core.c 161.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
7
 */
8

9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
15
#include <linux/export.h>
16
#include <linux/nmi.h>
17

18
#include <asm/cpufeature.h>
19
#include <asm/hardirq.h>
20
#include <asm/intel-family.h>
21
#include <asm/intel_pt.h>
22
#include <asm/apic.h>
23
#include <asm/cpu_device_id.h>
24

25
#include "../perf_event.h"
26

27
/*
28
 * Intel PerfMon, used on Core and later.
29
 */
30
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31
{
32 33 34 35 36 37 38 39
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 41
};

42
static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 44 45 46 47 48 49 50 51 52
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

53
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54
{
55 56
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 59 60 61 62 63 64 65
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 68 69 70
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

71
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72
{
73 74
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 77 78 79 80 81 82 83 84 85 86
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

87
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88
{
89 90
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 93 94
	EVENT_EXTRA_END
};

95
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96
{
97 98
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 101 102
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 105 106
	EVENT_CONSTRAINT_END
};

107
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 109 110
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 113 114 115
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 117 118
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 120
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121

122 123 124 125
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
126 127 128 129 130
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

131 132 133
	EVENT_CONSTRAINT_END
};

134 135 136 137 138 139 140 141
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 144 145 146 147 148
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149

150 151 152 153
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
154 155 156 157 158
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

159 160 161
	EVENT_CONSTRAINT_END
};

162
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163
{
164 165 166
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 169 170
	EVENT_EXTRA_END
};

171 172 173 174 175
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

176
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177
{
178 179
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 182 183
	EVENT_CONSTRAINT_END
};

184 185 186 187 188 189 190 191
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

192
static struct event_constraint intel_skl_event_constraints[] = {
193 194 195 196
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 198 199 200 201 202 203 204 205 206

	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */

207 208 209
	EVENT_CONSTRAINT_END
};

210
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 212
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 214 215
	EVENT_EXTRA_END
};

216
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 218 219
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 222 223 224
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 226 227
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 230 231
	EVENT_EXTRA_END
};

232 233 234 235
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 237 238 239 240
	/*
	 * Note the low 8 bits eventsel code is not a continuous field, containing
	 * some #GPing bits. These are masked out.
	 */
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 242 243
	EVENT_EXTRA_END
};

K
Kan Liang 已提交
244 245
static struct event_constraint intel_icl_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246
	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
K
Kan Liang 已提交
247 248 249
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 251 252 253
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
K
Kan Liang 已提交
254 255 256 257 258 259
	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 261
	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
K
Kan Liang 已提交
262 263 264 265 266 267 268 269 270
	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271 272
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
K
Kan Liang 已提交
273 274 275 276 277
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
	EVENT_EXTRA_END
};

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
	EVENT_EXTRA_END
};

static struct event_constraint intel_spr_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),

	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
	/*
	 * Generally event codes < 0x90 are restricted to counters 0-3.
	 * The 0x2E and 0x3C are exception, which has no restriction.
	 */
	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),

	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
	/*
	 * Generally event codes >= 0x90 are likely to have no restrictions.
	 * The exception are defined as above.
	 */
	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),

	EVENT_CONSTRAINT_END
};


327 328 329
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
330

331
static struct attribute *nhm_mem_events_attrs[] = {
332 333 334 335
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * topdown events for Intel Core CPUs.
 *
 * The events are all in slots, which is a free slot in a 4 wide
 * pipeline. Some events are already reported in slots, for cycle
 * events we multiply by the pipeline width (4).
 *
 * With Hyper Threading on, topdown metrics are either summed or averaged
 * between the threads of a core: (count_t0 + count_t1).
 *
 * For the average case the metric is always scaled to pipeline width,
 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 */

EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
	"event=0xe,umask=0x1");			/* uops_issued.any */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
	"4", "2");

366 367 368 369 370 371 372 373 374
EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
375

376
static struct attribute *snb_events_attrs[] = {
377 378 379 380 381 382 383
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
384 385 386
	NULL,
};

387 388 389 390 391 392
static struct attribute *snb_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
	EVENT_PTR(mem_st_snb),
	NULL,
};

393 394 395 396
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
397
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
398 399 400
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
401
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
402
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
403
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
404
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
405
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
406

407 408 409 410
	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
411 412 413 414 415
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

416 417 418
	EVENT_CONSTRAINT_END
};

419
static struct event_constraint intel_bdw_event_constraints[] = {
420 421 422 423
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
424
	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
425 426 427 428 429 430 431
	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
432 433 434
	EVENT_CONSTRAINT_END
};

435 436 437 438 439
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static __initconst const u64 spr_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,
		[ C(RESULT_MISS)   ] = 0xe124,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_MISS)   ] = 0xe424,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,
		[ C(RESULT_MISS)   ] = 0xe12,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,
		[ C(RESULT_MISS)   ] = 0xe13,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = 0xe11,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4c4,
		[ C(RESULT_MISS)   ] = 0x4c5,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
 },
};

static __initconst const u64 spr_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x10001,
		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x10c000001,
		[ C(RESULT_MISS)   ] = 0x3fb3000001,
	},
 },
};

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts.
 * - icache miss does not include decoded icache
 */

#define SKL_DEMAND_DATA_RD		BIT_ULL(0)
#define SKL_DEMAND_RFO			BIT_ULL(1)
#define SKL_ANY_RESPONSE		BIT_ULL(16)
#define SKL_SUPPLIER_NONE		BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
#define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT			BIT_ULL(30)
#define SKL_SNOOP_NONE			BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define SKL_SNOOP_MISS			BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define SKL_SNOOP_HITM			BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
#define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
#define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)

static __initconst const u64 skl_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
636
		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
637 638 639
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
640
		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 skl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
849
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
850
		[ C(RESULT_ACCESS) ] = 0x01b7,
851 852
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
853 854
	},
	[ C(OP_WRITE) ] = {
855
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
856
		[ C(RESULT_ACCESS) ] = 0x01b7,
857 858
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
859 860
	},
	[ C(OP_PREFETCH) ] = {
861
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
862
		[ C(RESULT_ACCESS) ] = 0x01b7,
863 864
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
909 910
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
911 912
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
913 914
	},
	[ C(OP_WRITE) ] = {
915 916
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
917 918
	},
	[ C(OP_PREFETCH) ] = {
919 920
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
921 922 923
	},
 },

924 925
};

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

964 965 966 967 968 969
#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

1122
static __initconst const u64 westmere_hw_cache_event_ids
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1157
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1158
		[ C(RESULT_ACCESS) ] = 0x01b7,
1159 1160
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1161
	},
1162 1163 1164 1165
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1166
	[ C(OP_WRITE) ] = {
1167 1168 1169
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1170
		[ C(RESULT_MISS)   ] = 0x01b7,
1171 1172
	},
	[ C(OP_PREFETCH) ] = {
1173
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1174
		[ C(RESULT_ACCESS) ] = 0x01b7,
1175 1176
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1235 1236
};

1237
/*
1238 1239
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
1240 1241
 */

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

1259 1260
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
1261 1262 1263 1264 1265 1266

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1267
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1268
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1269 1270 1271 1272 1273 1274 1275 1276

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1277 1278
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1279 1280
	},
	[ C(OP_WRITE) ] = {
1281 1282
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1283 1284
	},
	[ C(OP_PREFETCH) ] = {
1285 1286
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1287
	},
1288 1289 1290
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
1291 1292
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1293 1294
	},
	[ C(OP_WRITE) ] = {
1295 1296
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1297 1298
	},
	[ C(OP_PREFETCH) ] = {
1299 1300
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1301 1302
	},
 },
1303 1304
};

1305
static __initconst const u64 nehalem_hw_cache_event_ids
1306 1307 1308 1309 1310 1311
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
1312 1313
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1314 1315
	},
	[ C(OP_WRITE) ] = {
1316 1317
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1340 1341 1342 1343
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1344
	},
1345 1346 1347 1348
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1349
	[ C(OP_WRITE) ] = {
1350 1351 1352 1353
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1354 1355
	},
	[ C(OP_PREFETCH) ] = {
1356 1357 1358 1359
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1418 1419
};

1420
static __initconst const u64 core2_hw_cache_event_ids
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1511
static __initconst const u64 atom_hw_cache_event_ids
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
/* no_alloc_cycles.not_delivered */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
	       "event=0xca,umask=0x50");
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
	       "event=0xc2,umask=0x10");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
	       "event=0xc2,umask=0x10");

static struct attribute *slm_events_attrs[] = {
	EVENT_PTR(td_total_slots_slm),
	EVENT_PTR(td_total_slots_scale_slm),
	EVENT_PTR(td_fetch_bubbles_slm),
	EVENT_PTR(td_fetch_bubbles_scale_slm),
	EVENT_PTR(td_slots_issued_slm),
	EVENT_PTR(td_slots_retired_slm),
	NULL
};

1625 1626 1627
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1628
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1629
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1649
		[ C(RESULT_MISS)   ] = 0,
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
1699
		[ C(RESULT_MISS)   ] = 0,
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1731
		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
/* UOPS_NOT_DELIVERED.ANY */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
/* UOPS_RETIRED.ANY */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
/* UOPS_ISSUED.ANY */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");

static struct attribute *glm_events_attrs[] = {
	EVENT_PTR(td_total_slots_glm),
	EVENT_PTR(td_total_slots_scale_glm),
	EVENT_PTR(td_fetch_bubbles_glm),
	EVENT_PTR(td_recovery_bubbles_glm),
	EVENT_PTR(td_slots_issued_glm),
	EVENT_PTR(td_slots_retired_glm),
	NULL
};

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
	EVENT_EXTRA_END
};

#define GLM_DEMAND_DATA_RD		BIT_ULL(0)
#define GLM_DEMAND_RFO			BIT_ULL(1)
#define GLM_ANY_RESPONSE		BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
#define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
#define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 glm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_MISS,
		},
	},
};

