalem";
4858
		break;
4859

4860 4861 4862 4863 4864
	case INTEL_FAM6_ATOM_BONNELL:
	case INTEL_FAM6_ATOM_BONNELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL:
	case INTEL_FAM6_ATOM_SALTWELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4865 4866 4867
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

4868 4869
		intel_pmu_lbr_init_atom();

4870
		x86_pmu.event_constraints = intel_gen_event_constraints;
4871
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4872
		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4873
		pr_cont("Atom events, ");
4874
		name = "bonnell";
4875 4876
		break;

4877
	case INTEL_FAM6_ATOM_SILVERMONT:
4878
	case INTEL_FAM6_ATOM_SILVERMONT_D:
4879
	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4880
	case INTEL_FAM6_ATOM_AIRMONT:
4881
	case INTEL_FAM6_ATOM_AIRMONT_MID:
4882 4883 4884 4885 4886
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

4887
		intel_pmu_lbr_init_slm();
4888 4889 4890 4891

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
4892
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4893
		td_attr = slm_events_attrs;
4894
		extra_attr = slm_format_attr;
4895
		pr_cont("Silvermont events, ");
4896
		name = "silvermont";
4897 4898
		break;

4899
	case INTEL_FAM6_ATOM_GOLDMONT:
4900
	case INTEL_FAM6_ATOM_GOLDMONT_D:
4901
		x86_add_quirk(intel_counter_freezing_quirk);
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 * :pp is identical to :ppp
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
4919
		x86_pmu.lbr_pt_coexist = true;
4920
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4921
		td_attr = glm_events_attrs;
4922
		extra_attr = slm_format_attr;
4923
		pr_cont("Goldmont events, ");
4924
		name = "goldmont";
4925 4926
		break;

4927
	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4928
		x86_add_quirk(intel_counter_freezing_quirk);
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4946
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4947
		x86_pmu.get_event_constraints = glp_get_event_constraints;
4948
		td_attr = glm_events_attrs;
4949 4950
		/* Goldmont Plus has 4-wide pipeline */
		event_attr_td_total_slots_scale_glm.event_str = "4";
4951
		extra_attr = slm_format_attr;
4952
		pr_cont("Goldmont plus events, ");
4953
		name = "goldmont_plus";
4954 4955
		break;

4956
	case INTEL_FAM6_ATOM_TREMONT_D:
4957
	case INTEL_FAM6_ATOM_TREMONT:
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_tnt_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.get_event_constraints = tnt_get_event_constraints;
		extra_attr = slm_format_attr;
		pr_cont("Tremont events, ");
		name = "Tremont";
		break;

4983 4984 4985
	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_WESTMERE_EP:
	case INTEL_FAM6_WESTMERE_EX:
4986 4987
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
4988 4989
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
4990

4991 4992
		intel_pmu_lbr_init_nhm();

4993
		x86_pmu.event_constraints = intel_westmere_event_constraints;
4994
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4995
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4996
		x86_pmu.extra_regs = intel_westmere_extra_regs;
4997
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4998

4999
		mem_attr = nhm_mem_events_attrs;
5000

5001
		/* UOPS_ISSUED.STALLED_CYCLES */
5002 5003
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5004
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5005 5006
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5007

5008
		intel_pmu_pebs_data_source_nhm();
5009
		extra_attr = nhm_format_attr;
5010
		pr_cont("Westmere events, ");
5011
		name = "westmere";
5012
		break;
5013

5014 5015
	case INTEL_FAM6_SANDYBRIDGE:
	case INTEL_FAM6_SANDYBRIDGE_X:
5016
		x86_add_quirk(intel_sandybridge_quirk);
5017
		x86_add_quirk(intel_ht_bug);
5018 5019
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5020 5021
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5022

5023
		intel_pmu_lbr_init_snb();
5024 5025

		x86_pmu.event_constraints = intel_snb_event_constraints;
5026
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5027
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5028
		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5029 5030 5031
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
5032 5033


5034
		/* all extra regs are per-cpu when HT is on */
5035 5036
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5037

5038
		td_attr  = snb_events_attrs;
5039
		mem_attr = snb_mem_events_attrs;
5040

5041
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5042 5043
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5044
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5045 5046
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5047

5048 5049
		extra_attr = nhm_format_attr;

5050
		pr_cont("SandyBridge events, ");
5051
		name = "sandybridge";
5052
		break;
5053

5054 5055
	case INTEL_FAM6_IVYBRIDGE:
	case INTEL_FAM6_IVYBRIDGE_X:
5056
		x86_add_quirk(intel_ht_bug);
5057 5058
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5059 5060 5061
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

5062 5063 5064 5065 5066
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

5067
		x86_pmu.event_constraints = intel_ivb_event_constraints;
5068
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5069 5070
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5071
		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5072 5073 5074
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
5075
		/* all extra regs are per-cpu when HT is on */
5076 5077
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5078

5079
		td_attr  = snb_events_attrs;
5080
		mem_attr = snb_mem_events_attrs;
5081

5082 5083 5084 5085
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

5086 5087
		extra_attr = nhm_format_attr;

5088
		pr_cont("IvyBridge events, ");
5089
		name = "ivybridge";
5090 5091
		break;

5092

5093
	case INTEL_FAM6_HASWELL:
5094
	case INTEL_FAM6_HASWELL_X:
5095
	case INTEL_FAM6_HASWELL_L:
5096
	case INTEL_FAM6_HASWELL_G:
5097
		x86_add_quirk(intel_ht_bug);
5098
		x86_add_quirk(intel_pebs_isolation_quirk);
5099
		x86_pmu.late_ack = true;
5100 5101
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5102

5103
		intel_pmu_lbr_init_hsw();
5104 5105

		x86_pmu.event_constraints = intel_hsw_event_constraints;
5106
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5107
		x86_pmu.extra_regs = intel_snbep_extra_regs;
5108 5109
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5110
		/* all extra regs are per-cpu when HT is on */
5111 5112
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5113 5114 5115

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5116
		x86_pmu.lbr_double_abort = true;
5117 5118
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5119
		td_attr  = hsw_events_attrs;
5120 5121
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
5122
		pr_cont("Haswell events, ");
5123
		name = "haswell";
5124 5125
		break;

5126
	case INTEL_FAM6_BROADWELL:
5127
	case INTEL_FAM6_BROADWELL_D:
5128
	case INTEL_FAM6_BROADWELL_G:
5129
	case INTEL_FAM6_BROADWELL_X:
5130
		x86_add_quirk(intel_pebs_isolation_quirk);
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

5145
		intel_pmu_lbr_init_hsw();
5146 5147

		x86_pmu.event_constraints = intel_bdw_event_constraints;
5148
		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5149
		x86_pmu.extra_regs = intel_snbep_extra_regs;
5150 5151
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5152
		/* all extra regs are per-cpu when HT is on */
5153 5154
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5155 5156 5157

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5158
		x86_pmu.limit_period = bdw_limit_period;
5159 5160
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5161
		td_attr  = hsw_events_attrs;
5162 5163
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
5164
		pr_cont("Broadwell events, ");
5165
		name = "broadwell";
5166 5167
		break;

5168
	case INTEL_FAM6_XEON_PHI_KNL:
P
Piotr Luc 已提交
5169
	case INTEL_FAM6_XEON_PHI_KNM:
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
		memcpy(hw_cache_event_ids,
		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs,
		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_knl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_knl_extra_regs;

		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5183
		extra_attr = slm_format_attr;
P
Piotr Luc 已提交
5184
		pr_cont("Knights Landing/Mill events, ");
5185
		name = "knights-landing";
5186 5187
		break;

5188 5189
	case INTEL_FAM6_SKYLAKE_X:
		pmem = true;
5190
		/* fall through */
5191
	case INTEL_FAM6_SKYLAKE_L:
5192
	case INTEL_FAM6_SKYLAKE:
5193
	case INTEL_FAM6_KABYLAKE_L:
5194
	case INTEL_FAM6_KABYLAKE:
5195 5196
	case INTEL_FAM6_COMETLAKE_L:
	case INTEL_FAM6_COMETLAKE:
5197
		x86_add_quirk(intel_pebs_isolation_quirk);
5198 5199 5200 5201 5202
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_skl();

5203 5204 5205 5206 5207 5208
		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
		event_attr_td_recovery_bubbles.event_str_noht =
			"event=0xd,umask=0x1,cmask=1";
		event_attr_td_recovery_bubbles.event_str_ht =
			"event=0xd,umask=0x1,cmask=1,any=1";

5209 5210 5211
		x86_pmu.event_constraints = intel_skl_event_constraints;
		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_skl_extra_regs;
5212 5213
		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
		x86_pmu.pebs_prec_dist = true;
5214 5215 5216 5217 5218 5219
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5220 5221
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5222
		extra_skl_attr = skl_format_attr;
5223
		td_attr  = hsw_events_attrs;
5224 5225
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
5226
		intel_pmu_pebs_data_source_skl(pmem);
5227 5228 5229 5230 5231 5232 5233 5234