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
static __initconst const u64 glp_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glp_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
#define TNT_LOCAL_DRAM			BIT_ULL(26)
#define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
#define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
#define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
#define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
#define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)

static __initconst const u64 tnt_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
						  TNT_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");

static struct attribute *tnt_events_attrs[] = {
	EVENT_PTR(td_fe_bound_tnt),
	EVENT_PTR(td_retiring_tnt),
	EVENT_PTR(td_bad_spec_tnt),
	EVENT_PTR(td_be_bound_tnt),
	NULL,
};

2072 2073
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2074 2075
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2076 2077 2078
	EVENT_EXTRA_END
};

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
#define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL	BIT_ULL(21)
#define KNL_MCDRAM_FAR		BIT_ULL(22)
#define KNL_DDR_LOCAL		BIT_ULL(23)
#define KNL_DDR_FAR		BIT_ULL(24)
#define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
				    KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ		SLM_DMND_READ
#define KNL_L2_WRITE		SLM_DMND_WRITE
#define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
#define KNL_L2_ACCESS		SLM_LLC_ACCESS
#define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
				   KNL_DRAM_ANY | SNB_SNP_ANY | \
						  SNB_NON_DRAM)

static __initconst const u64 knl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = 0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
		},
	},
};

2115
/*
2116 2117 2118 2119 2120 2121
 * Used from PMIs where the LBRs are already disabled.
 *
 * This function could be called consecutively. It is required to remain in
 * disabled state if called consecutively.
 *
 * During consecutive calls, the same disable value will be written to related
2122 2123 2124 2125 2126
 * registers, so the PMU state remains unchanged.
 *
 * intel_bts events don't coexist with intel PMU's BTS events because of
 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2127 2128 2129 2130 2131 2132 2133 2134
 *
 * Avoid PEBS_ENABLE MSR access in PMIs.
 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
 * It doesn't matter if the PEBS is enabled or not.
 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
 * access PEBS_ENABLE MSR in disable_all()/enable_all().
 * However, there are some cases which may change PEBS status, e.g. PMI
 * throttle. The PEBS_ENABLE should be updated where the status changes.
2135 2136
 */
static void __intel_pmu_disable_all(void)
2137
{
2138
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2139 2140 2141

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

2142
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2143
		intel_pmu_disable_bts();
2144 2145 2146 2147 2148
}

static void intel_pmu_disable_all(void)
{
	__intel_pmu_disable_all();
2149
	intel_pmu_pebs_disable_all();
2150
	intel_pmu_lbr_disable_all();
2151 2152
}

2153
static void __intel_pmu_enable_all(int added, bool pmi)
2154
{
2155
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2156

2157
	intel_pmu_lbr_enable_all(pmi);
2158 2159
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2160

2161
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2162
		struct perf_event *event =
2163
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2164 2165 2166 2167 2168

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
2169
	}
2170 2171
}

2172 2173
static void intel_pmu_enable_all(int added)
{
2174
	intel_pmu_pebs_enable_all();
2175 2176 2177
	__intel_pmu_enable_all(added, false);
}

2178 2179 2180 2181
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
2182
 *   Intel Errata BD53   (model 44)
2183
 *
2184 2185 2186 2187 2188 2189
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
I
Ingo Molnar 已提交
2190
 * we need to program all 4 events.
2191
 */
2192
static void intel_pmu_nhm_workaround(void)
2193
{
2194
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2195 2196 2197 2198 2199 2200 2201 2202
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
2213

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
2224

2225 2226 2227 2228 2229 2230
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
2231

2232 2233 2234 2235 2236 2237 2238
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2239

2240 2241 2242 2243 2244
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
2245
			__x86_pmu_enable_event(&event->hw,
2246 2247 2248
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2249
	}
2250 2251 2252 2253 2254 2255
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
2256 2257 2258
	intel_pmu_enable_all(added);
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;

	if (cpuc->tfa_shadow != val) {
		cpuc->tfa_shadow = val;
		wrmsrl(MSR_TSX_FORCE_ABORT, val);
	}
}

static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	/*
	 * We're going to use PMC3, make sure TFA is set before we touch it.
	 */
2274
	if (cntr == 3)
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		intel_set_tfa(cpuc, true);
}

static void intel_tfa_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * If we find PMC3 is no longer used when we enable the PMU, we can
	 * clear TFA.
	 */
	if (!test_bit(3, cpuc->active_mask))
		intel_set_tfa(cpuc, false);

	intel_pmu_enable_all(added);
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

static inline void intel_set_masks(struct perf_event *event, int idx)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (event->attr.exclude_host)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	if (event->attr.exclude_guest)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	if (event_is_checkpointed(event))
		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static inline void intel_clear_masks(struct perf_event *event, int idx)
2324
{
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static void intel_pmu_disable_fixed(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
2335
	u64 ctrl_val, mask;
2336
	int idx = hwc->idx;
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

		/*
		 * When there are other active TopDown events,
		 * don't disable the fixed counter 3.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;
		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}
2349

2350 2351 2352
	intel_clear_masks(event, idx);

	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2353 2354
	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
2355
	wrmsrl(hwc->config_base, ctrl_val);
2356 2357
}

2358
static void intel_pmu_disable_event(struct perf_event *event)
2359
{
2360
	struct hw_perf_event *hwc = &event->hw;
2361
	int idx = hwc->idx;
2362

2363 2364
	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2365 2366
		intel_clear_masks(event, idx);
		x86_pmu_disable_event(event);
2367 2368
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2369
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2370
		intel_pmu_disable_fixed(event);
2371 2372
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
2373 2374
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
2375 2376
		return;
	case INTEL_PMC_IDX_FIXED_VLBR:
2377
		intel_clear_masks(event, idx);
2378 2379 2380 2381 2382 2383 2384
		break;
	default:
		intel_clear_masks(event, idx);
		pr_warn("Failed to disable the event with invalid index %d\n",
			idx);
		return;
	}
2385

2386 2387 2388 2389 2390 2391
	/*
	 * Needs to be called after x86_pmu_disable_event,
	 * so we don't trigger the event without PEBS bit set.
	 */
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_disable(event);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401
static void intel_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		intel_pmu_lbr_del(event);
	if (event->attr.precise_ip)
		intel_pmu_pebs_del(event);
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
static int icl_set_topdown_event_period(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	s64 left = local64_read(&hwc->period_left);

	/*
	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
	 * Software should start both registers, PERF_METRICS and fixed
	 * counter 3, from zero.
	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
	 * After that, both MSRs will be cleared for each read.
	 * Don't need to clear them again.
	 */
	if (left == x86_pmu.max_period) {
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
		wrmsrl(MSR_PERF_METRICS, 0);
2418 2419 2420 2421 2422 2423 2424
		hwc->saved_slots = 0;
		hwc->saved_metric = 0;
	}

	if ((hwc->saved_slots) && is_slots_event(event)) {
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	}

	perf_event_update_userpage(event);

	return 0;
}

static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
{
	u32 val;

	/*
	 * The metric is reported as an 8bit integer fraction
	 * suming up to 0xff.
	 * slots-in-metric = (Metric / 0xff) * slots
	 */
	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
	return  mul_u64_u32_div(slots, val, 0xff);
}

2445
static u64 icl_get_topdown_value(struct perf_event *event,
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
				       u64 slots, u64 metrics)
{
	int idx = event->hw.idx;
	u64 delta;

	if (is_metric_idx(idx))
		delta = icl_get_metrics_event_value(metrics, slots, idx);
	else
		delta = slots;

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	return delta;
}

static void __icl_update_topdown_event(struct perf_event *event,
				       u64 slots, u64 metrics,
				       u64 last_slots, u64 last_metrics)
{
	u64 delta, last = 0;

	delta = icl_get_topdown_value(event, slots, metrics);
	if (last_slots)
		last = icl_get_topdown_value(event, last_slots, last_metrics);

	/*
	 * The 8bit integer fraction of metric may be not accurate,
	 * especially when the changes is very small.
	 * For example, if only a few bad_spec happens, the fraction
	 * may be reduced from 1 to 0. If so, the bad_spec event value
	 * will be 0 which is definitely less than the last value.
	 * Avoid update event->count for this case.
	 */
	if (delta > last) {
		delta -= last;
		local64_add(delta, &event->count);
	}
}

2483 2484
static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
				      u64 metrics, int metric_end)
2485 2486 2487 2488 2489 2490 2491 2492
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *other;
	int idx;

	event->hw.saved_slots = slots;
	event->hw.saved_metric = metrics;

2493
	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2494 2495 2496 2497 2498 2499
		if (!is_topdown_idx(idx))
			continue;
		other = cpuc->events[idx];
		other->hw.saved_slots = slots;
		other->hw.saved_metric = metrics;
	}
2500 2501 2502 2503 2504 2505 2506 2507
}

/*
 * Update all active Topdown events.
 *
 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
 * modify by a NMI. PMU has to be disabled before calling this function.
 */
2508 2509

static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2510 2511 2512 2513
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *other;
	u64 slots, metrics;
2514
	bool reset = true;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	int idx;

	/* read Fixed counter 3 */
	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
	if (!slots)
		return 0;

	/* read PERF_METRICS */
	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);

2525
	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2526 2527 2528
		if (!is_topdown_idx(idx))
			continue;
		other = cpuc->events[idx];
2529 2530 2531
		__icl_update_topdown_event(other, slots, metrics,
					   event ? event->hw.saved_slots : 0,
					   event ? event->hw.saved_metric : 0);
2532 2533 2534 2535 2536 2537
	}

	/*
	 * Check and update this event, which may have been cleared
	 * in active_mask e.g. x86_pmu_stop()
	 */
2538 2539 2540 2541
	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
		__icl_update_topdown_event(event, slots, metrics,
					   event->hw.saved_slots,
					   event->hw.saved_metric);
2542

2543 2544 2545 2546 2547 2548 2549 2550
		/*
		 * In x86_pmu_stop(), the event is cleared in active_mask first,
		 * then drain the delta, which indicates context switch for
		 * counting.
		 * Save metric and slots for context switch.
		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
		 * Because the values will be restored in next schedule in.
		 */
2551
		update_saved_topdown_regs(event, slots, metrics, metric_end);
2552 2553 2554 2555 2556 2557 2558 2559
		reset = false;
	}

	if (reset) {
		/* The fixed counter 3 has to be written before the PERF_METRICS. */
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
		wrmsrl(MSR_PERF_METRICS, 0);
		if (event)
2560
			update_saved_topdown_regs(event, 0, 0, metric_end);
2561
	}
2562 2563 2564 2565

	return slots;
}

2566 2567
static u64 icl_update_topdown_event(struct perf_event *event)
{
2568 2569
	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
						 x86_pmu.num_topdown_events - 1);
2570 2571
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
static void intel_pmu_read_topdown_event(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/* Only need to call update_topdown_event() once for group read. */
	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
	    !is_slots_event(event))
		return;

	perf_pmu_disable(event->pmu);
	x86_pmu.update_topdown_event(event);
	perf_pmu_enable(event->pmu);
}

2586 2587 2588 2589
static void intel_pmu_read_event(struct perf_event *event)
{
	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
		intel_pmu_auto_reload_read(event);
2590 2591
	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
		intel_pmu_read_topdown_event(event);
2592 2593 2594 2595
	else
		x86_perf_event_update(event);
}

2596
static void intel_pmu_enable_fixed(struct perf_event *event)
2597
{
2598 2599
	struct hw_perf_event *hwc = &event->hw;
	u64 ctrl_val, mask, bits = 0;
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	int idx = hwc->idx;

	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
		/*
		 * When there are other active TopDown events,
		 * don't enable the fixed counter 3 again.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;

		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}

	intel_set_masks(event, idx);
2615 2616

	/*
2617
	 * Enable IRQ generation (0x8), if not PEBS,
2618 2619 2620
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
2621 2622
	if (!event->attr.precise_ip)
		bits |= 0x8;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

2634
	idx -= INTEL_PMC_IDX_FIXED;
2635 2636 2637
	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

2638 2639 2640 2641 2642
	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
	}

2643 2644 2645
	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
2646
	wrmsrl(hwc->config_base, ctrl_val);
2647 2648
}

2649
static void intel_pmu_enable_event(struct perf_event *event)
2650
{
2651
	struct hw_perf_event *hwc = &event->hw;
2652
	int idx = hwc->idx;
2653

2654 2655 2656
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_enable(event);

2657 2658
	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2659 2660
		intel_set_masks(event, idx);
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2661 2662
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2663
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2664
		intel_pmu_enable_fixed(event);
2665 2666
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
2667 2668 2669
		if (!__this_cpu_read(cpu_hw_events.enabled))
			return;
		intel_pmu_enable_bts(hwc->config);
2670 2671
		break;
	case INTEL_PMC_IDX_FIXED_VLBR:
2672
		intel_set_masks(event, idx);
2673 2674 2675 2676 2677
		break;
	default:
		pr_warn("Failed to enable the event with invalid index %d\n",
			idx);
	}
2678 2679
}

2680 2681 2682 2683 2684 2685 2686 2687
static void intel_pmu_add_event(struct perf_event *event)
{
	if (event->attr.precise_ip)
		intel_pmu_pebs_add(event);
	if (needs_branch_stack(event))
		intel_pmu_lbr_add(event);
}

2688 2689 2690 2691
/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
2692
int intel_pmu_save_and_restart(struct perf_event *event)
2693
{
2694
	x86_perf_event_update(event);
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
2706
	return x86_perf_event_set_period(event);
2707 2708 2709 2710
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
2711
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2712 2713 2714
	unsigned long flags;
	int idx;

2715
	if (!x86_pmu.num_counters)
2716 2717 2718 2719
		return;

	local_irq_save(flags);

2720
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2721

2722
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2723 2724
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2725
	}
2726
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2727
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2728

2729 2730 2731
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	/* Ack all overflows and disable fixed counters */
	if (x86_pmu.version >= 2) {
		intel_pmu_ack_status(intel_pmu_get_status());
		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
	}

	/* Reset LBRs and LBR freezing */
	if (x86_pmu.lbr_nr) {
		update_debugctlmsr(get_debugctlmsr() &
			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
	}

2744 2745 2746
	local_irq_restore(flags);
}

2747
static int handle_pmi_common(struct pt_regs *regs, u64 status)
2748 2749
{
	struct perf_sample_data data;
2750 2751 2752
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int bit;
	int handled = 0;
2753 2754

	inc_irq_stat(apic_perf_irqs);
2755

2756
	/*
2757 2758
	 * Ignore a range of extra bits in status that do not indicate
	 * overflow by themselves.
2759
	 */
2760 2761 2762 2763
	status &= ~(GLOBAL_STATUS_COND_CHG |
		    GLOBAL_STATUS_ASIF |
		    GLOBAL_STATUS_LBRS_FROZEN);
	if (!status)
2764
		return 0;
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * In case multiple PEBS events are sampled at the same time,
	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
	 * having their bits set in the status register. This is a sign
	 * that there was at least one PEBS record pending at the time
	 * of the PMU interrupt. PEBS counters must only be processed
	 * via the drain_pebs() calls and not via the regular sample
	 * processing loop coming after that the function, otherwise
	 * phony regular samples may be generated in the sampling buffer
	 * not marked with the EXACT tag. Another possibility is to have
	 * one PEBS event and at least one non-PEBS event whic hoverflows
	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
	 * not be set, yet the overflow status bit for the PEBS counter will
	 * be on Skylake.
	 *
	 * To avoid this problem, we systematically ignore the PEBS-enabled
	 * counters from the GLOBAL_STATUS mask and we always process PEBS
	 * events via drain_pebs().
	 */
2785 2786 2787 2788
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		status &= ~cpuc->pebs_enabled;
	else
		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2789

2790 2791 2792
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
2793
	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2794 2795
		u64 pebs_enabled = cpuc->pebs_enabled;

2796
		handled++;
2797
		x86_pmu.drain_pebs(regs, &data);
2798
		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

		/*
		 * PMI throttle may be triggered, which stops the PEBS event.
		 * Although cpuc->pebs_enabled is updated accordingly, the
		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
		 * cpuc->enabled has been forced to 0 in PMI.
		 * Update the MSR if pebs_enabled is changed.
		 */
		if (pebs_enabled != cpuc->pebs_enabled)
			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2809
	}
2810

2811 2812 2813
	/*
	 * Intel PT
	 */
2814
	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2815
		handled++;
L
Luwei Kang 已提交
2816 2817 2818 2819 2820
		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
			perf_guest_cbs->handle_intel_pt_intr))
			perf_guest_cbs->handle_intel_pt_intr();
		else
			intel_pt_interrupt();
2821 2822
	}

2823 2824 2825 2826 2827 2828 2829 2830 2831
	/*
	 * Intel Perf mertrics
	 */
	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
		handled++;
		if (x86_pmu.update_topdown_event)
			x86_pmu.update_topdown_event(NULL);
	}

2832
	/*
2833 2834 2835
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
2836
	 */
2837
	status |= cpuc->intel_cp_status;
2838

2839
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2840 2841
		struct perf_event *event = cpuc->events[bit];

2842 2843
		handled++;

2844 2845 2846 2847 2848 2849
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

2850
		perf_sample_data_init(&data, 0, event->hw.last_period);
2851

2852 2853 2854
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

2855
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2856
			x86_pmu_stop(event, 0);
2857 2858
	}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	return handled;
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc;
	int loops;
	u64 status;
	int handled;
	int pmu_enabled;

	cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	/*
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
	 */
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	intel_bts_disable_local();
	cpuc->enabled = 0;
	__intel_pmu_disable_all();
	handled = intel_pmu_drain_bts_buffer();
	handled += intel_bts_interrupt();
	status = intel_pmu_get_status();
	if (!status)
		goto done;

	loops = 0;
again:
	intel_pmu_lbr_read();
	intel_pmu_ack_status(status);
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}

	handled += handle_pmi_common(regs, status);

2914 2915 2916 2917 2918 2919 2920
	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

2921
done:
2922
	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2923 2924
	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
2925
		__intel_pmu_enable_all(0, true);
2926
	intel_bts_enable_local();
2927

2928 2929 2930 2931 2932 2933 2934
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
2935
	return handled;
2936 2937 2938
}

static struct event_constraint *
2939
intel_bts_constraints(struct perf_event *event)
2940
{
2941
	if (unlikely(intel_pmu_has_bts(event)))
2942
		return &bts_constraint;
2943

2944 2945 2946
	return NULL;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/*
 * Note: matches a fake event, like Fixed2.
 */
static struct event_constraint *
intel_vlbr_constraints(struct perf_event *event)
{
	struct event_constraint *c = &vlbr_constraint;

	if (unlikely(constraint_match(c, event->hw.config)))
		return c;

	return NULL;
}

2961
static int intel_alt_er(int idx, u64 config)
2962
{
2963 2964
	int alt_idx = idx;

2965
	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2966
		return idx;
2967

2968
	if (idx == EXTRA_REG_RSP_0)
2969
		alt_idx = EXTRA_REG_RSP_1;
2970 2971

	if (idx == EXTRA_REG_RSP_1)
2972
		alt_idx = EXTRA_REG_RSP_0;
2973

2974 2975 2976 2977
	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
		return idx;

	return alt_idx;
2978 2979 2980 2981 2982 2983 2984
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
2985
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2986
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2987
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2988 2989
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2990
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2991
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2992 2993 2994
	}
}