		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
			x86_pmu.flags |= PMU_FL_TFA;
			x86_pmu.get_event_constraints = tfa_get_event_constraints;
			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
		}

5235
		pr_cont("Skylake events, ");
5236
		name = "skylake";
5237 5238
		break;

5239
	case INTEL_FAM6_ICELAKE_X:
5240
	case INTEL_FAM6_ICELAKE_D:
5241
		pmem = true;
5242
		/* fall through */
5243
	case INTEL_FAM6_ICELAKE_L:
5244
	case INTEL_FAM6_ICELAKE:
5245 5246
	case INTEL_FAM6_TIGERLAKE_L:
	case INTEL_FAM6_TIGERLAKE:
K
Kan Liang 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_icl_event_constraints;
		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_icl_extra_regs;
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = icl_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5265
		extra_skl_attr = skl_format_attr;
5266 5267
		mem_attr = icl_events_attrs;
		tsx_attr = icl_tsx_events_attrs;
K
Kan Liang 已提交
5268 5269
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
		x86_pmu.lbr_pt_coexist = true;
5270
		intel_pmu_pebs_data_source_skl(pmem);
K
Kan Liang 已提交
5271 5272 5273 5274
		pr_cont("Icelake events, ");
		name = "icelake";
		break;

5275
	default:
5276 5277 5278 5279
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
5280
			name = "generic_arch_v1";
5281 5282 5283 5284 5285 5286 5287
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
5288
			name = "generic_arch_v2+";
5289 5290
			break;
		}
5291
	}
5292

5293
	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5294

5295

5296 5297 5298
	group_events_td.attrs  = td_attr;
	group_events_mem.attrs = mem_attr;
	group_events_tsx.attrs = tsx_attr;
5299
	group_format_extra.attrs = extra_attr;
5300
	group_format_extra_skl.attrs = extra_skl_attr;
5301 5302

	x86_pmu.attr_update = attr_update;
5303

5304 5305 5306 5307 5308
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
5309
	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
5326 5327 5328 5329 5330 5331 5332 5333 5334
			/*
			 * Don't extend the topdown slots and metrics
			 * events to the generic counters.
			 */
			if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
				c->weight = hweight64(c->idxmsk64);
				continue;
			}

5335 5336 5337
			if (c->cmask == FIXED_EVENT_FLAGS
			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5338
			}
5339
			c->idxmsk64 &=
5340
				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5341
			c->weight = hweight64(c->idxmsk64);
5342 5343 5344
		}
	}

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

5359
	if (x86_pmu.lbr_nr)
5360
		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5361

5362 5363 5364 5365 5366 5367 5368
	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (x86_pmu.extra_regs) {
		for (er = x86_pmu.extra_regs; er->msr; er++) {
5369
			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5370 5371 5372 5373 5374 5375
			/* Disable LBR select mapping */
			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
				x86_pmu.lbr_sel_map = NULL;
		}
	}

5376 5377
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
5378
		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5379 5380 5381 5382
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

5383 5384 5385 5386 5387 5388 5389
	/*
	 * For arch perfmon 4 use counter freezing to avoid
	 * several MSR accesses in the PMI.
	 */
	if (x86_pmu.counter_freezing)
		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;

5390 5391
	return 0;
}
5392 5393 5394 5395 5396 5397 5398 5399 5400

/*
 * HT bug: phase 2 init
 * Called once we have valid topology information to check
 * whether or not HT is enabled
 * If HT is off, then we disable the workaround
 */
static __init int fixup_ht_bug(void)
{
5401
	int c;
5402 5403 5404 5405 5406 5407
	/*
	 * problem not present on this CPU model, nothing to do
	 */
	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
		return 0;

5408
	if (topology_max_smt_threads() > 1) {
5409 5410 5411 5412
		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
		return 0;
	}

5413 5414 5415
	cpus_read_lock();

	hardlockup_detector_perf_stop();
5416 5417 5418 5419

	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);

	x86_pmu.start_scheduling = NULL;
5420
	x86_pmu.commit_scheduling = NULL;
5421 5422
	x86_pmu.stop_scheduling = NULL;

5423
	hardlockup_detector_perf_restart();
5424

5425
	for_each_online_cpu(c)
5426
		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5427

5428
	cpus_read_unlock();
5429 5430 5431 5432
	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
	return 0;
}
subsys_initcall(fixup_ht_bug)