2995 2996 2997 2998 2999 3000 3001
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
3002
static struct event_constraint *
3003
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3004 3005
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
3006
{
3007
	struct event_constraint *c = &emptyconstraint;
3008
	struct er_account *era;
3009
	unsigned long flags;
3010
	int idx = reg->idx;
3011

3012 3013 3014 3015 3016 3017
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
3018
		return NULL; /* call x86_get_event_constraint() */
3019

3020
again:
3021
	era = &cpuc->shared_regs->regs[idx];
3022 3023 3024 3025 3026
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
3027 3028 3029

	if (!atomic_read(&era->ref) || era->config == reg->config) {

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

3053 3054 3055 3056 3057 3058 3059
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

3060
		/*
3061 3062
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
3063
		 */
3064
		c = NULL;
3065
	} else {
3066
		idx = intel_alt_er(idx, reg->config);
3067 3068 3069 3070
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
3071
	}
3072
	raw_spin_unlock_irqrestore(&era->lock, flags);
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
3084 3085 3086 3087 3088 3089
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
3090
	 */
3091
	if (!reg->alloc || cpuc->is_fake)
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
3124
	return c;
3125 3126
}

3127
struct event_constraint *
3128 3129
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
3130 3131 3132 3133 3134
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
3135
			if (constraint_match(c, event->hw.config)) {
3136
				event->hw.flags |= c->flags;
3137
				return c;
3138
			}
3139 3140 3141 3142 3143 3144
		}
	}

	return &unconstrained;
}

3145
static struct event_constraint *
3146
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3147
			    struct perf_event *event)
3148 3149 3150
{
	struct event_constraint *c;

3151 3152 3153 3154
	c = intel_vlbr_constraints(event);
	if (c)
		return c;

3155 3156 3157 3158
	c = intel_bts_constraints(event);
	if (c)
		return c;

3159
	c = intel_shared_regs_constraints(cpuc, event);
3160 3161 3162
	if (c)
		return c;

3163
	c = intel_pebs_constraints(event);
3164 3165 3166
	if (c)
		return c;

3167
	return x86_get_event_constraints(cpuc, idx, event);
3168 3169
}

3170 3171 3172 3173
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3174
	struct intel_excl_states *xl;
3175 3176 3177 3178 3179
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
3180
	if (cpuc->is_fake || !is_ht_workaround_enabled())
3181
		return;
3182

3183 3184 3185
	/*
	 * no exclusion needed
	 */
3186
	if (WARN_ON_ONCE(!excl_cntrs))
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = true;
	/*
	 * lock shared state until we are done scheduling
	 * in stop_event_scheduling()
	 * makes scheduling appear as a transaction
	 */
	raw_spin_lock(&excl_cntrs->lock);
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct event_constraint *c = cpuc->event_constraint[idx];
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
		return;

	xl = &excl_cntrs->states[tid];

	lockdep_assert_held(&excl_cntrs->lock);

3220
	if (c->flags & PERF_X86_EVENT_EXCL)
3221
		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3222
	else
3223
		xl->state[cntr] = INTEL_EXCL_SHARED;
3224 3225
}

3226 3227 3228 3229
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3230
	struct intel_excl_states *xl;
3231 3232 3233 3234 3235
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
3236
	if (cpuc->is_fake || !is_ht_workaround_enabled())
3237 3238 3239 3240
		return;
	/*
	 * no exclusion needed
	 */
3241
	if (WARN_ON_ONCE(!excl_cntrs))
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = false;
	/*
	 * release shared state lock (acquired in intel_start_scheduling())
	 */
	raw_spin_unlock(&excl_cntrs->lock);
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
	WARN_ON_ONCE(!cpuc->constraint_list);

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
		struct event_constraint *cx;

		/*
		 * grab pre-allocated constraint entry
		 */
		cx = &cpuc->constraint_list[idx];

		/*
		 * initialize dynamic constraint
		 * with static constraint
		 */
		*cx = *c;

		/*
		 * mark constraint as dynamic
		 */
		cx->flags |= PERF_X86_EVENT_DYNAMIC;
		c = cx;
	}

	return c;
}

3282 3283 3284 3285 3286
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			   int idx, struct event_constraint *c)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3287
	struct intel_excl_states *xlo;
3288
	int tid = cpuc->excl_thread_id;
3289
	int is_excl, i, w;
3290 3291 3292 3293 3294

	/*
	 * validating a group does not require
	 * enforcing cross-thread  exclusion
	 */
3295 3296 3297 3298 3299 3300
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return c;

	/*
	 * no exclusion needed
	 */
3301
	if (WARN_ON_ONCE(!excl_cntrs))
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		return c;

	/*
	 * because we modify the constraint, we need
	 * to make a copy. Static constraints come
	 * from static const tables.
	 *
	 * only needed when constraint has not yet
	 * been cloned (marked dynamic)
	 */
3312
	c = dyn_constraint(cpuc, c, idx);
3313 3314 3315 3316 3317 3318 3319 3320

	/*
	 * From here on, the constraint is dynamic.
	 * Either it was just allocated above, or it
	 * was allocated during a earlier invocation
	 * of this function
	 */

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	/*
	 * state of sibling HT
	 */
	xlo = &excl_cntrs->states[tid ^ 1];

	/*
	 * event requires exclusive counter access
	 * across HT threads
	 */
	is_excl = c->flags & PERF_X86_EVENT_EXCL;
	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
		if (!cpuc->n_excl++)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
	}

3337 3338 3339 3340 3341 3342 3343 3344
	/*
	 * Modify static constraint with current dynamic
	 * state of thread
	 *
	 * EXCLUSIVE: sibling counter measuring exclusive event
	 * SHARED   : sibling counter measuring non-exclusive event
	 * UNUSED   : sibling counter unused
	 */
3345
	w = c->weight;
3346
	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3347 3348 3349 3350 3351
		/*
		 * exclusive event in sibling counter
		 * our corresponding counter cannot be used
		 * regardless of our event
		 */
3352
		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3353
			__clear_bit(i, c->idxmsk);
3354 3355 3356
			w--;
			continue;
		}
3357 3358 3359 3360 3361
		/*
		 * if measuring an exclusive event, sibling
		 * measuring non-exclusive, then counter cannot
		 * be used
		 */
3362
		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3363
			__clear_bit(i, c->idxmsk);
3364 3365 3366
			w--;
			continue;
		}
3367 3368 3369 3370 3371 3372 3373
	}

	/*
	 * if we return an empty mask, then switch
	 * back to static empty constraint to avoid
	 * the cost of freeing later on
	 */
3374
	if (!w)
3375
		c = &emptyconstraint;
3376

3377 3378
	c->weight = w;

3379
	return c;
3380 3381 3382 3383 3384 3385
}

static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
3386
	struct event_constraint *c1, *c2;
3387

3388
	c1 = cpuc->event_constraint[idx];
3389

3390 3391 3392 3393 3394
	/*
	 * first time only
	 * - static constraint: no change across incremental scheduling calls
	 * - dynamic constraint: handled by intel_get_excl_constraints()
	 */
3395
	c2 = __intel_get_event_constraints(cpuc, idx, event);
3396 3397
	if (c1) {
	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3398 3399 3400 3401
		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
		c1->weight = c2->weight;
		c2 = c1;
	}
3402 3403

	if (cpuc->excl_cntrs)
3404
		return intel_get_excl_constraints(cpuc, event, idx, c2);
3405

3406
	return c2;
3407 3408 3409 3410 3411 3412 3413 3414
}

static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
		struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	int tid = cpuc->excl_thread_id;
3415
	struct intel_excl_states *xl;
3416 3417 3418 3419 3420 3421 3422

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake)
		return;

3423
	if (WARN_ON_ONCE(!excl_cntrs))
3424 3425
		return;

3426 3427 3428 3429 3430
	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
		if (!--cpuc->n_excl)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
	}
3431 3432

	/*
3433 3434
	 * If event was actually assigned, then mark the counter state as
	 * unused now.
3435
	 */
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	if (hwc->idx >= 0) {
		xl = &excl_cntrs->states[tid];

		/*
		 * put_constraint may be called from x86_schedule_events()
		 * which already has the lock held so here make locking
		 * conditional.
		 */
		if (!xl->sched_started)
			raw_spin_lock(&excl_cntrs->lock);
3446

3447
		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3448

3449 3450 3451
		if (!xl->sched_started)
			raw_spin_unlock(&excl_cntrs->lock);
	}
3452 3453
}

3454 3455
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3456 3457
					struct perf_event *event)
{
3458
	struct hw_perf_event_extra *reg;
3459

3460 3461 3462
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3463 3464 3465 3466

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
3467
}
3468

3469 3470 3471 3472
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
3473 3474 3475 3476 3477 3478

	/*
	 * is PMU has exclusive counter restrictions, then
	 * all events are subject to and must call the
	 * put_excl_constraints() routine
	 */
3479
	if (cpuc->excl_cntrs)
3480 3481 3482
		intel_put_excl_constraints(cpuc, event);
}

3483
static void intel_pebs_aliases_core2(struct perf_event *event)
3484
{
3485
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
3504 3505
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3533 3534 3535 3536

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
3537 3538
}

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
		 * (0x01c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * The PREC_DIST event has special support to minimize sample
		 * shadowing effects. One drawback is that it can be
		 * only programmed on counter 1, but that seems like an
		 * acceptable trade off.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_ivb(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_snb(event);
	return intel_pebs_aliases_precdist(event);
}

static void intel_pebs_aliases_skl(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_core2(event);
	return intel_pebs_aliases_precdist(event);
}

3577
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3578
{
3579
	unsigned long flags = x86_pmu.large_pebs_flags;
3580 3581 3582

	if (event->attr.use_clockid)
		flags &= ~PERF_SAMPLE_TIME;
3583 3584
	if (!event->attr.exclude_kernel)
		flags &= ~PERF_SAMPLE_REGS_USER;
K
Kan Liang 已提交
3585
	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3586
		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3587 3588 3589
	return flags;
}

3590 3591 3592 3593
static int intel_pmu_bts_config(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;

3594
	if (unlikely(intel_pmu_has_bts(event))) {
3595 3596 3597 3598 3599 3600 3601 3602
		/* BTS is not supported by this architecture. */
		if (!x86_pmu.bts_active)
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;

3603 3604 3605 3606
		/* BTS is not allowed for precise events. */
		if (attr->precise_ip)
			return -EOPNOTSUPP;

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
	}

	return 0;
}

static int core_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	return intel_pmu_bts_config(event);
}

3627 3628 3629 3630 3631 3632 3633 3634 3635
#define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
					 ((x86_pmu.num_topdown_events - 1) << 8))

static bool is_available_metric_event(struct perf_event *event)
{
	return is_metric_event(event) &&
		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
static inline bool is_mem_loads_event(struct perf_event *event)
{
	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
}

static inline bool is_mem_loads_aux_event(struct perf_event *event)
{
	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
}


3647 3648 3649 3650
static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

3651 3652 3653 3654
	if (ret)
		return ret;

	ret = intel_pmu_bts_config(event);
3655 3656 3657
	if (ret)
		return ret;

3658
	if (event->attr.precise_ip) {
3659
		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3660
			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3661
			if (!(event->attr.sample_type &
3662 3663
			      ~intel_pmu_large_pebs_flags(event)))
				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3664
		}
3665 3666
		if (x86_pmu.pebs_aliases)
			x86_pmu.pebs_aliases(event);
3667 3668 3669

		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3670
	}
3671

3672
	if (needs_branch_stack(event)) {
3673 3674 3675
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
3676 3677 3678 3679

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
3680
		if (!unlikely(intel_pmu_has_bts(event))) {
3681 3682 3683 3684 3685 3686
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
3687 3688
	}

3689 3690 3691 3692 3693 3694 3695
	if (event->attr.aux_output) {
		if (!event->attr.precise_ip)
			return -EINVAL;

		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
	}

3696 3697 3698
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	/*
	 * Config Topdown slots and metric events
	 *
	 * The slots event on Fixed Counter 3 can support sampling,
	 * which will be handled normally in x86_perf_event_update().
	 *
	 * Metric events don't support sampling and require being paired
	 * with a slots event as group leader. When the slots event
	 * is used in a metrics group, it too cannot support sampling.
	 */
	if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
		if (event->attr.config1 || event->attr.config2)
			return -EINVAL;

		/*
		 * The TopDown metrics events and slots event don't
		 * support any filters.
		 */
		if (event->attr.config & X86_ALL_EVENT_FLAGS)
			return -EINVAL;

3720
		if (is_available_metric_event(event)) {
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
			struct perf_event *leader = event->group_leader;

			/* The metric events don't support sampling. */
			if (is_sampling_event(event))
				return -EINVAL;

			/* The metric events require a slots group leader. */
			if (!is_slots_event(leader))
				return -EINVAL;

			/*
			 * The leader/SLOTS must not be a sampling event for
			 * metric use; hardware requires it starts at 0 when used
			 * in conjunction with MSR_PERF_METRICS.
			 */
			if (is_sampling_event(leader))
				return -EINVAL;

			event->event_caps |= PERF_EV_CAP_SIBLING;
			/*
			 * Only once we have a METRICs sibling do we
			 * need TopDown magic.
			 */
			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
		}
	}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	/*
	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
	 * doesn't function quite right. As a work-around it needs to always be
	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
	 * The actual count of this second event is irrelevant it just needs
	 * to be active to make the first event function correctly.
	 *
	 * In a group, the auxiliary event must be in front of the load latency
	 * event. The rule is to simplify the implementation of the check.
	 * That's because perf cannot have a complete group at the moment.
	 */
	if (x86_pmu.flags & PMU_FL_MEM_LOADS_AUX &&
	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
	    is_mem_loads_event(event)) {
		struct perf_event *leader = event->group_leader;
		struct perf_event *sibling = NULL;

		if (!is_mem_loads_aux_event(leader)) {
			for_each_sibling_event(sibling, leader) {
				if (is_mem_loads_aux_event(sibling))
					break;
			}
			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
				return -ENODATA;
		}
	}

3776 3777 3778 3779 3780 3781
	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

3782 3783 3784
	ret = perf_allow_cpu(&event->attr);
	if (ret)
		return ret;
3785 3786 3787 3788 3789 3790

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

3791 3792
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
3793
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3794 3795 3796 3797 3798
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		arr[0].guest &= ~cpuc->pebs_enabled;
	else
		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
	*nr = 1;

	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
		/*
		 * If PMU counter has PEBS enabled it is not enough to
		 * disable counter on a guest entry since PEBS memory
		 * write can overshoot guest entry and corrupt guest
		 * memory. Disabling PEBS solves the problem.
		 *
		 * Don't do this if the CPU already enforces it.
		 */
		arr[1].msr = MSR_IA32_PEBS_ENABLE;
		arr[1].host = cpuc->pebs_enabled;
		arr[1].guest = 0;
		*nr = 2;
	}
3819 3820 3821 3822 3823 3824

	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
3825
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
3859
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
3907 3908 3909
	return 0;
}

3910 3911 3912
static struct event_constraint counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);

3913 3914 3915
static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

K
Kan Liang 已提交
3916 3917 3918
static struct event_constraint fixed0_constraint =
			FIXED_EVENT_CONSTRAINT(0x00c0, 0);

3919 3920 3921
static struct event_constraint fixed0_counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);

3922
static struct event_constraint *
3923 3924
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
3925
{
3926 3927 3928
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

K
Kan Liang 已提交
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	/*
	 * Fixed counter 0 has less skid.
	 * Force instruction:ppp in Fixed counter 0
	 */
	if ((event->attr.precise_ip == 3) &&
	    constraint_match(&fixed0_constraint, event->hw.config))
		return &fixed0_constraint;

	return hsw_get_event_constraints(cpuc, idx, event);
}

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = icl_get_event_constraints(cpuc, idx, event);

	/*
	 * The :ppp indicates the Precise Distribution (PDist) facility, which
	 * is only supported on the GP counter 0. If a :ppp event which is not
	 * available on the GP counter 0, error out.
	 */
	if (event->attr.precise_ip == 3) {
		if (c->idxmsk64 & BIT_ULL(0))
			return &counter0_constraint;

		return &emptyconstraint;
	}

	return c;
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
	if (event->attr.precise_ip == 3)
		return &counter0_constraint;

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/*
	 * :ppp means to do reduced skid PEBS,
	 * which is available on PMC0 and fixed counter 0.
	 */
	if (event->attr.precise_ip == 3) {
		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
		if (constraint_match(&fixed0_constraint, event->hw.config))
			return &fixed0_counter0_constraint;

		return &counter0_constraint;
	}

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
static bool allow_tsx_force_abort = true;

static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);

	/*
	 * Without TFA we must not use PMC3.
	 */
4027
	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4028 4029 4030 4031 4032 4033 4034 4035
		c = dyn_constraint(cpuc, c, idx);
		c->idxmsk64 &= ~(1ULL << 3);
		c->weight--;
	}

	return c;
}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
4051
static u64 bdw_limit_period(struct perf_event *event, u64 left)
4052 4053 4054 4055 4056
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (left < 128)
			left = 128;
4057
		left &= ~0x3fULL;
4058 4059 4060 4061
	}
	return left;
}

4062 4063 4064 4065 4066
static u64 nhm_limit_period(struct perf_event *event, u64 left)
{
	return max(left, 32ULL);
}

4067 4068 4069 4070 4071 4072 4073 4074
static u64 spr_limit_period(struct perf_event *event, u64 left)
{
	if (event->attr.precise_ip == 3)
		return max(left, 128ULL);

	return left;
}

4075 4076 4077 4078 4079 4080 4081
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4082 4083
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

4095 4096 4097 4098 4099 4100 4101
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

4102
static struct intel_shared_regs *allocate_shared_regs(int cpu)
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
	struct intel_excl_cntrs *c;

	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
			 GFP_KERNEL, cpu_to_node(cpu));
	if (c) {
		raw_spin_lock_init(&c->lock);
		c->core_id = -1;
	}
	return c;
}

4134

4135 4136
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
4137 4138
	cpuc->pebs_record_size = x86_pmu.pebs_record_size;

4139 4140 4141
	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
4142
			goto err;
4143
	}
4144

4145
	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4146 4147
		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);

4148
		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4149
		if (!cpuc->constraint_list)
4150
			goto err_shared_regs;
4151
	}
4152

4153
	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4154
		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4155 4156 4157
		if (!cpuc->excl_cntrs)
			goto err_constraint_list;

4158 4159
		cpuc->excl_thread_id = 0;
	}
4160

4161
	return 0;
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

err_constraint_list:
	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;

err_shared_regs:
	kfree(cpuc->shared_regs);
	cpuc->shared_regs = NULL;

err:
4172
	return -ENOMEM;
4173 4174
}

4175 4176 4177 4178 4179
static int intel_pmu_cpu_prepare(int cpu)
{
	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
static void flip_smm_bit(void *data)
{
	unsigned long set = *(unsigned long *)data;

	if (set > 0) {
		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	} else {
		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	}
}

4193 4194
static void intel_pmu_cpu_starting(int cpu)
{
4195 4196 4197 4198
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

4199 4200 4201 4202 4203 4204
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

4205 4206
	cpuc->lbr_sel = NULL;

4207 4208 4209 4210 4211 4212
	if (x86_pmu.flags & PMU_FL_TFA) {
		WARN_ON_ONCE(cpuc->tfa_shadow);
		cpuc->tfa_shadow = ~0ULL;
		intel_set_tfa(cpuc, false);
	}

4213 4214
	if (x86_pmu.version > 1)
		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	/* Disable perf metrics if any added CPU doesn't support it. */
	if (x86_pmu.intel_cap.perf_metrics) {
		union perf_capabilities perf_cap;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
		if (!perf_cap.perf_metrics) {
			x86_pmu.intel_cap.perf_metrics = 0;
			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
		}
	}

4227
	if (!cpuc->shared_regs)
4228 4229
		return;

4230
	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4231
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4232
			struct intel_shared_regs *pc;
4233

4234 4235
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
P
Peter Zijlstra 已提交
4236
				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4237 4238 4239
				cpuc->shared_regs = pc;
				break;
			}
4240
		}
4241 4242
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
4243 4244
	}

4245 4246
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4247 4248

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4249
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4250
			struct cpu_hw_events *sibling;
4251 4252
			struct intel_excl_cntrs *c;

4253 4254
			sibling = &per_cpu(cpu_hw_events, i);
			c = sibling->excl_cntrs;
4255 4256 4257
			if (c && c->core_id == core_id) {
				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
				cpuc->excl_cntrs = c;
4258 4259
				if (!sibling->excl_thread_id)
					cpuc->excl_thread_id = 1;
4260 4261 4262 4263 4264 4265
				break;
			}
		}
		cpuc->excl_cntrs->core_id = core_id;
		cpuc->excl_cntrs->refcnt++;
	}
4266 4267
}

4268
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4269
{
4270
	struct intel_excl_cntrs *c;
4271

4272 4273 4274 4275 4276 4277
	c = cpuc->excl_cntrs;
	if (c) {
		if (c->core_id == -1 || --c->refcnt == 0)
			kfree(c);
		cpuc->excl_cntrs = NULL;
	}
4278 4279 4280

	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;
4281
}
4282

4283
static void intel_pmu_cpu_dying(int cpu)
4284 4285 4286 4287
{
	fini_debug_store_on_cpu(cpu);
}

4288
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4289 4290 4291 4292 4293 4294 4295 4296
{
	struct intel_shared_regs *pc;

	pc = cpuc->shared_regs;
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->shared_regs = NULL;
4297 4298
	}

4299 4300 4301 4302 4303 4304
	free_excl_cntrs(cpuc);
}

static void intel_pmu_cpu_dead(int cpu)
{
	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
4305 4306
}

4307 4308 4309
static void intel_pmu_sched_task(struct perf_event_context *ctx,
				 bool sched_in)
{
4310 4311
	intel_pmu_pebs_sched_task(ctx, sched_in);
	intel_pmu_lbr_sched_task(ctx, sched_in);
4312 4313
}

4314 4315 4316 4317 4318 4319
static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
				    struct perf_event_context *next)
{
	intel_pmu_lbr_swap_task_ctx(prev, next);
}

4320 4321 4322 4323 4324
static int intel_pmu_check_period(struct perf_event *event, u64 value)
{
	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
}

4325 4326 4327 4328 4329 4330 4331 4332
static int intel_pmu_aux_output_match(struct perf_event *event)
{
	if (!x86_pmu.intel_cap.pebs_output_pt_available)
		return 0;

	return is_intel_pt_event(event);
}

4333 4334
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

4335 4336
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

4337 4338
PMU_FORMAT_ATTR(frontend, "config1:0-23");

4339 4340 4341 4342 4343 4344 4345 4346
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
4347 4348 4349 4350
	NULL,
};

static struct attribute *hsw_format_attr[] = {
4351 4352
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
4353 4354 4355 4356
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366
static struct attribute *nhm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};

static struct attribute *slm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	NULL
4367 4368
};

4369 4370 4371 4372 4373
static struct attribute *skl_format_attr[] = {
	&format_attr_frontend.attr,
	NULL,
};

4374 4375 4376 4377 4378 4379 4380
static __initconst const struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
4381
	.hw_config		= core_pmu_hw_config,
4382 4383 4384 4385 4386 4387
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
4388
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4389

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	/*
	 * Intel PMCs cannot be accessed sanely above 32-bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL<<31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.event_constraints	= intel_core_event_constraints,
	.guest_get_msrs		= core_guest_get_msrs,
	.format_attrs		= intel_arch_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	/*
	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
	 * together with PMU version 1 and thus be using core_pmu with
	 * shared_regs. We need following callbacks here to allocate
	 * it properly.
	 */
	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
4412
	.cpu_dead		= intel_pmu_cpu_dead,
4413 4414

	.check_period		= intel_pmu_check_period,
4415 4416

	.lbr_reset		= intel_pmu_lbr_reset_64,
4417
	.lbr_read		= intel_pmu_lbr_read_64,
4418 4419
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
4420 4421
};

4422
static __initconst const struct x86_pmu intel_pmu = {
4423 4424 4425 4426 4427 4428
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
4429 4430
	.add			= intel_pmu_add_event,
	.del			= intel_pmu_del_event,
4431
	.read			= intel_pmu_read_event,
4432
	.hw_config		= intel_pmu_hw_config,
4433
	.schedule_events	= x86_schedule_events,
4434 4435 4436 4437 4438
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
4439
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4440 4441 4442 4443 4444 4445
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
4446
	.get_event_constraints	= intel_get_event_constraints,
4447
	.put_event_constraints	= intel_put_event_constraints,
4448
	.pebs_aliases		= intel_pebs_aliases_core2,
4449

4450
	.format_attrs		= intel_arch3_formats_attr,
4451
	.events_sysfs_show	= intel_event_sysfs_show,
4452

4453
	.cpu_prepare		= intel_pmu_cpu_prepare,
4454 4455
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
4456 4457
	.cpu_dead		= intel_pmu_cpu_dead,

4458
	.guest_get_msrs		= intel_guest_get_msrs,
4459
	.sched_task		= intel_pmu_sched_task,
4460
	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4461 4462

	.check_period		= intel_pmu_check_period,
4463 4464

	.aux_output_match	= intel_pmu_aux_output_match,
4465 4466

	.lbr_reset		= intel_pmu_lbr_reset_64,
4467
	.lbr_read		= intel_pmu_lbr_read_64,
4468 4469
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
4470 4471
};

4472
static __init void intel_clovertown_quirk(void)
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
4488
	 *	 a pebs_event_reset[0] value and coping with the lost events.
4489 4490 4491 4492
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
4493
	pr_warn("PEBS disabled due to CPU errata\n");
4494 4495 4496 4497
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

4498
static const struct x86_cpu_desc isolation_ucodes[] = {
4499
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4500
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4501
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4502 4503
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4504
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4505
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4506 4507 4508 4509
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4510 4511 4512
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4513
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4514 4515
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4516 4517 4518 4519
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4520 4521 4522 4523
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	{}
};

static void intel_check_pebs_isolation(void)
{
	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
}

static __init void intel_pebs_isolation_quirk(void)
{
	WARN_ON_ONCE(x86_pmu.check_microcode);
	x86_pmu.check_microcode = intel_check_pebs_isolation;
	intel_check_pebs_isolation();
}

4539 4540 4541 4542 4543 4544
static const struct x86_cpu_desc pebs_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
	{}
};
4545

4546 4547 4548
static bool intel_snb_pebs_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4549 4550 4551 4552
}

static void intel_snb_check_microcode(void)
{
4553
	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

4568 4569 4570 4571 4572 4573 4574
static bool is_lbr_from(unsigned long msr)
{
	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;

	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
}

4575 4576 4577 4578 4579 4580 4581 4582
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

4583 4584 4585 4586
	/*
	 * Disable the check for real HW, so we don't
	 * mess with potentionaly enabled registers:
	 */
4587
	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4588 4589
		return true;

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
4602 4603 4604 4605

	if (is_lbr_from(msr))
		val_tmp = lbr_from_signext_quirk_wr(val_tmp);

4606 4607 4608 4609
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

4610 4611 4612 4613
	/*
	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
	 * should equal rdmsrl()'s even with the quirk.
	 */
4614 4615 4616
	if (val_new != val_tmp)
		return false;

4617 4618 4619
	if (is_lbr_from(msr))
		val_old = lbr_from_signext_quirk_wr(val_old);

4620 4621 4622 4623 4624 4625 4626 4627
	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

4628
static __init void intel_sandybridge_quirk(void)
4629
{
4630
	x86_pmu.check_microcode = intel_snb_check_microcode;
4631
	cpus_read_lock();
4632
	intel_snb_check_microcode();
4633
	cpus_read_unlock();
4634 4635
}

4636 4637 4638 4639 4640 4641 4642 4643
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4644 4645
};

4646 4647 4648 4649 4650 4651 4652
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4653 4654
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
4673
		pr_info("CPU erratum AAJ80 worked around\n");
4674 4675 4676
	}
}

4677 4678 4679 4680 4681 4682 4683
/*
 * enable software workaround for errata:
 * SNB: BJ122
 * IVB: BV98
 * HSW: HSD29
 *
 * Only needed when HT is enabled. However detecting
4684 4685 4686 4687
 * if HT is enabled is difficult (model specific). So instead,
 * we enable the workaround in the early boot, and verify if
 * it is needed in a later initcall phase once we have valid
 * topology information to check if HT is actually enabled
4688 4689 4690
 */
static __init void intel_ht_bug(void)
{
4691
	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4692 4693

	x86_pmu.start_scheduling = intel_start_scheduling;
4694
	x86_pmu.commit_scheduling = intel_commit_scheduling;
4695 4696 4697
	x86_pmu.stop_scheduling = intel_stop_scheduling;
}

4698 4699
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4700

4701
/* Haswell special events */
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4714

4715
static struct attribute *hsw_events_attrs[] = {
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
	NULL
};

4726 4727 4728 4729 4730 4731
static struct attribute *hsw_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

4732
static struct attribute *hsw_tsx_events_attrs[] = {
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
4745 4746 4747
	NULL
};

K
Kan Liang 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");

static struct attribute *icl_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

4759 4760 4761 4762 4763 4764 4765 4766 4767
static struct attribute *icl_td_events_attrs[] = {
	EVENT_PTR(slots),
	EVENT_PTR(td_retiring),
	EVENT_PTR(td_bad_spec),
	EVENT_PTR(td_fe_bound),
	EVENT_PTR(td_be_bound),
	NULL,
};

K
Kan Liang 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
static struct attribute *icl_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_capacity_read),
	EVENT_PTR(el_capacity_write),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");

static struct attribute *spr_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_spr),
	EVENT_PTR(mem_ld_aux),
	NULL,
};

static struct attribute *spr_td_events_attrs[] = {
	EVENT_PTR(slots),
	EVENT_PTR(td_retiring),
	EVENT_PTR(td_bad_spec),
	EVENT_PTR(td_fe_bound),
	EVENT_PTR(td_be_bound),
	EVENT_PTR(td_heavy_ops),
	EVENT_PTR(td_br_mispredict),
	EVENT_PTR(td_fetch_lat),
	EVENT_PTR(td_mem_bound),
	NULL,
};

static struct attribute *spr_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
static ssize_t freeze_on_smi_show(struct device *cdev,
				  struct device_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
}

static DEFINE_MUTEX(freeze_on_smi_mutex);

static ssize_t freeze_on_smi_store(struct device *cdev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	if (val > 1)
		return -EINVAL;

	mutex_lock(&freeze_on_smi_mutex);

	if (x86_pmu.attr_freeze_on_smi == val)
		goto done;

	x86_pmu.attr_freeze_on_smi = val;

	get_online_cpus();
	on_each_cpu(flip_smm_bit, &val, 1);
	put_online_cpus();
done:
	mutex_unlock(&freeze_on_smi_mutex);

	return count;
}

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
static void update_tfa_sched(void *ignored)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * check if PMC3 is used
	 * and if so force schedule out for all event types all contexts
	 */
	if (test_bit(3, cpuc->active_mask))
		perf_pmu_resched(x86_get_pmu());
}

static ssize_t show_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
}

static ssize_t set_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      const char *buf, size_t count)
{
	bool val;
	ssize_t ret;

	ret = kstrtobool(buf, &val);
	if (ret)
		return ret;

	/* no change */
	if (val == allow_tsx_force_abort)
		return count;

	allow_tsx_force_abort = val;

	get_online_cpus();
	on_each_cpu(update_tfa_sched, NULL, 1);
	put_online_cpus();

	return count;
}


4905 4906
static DEVICE_ATTR_RW(freeze_on_smi);

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
static ssize_t branches_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

static struct attribute *lbr_attrs[] = {
	&dev_attr_branches.attr,
	NULL
};

static char pmu_name_str[30];

static ssize_t pmu_name_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
}

static DEVICE_ATTR_RO(pmu_name);

static struct attribute *intel_pmu_caps_attrs[] = {
P
Peter Zijlstra 已提交
4933 4934
       &dev_attr_pmu_name.attr,
       NULL
4935 4936
};

4937 4938 4939
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
		   show_sysctl_tfa,
		   set_sysctl_tfa);
4940

4941 4942
static struct attribute *intel_pmu_attrs[] = {
	&dev_attr_freeze_on_smi.attr,
4943
	&dev_attr_allow_tsx_force_abort.attr,
4944 4945 4946
	NULL,
};

4947 4948
static umode_t
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4949
{
4950 4951
	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
}
4952

4953 4954 4955 4956 4957
static umode_t
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.pebs ? attr->mode : 0;
}
4958

4959 4960 4961 4962 4963 4964
static umode_t
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.lbr_nr ? attr->mode : 0;
}

4965 4966 4967 4968 4969 4970
static umode_t
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.version >= 2 ? attr->mode : 0;
}

4971 4972 4973 4974 4975 4976 4977 4978 4979
static umode_t
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	if (attr == &dev_attr_allow_tsx_force_abort.attr)
		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;

	return attr->mode;
}

4980 4981 4982
static struct attribute_group group_events_td  = {
	.name = "events",
};
4983

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
static struct attribute_group group_events_mem = {
	.name       = "events",
	.is_visible = pebs_is_visible,
};

static struct attribute_group group_events_tsx = {
	.name       = "events",
	.is_visible = tsx_is_visible,
};

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
static struct attribute_group group_caps_gen = {
	.name  = "caps",
	.attrs = intel_pmu_caps_attrs,
};

static struct attribute_group group_caps_lbr = {
	.name       = "caps",
	.attrs	    = lbr_attrs,
	.is_visible = lbr_is_visible,
};

5005 5006 5007 5008 5009
static struct attribute_group group_format_extra = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

5010 5011 5012 5013 5014
static struct attribute_group group_format_extra_skl = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

5015
static struct attribute_group group_default = {
5016 5017
	.attrs      = intel_pmu_attrs,
	.is_visible = default_is_visible,
5018 5019
};

5020 5021 5022 5023
static const struct attribute_group *attr_update[] = {
	&group_events_td,
	&group_events_mem,
	&group_events_tsx,
5024 5025
	&group_caps_gen,
	&group_caps_lbr,
5026
	&group_format_extra,
5027
	&group_format_extra_skl,
5028
	&group_default,
5029 5030 5031 5032
	NULL,
};

static struct attribute *empty_attrs;
5033

5034
__init int intel_pmu_init(void)
5035
{
5036
	struct attribute **extra_skl_attr = &empty_attrs;
5037 5038 5039 5040
	struct attribute **extra_attr = &empty_attrs;
	struct attribute **td_attr    = &empty_attrs;
	struct attribute **mem_attr   = &empty_attrs;
	struct attribute **tsx_attr   = &empty_attrs;
5041 5042
	union cpuid10_edx edx;
	union cpuid10_eax eax;
5043
	union cpuid10_ebx ebx;
5044
	struct event_constraint *c;
5045
	unsigned int unused;
5046
	struct extra_reg *er;
5047
	bool pmem = false;
5048
	int version, i;
5049
	char *name;
5050 5051

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5052 5053 5054
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
5055 5056
		case 0xb:
			return knc_pmu_init();
5057 5058 5059
		case 0xf:
			return p4_pmu_init();
		}
5060 5061 5062 5063 5064 5065 5066
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
5067 5068
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5069 5070 5071 5072 5073 5074 5075 5076 5077
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
5078 5079 5080
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5081

5082 5083 5084
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

5085 5086
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

5087 5088
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5089
	 * assume at least 3 events, when not running in a hypervisor:
5090
	 */
5091 5092 5093 5094 5095 5096
	if (version > 1) {
		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);

		x86_pmu.num_counters_fixed =
			max((int)edx.split.num_counters_fixed, assume);
	}
5097

5098
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5099 5100 5101 5102 5103 5104
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

5105
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5106
		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5107 5108
		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
	}
5109

5110 5111 5112
	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
		intel_pmu_arch_lbr_init();

5113 5114
	intel_ds_init();

5115 5116
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

5117 5118 5119 5120 5121 5122
	if (version >= 5) {
		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
		if (x86_pmu.intel_cap.anythread_deprecated)
			pr_cont(" AnyThread deprecated, ");
	}

5123 5124 5125 5126
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
5127
	case INTEL_FAM6_CORE_YONAH:
5128
		pr_cont("Core events, ");
5129
		name = "core";
5130 5131
		break;

5132
	case INTEL_FAM6_CORE2_MEROM:
5133
		x86_add_quirk(intel_clovertown_quirk);
5134
		fallthrough;
5135

5136 5137 5138
	case INTEL_FAM6_CORE2_MEROM_L:
	case INTEL_FAM6_CORE2_PENRYN:
	case INTEL_FAM6_CORE2_DUNNINGTON:
5139 5140 5141
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

5142 5143
		intel_pmu_lbr_init_core();

5144
		x86_pmu.event_constraints = intel_core2_event_constraints;
5145
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5146
		pr_cont("Core2 events, ");
5147
		name = "core2";
5148 5149
		break;

5150 5151 5152
	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_NEHALEM_EP:
	case INTEL_FAM6_NEHALEM_EX:
5153 5154
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5155 5156
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5157

5158 5159
		intel_pmu_lbr_init_nhm();

5160
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5161
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5162
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5163
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5164
		x86_pmu.limit_period = nhm_limit_period;
5165

5166
		mem_attr = nhm_mem_events_attrs;
5167

5168
		/* UOPS_ISSUED.STALLED_CYCLES */
5169 5170
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5171
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5172 5173
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5174

5175
		intel_pmu_pebs_data_source_nhm();
5176
		x86_add_quirk(intel_nehalem_quirk);
5177
		x86_pmu.pebs_no_tlb = 1;
5178
		extra_attr = nhm_format_attr;
5179

5180
		pr_cont("Nehalem events, ");
5181
		name = "nehalem";
5182
		break;
5183

5184 5185 5186 5187 5188
	case INTEL_FAM6_ATOM_BONNELL:
	case INTEL_FAM6_ATOM_BONNELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL:
	case INTEL_FAM6_ATOM_SALTWELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5189 5190 5191
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

5192 5193
		intel_pmu_lbr_init_atom();

5194
		x86_pmu.event_constraints = intel_gen_event_constraints;
5195
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5196
		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5197
		pr_cont("Atom events, ");
5198
		name = "bonnell";
5199 5200
		break;

5201
	case INTEL_FAM6_ATOM_SILVERMONT:
5202
	case INTEL_FAM6_ATOM_SILVERMONT_D:
5203
	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5204
	case INTEL_FAM6_ATOM_AIRMONT:
5205
	case INTEL_FAM6_ATOM_AIRMONT_MID:
5206 5207 5208 5209 5210
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

5211
		intel_pmu_lbr_init_slm();
5212 5213 5214 5215

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
5216
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5217
		td_attr = slm_events_attrs;
5218
		extra_attr = slm_format_attr;
5219
		pr_cont("Silvermont events, ");
5220
		name = "silvermont";
5221 5222
		break;

5223
	case INTEL_FAM6_ATOM_GOLDMONT:
5224
	case INTEL_FAM6_ATOM_GOLDMONT_D:
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 * :pp is identical to :ppp
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
5242
		x86_pmu.lbr_pt_coexist = true;
5243
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5244
		td_attr = glm_events_attrs;
5245
		extra_attr = slm_format_attr;
5246
		pr_cont("Goldmont events, ");
5247
		name = "goldmont";
5248 5249
		break;

5250
	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5268
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5269
		x86_pmu.get_event_constraints = glp_get_event_constraints;
5270
		td_attr = glm_events_attrs;
5271 5272
		/* Goldmont Plus has 4-wide pipeline */
		event_attr_td_total_slots_scale_glm.event_str = "4";
5273
		extra_attr = slm_format_attr;
5274
		pr_cont("Goldmont plus events, ");
5275
		name = "goldmont_plus";
5276 5277
		break;

5278
	case INTEL_FAM6_ATOM_TREMONT_D:
5279
	case INTEL_FAM6_ATOM_TREMONT:
5280
	case INTEL_FAM6_ATOM_TREMONT_L:
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_tnt_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5301
		td_attr = tnt_events_attrs;
5302 5303 5304 5305 5306
		extra_attr = slm_format_attr;
		pr_cont("Tremont events, ");
		name = "Tremont";
		break;

5307 5308 5309
	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_WESTMERE_EP:
	case INTEL_FAM6_WESTMERE_EX:
5310 5311
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5312 5313
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5314

5315 5316
		intel_pmu_lbr_init_nhm();

5317
		x86_pmu.event_constraints = intel_westmere_event_constraints;
5318
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5319
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5320
		x86_pmu.extra_regs = intel_westmere_extra_regs;
5321
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5322

5323
		mem_attr = nhm_mem_events_attrs;
5324

5325
		/* UOPS_ISSUED.STALLED_CYCLES */
5326 5327
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5328
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5329 5330
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5331

5332
		intel_pmu_pebs_data_source_nhm();
5333
		extra_attr = nhm_format_attr;
5334
		pr_cont("Westmere events, ");
5335
		name = "westmere";
5336
		break;
5337

5338 5339
	case INTEL_FAM6_SANDYBRIDGE:
	case INTEL_FAM6_SANDYBRIDGE_X:
5340
		x86_add_quirk(intel_sandybridge_quirk);
5341
		x86_add_quirk(intel_ht_bug);
5342 5343
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5344 5345
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
5346

5347
		intel_pmu_lbr_init_snb();
5348 5349

		x86_pmu.event_constraints = intel_snb_event_constraints;
5350
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5351
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5352
		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5353 5354 5355
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
5356 5357


5358
		/* all extra regs are per-cpu when HT is on */
5359 5360
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5361

5362
		td_attr  = snb_events_attrs;
5363
		mem_attr = snb_mem_events_attrs;
5364

5365
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5366 5367
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5368
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5369 5370
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5371

5372 5373
		extra_attr = nhm_format_attr;

5374
		pr_cont("SandyBridge events, ");
5375
		name = "sandybridge";
5376
		break;
5377

5378 5379
	case INTEL_FAM6_IVYBRIDGE:
	case INTEL_FAM6_IVYBRIDGE_X:
5380
		x86_add_quirk(intel_ht_bug);
5381 5382
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
5383 5384 5385
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

5386 5387 5388 5389 5390
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

5391
		x86_pmu.event_constraints = intel_ivb_event_constraints;
5392
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5393 5394
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5395
		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5396 5397 5398
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
5399
		/* all extra regs are per-cpu when HT is on */
5400 5401
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5402

5403
		td_attr  = snb_events_attrs;
5404
		mem_attr = snb_mem_events_attrs;
5405

5406 5407 5408 5409
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

5410 5411
		extra_attr = nhm_format_attr;

5412
		pr_cont("IvyBridge events, ");
5413
		name = "ivybridge";
5414 5415
		break;

5416

5417
	case INTEL_FAM6_HASWELL:
5418
	case INTEL_FAM6_HASWELL_X:
5419
	case INTEL_FAM6_HASWELL_L:
5420
	case INTEL_FAM6_HASWELL_G:
5421
		x86_add_quirk(intel_ht_bug);
5422
		x86_add_quirk(intel_pebs_isolation_quirk);
5423
		x86_pmu.late_ack = true;
5424 5425
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5426

5427
		intel_pmu_lbr_init_hsw();
5428 5429

		x86_pmu.event_constraints = intel_hsw_event_constraints;
5430
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5431
		x86_pmu.extra_regs = intel_snbep_extra_regs;
5432 5433
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5434
		/* all extra regs are per-cpu when HT is on */
5435 5436
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5437 5438 5439

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5440
		x86_pmu.lbr_double_abort = true;
5441 5442
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5443
		td_attr  = hsw_events_attrs;
5444 5445
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
5446
		pr_cont("Haswell events, ");
5447
		name = "haswell";
5448 5449
		break;

5450
	case INTEL_FAM6_BROADWELL:
5451
	case INTEL_FAM6_BROADWELL_D:
5452
	case INTEL_FAM6_BROADWELL_G:
5453
	case INTEL_FAM6_BROADWELL_X:
5454
		x86_add_quirk(intel_pebs_isolation_quirk);
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

5469
		intel_pmu_lbr_init_hsw();
5470 5471

		x86_pmu.event_constraints = intel_bdw_event_constraints;
5472
		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5473
		x86_pmu.extra_regs = intel_snbep_extra_regs;
5474 5475
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
5476
		/* all extra regs are per-cpu when HT is on */
5477 5478
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5479 5480 5481

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5482
		x86_pmu.limit_period = bdw_limit_period;
5483 5484
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5485
		td_attr  = hsw_events_attrs;
5486 5487
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
5488
		pr_cont("Broadwell events, ");
5489
		name = "broadwell";
5490 5491
		break;

5492
	case INTEL_FAM6_XEON_PHI_KNL:
P
Piotr Luc 已提交
5493
	case INTEL_FAM6_XEON_PHI_KNM:
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
		memcpy(hw_cache_event_ids,
		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs,
		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_knl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_knl_extra_regs;

		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5507
		extra_attr = slm_format_attr;
P
Piotr Luc 已提交
5508
		pr_cont("Knights Landing/Mill events, ");
5509
		name = "knights-landing";
5510 5511
		break;

5512 5513
	case INTEL_FAM6_SKYLAKE_X:
		pmem = true;
5514
		fallthrough;
5515
	case INTEL_FAM6_SKYLAKE_L:
5516
	case INTEL_FAM6_SKYLAKE:
5517
	case INTEL_FAM6_KABYLAKE_L:
5518
	case INTEL_FAM6_KABYLAKE:
5519 5520
	case INTEL_FAM6_COMETLAKE_L:
	case INTEL_FAM6_COMETLAKE:
5521
		x86_add_quirk(intel_pebs_isolation_quirk);
5522 5523 5524 5525 5526
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_skl();

5527 5528 5529 5530 5531 5532
		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
		event_attr_td_recovery_bubbles.event_str_noht =
			"event=0xd,umask=0x1,cmask=1";
		event_attr_td_recovery_bubbles.event_str_ht =
			"event=0xd,umask=0x1,cmask=1,any=1";

5533 5534 5535
		x86_pmu.event_constraints = intel_skl_event_constraints;
		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_skl_extra_regs;
5536 5537
		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
		x86_pmu.pebs_prec_dist = true;
5538 5539 5540 5541 5542 5543
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5544 5545
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5546
		extra_skl_attr = skl_format_attr;
5547
		td_attr  = hsw_events_attrs;
5548 5549
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
5550
		intel_pmu_pebs_data_source_skl(pmem);
5551 5552 5553 5554 5555 5556 5557 5558

		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
			x86_pmu.flags |= PMU_FL_TFA;
			x86_pmu.get_event_constraints = tfa_get_event_constraints;
			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
		}

5559
		pr_cont("Skylake events, ");
5560
		name = "skylake";
5561 5562
		break;

5563
	case INTEL_FAM6_ICELAKE_X:
5564
	case INTEL_FAM6_ICELAKE_D:
5565
		pmem = true;
5566
		fallthrough;
5567
	case INTEL_FAM6_ICELAKE_L:
5568
	case INTEL_FAM6_ICELAKE:
5569 5570
	case INTEL_FAM6_TIGERLAKE_L:
	case INTEL_FAM6_TIGERLAKE:
5571
	case INTEL_FAM6_ROCKETLAKE:
K
Kan Liang 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_icl_event_constraints;
		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_icl_extra_regs;
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = icl_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
5590
		extra_skl_attr = skl_format_attr;
5591
		mem_attr = icl_events_attrs;
5592
		td_attr = icl_td_events_attrs;
5593
		tsx_attr = icl_tsx_events_attrs;
5594
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
K
Kan Liang 已提交
5595
		x86_pmu.lbr_pt_coexist = true;
5596
		intel_pmu_pebs_data_source_skl(pmem);
5597
		x86_pmu.num_topdown_events = 4;
5598 5599
		x86_pmu.update_topdown_event = icl_update_topdown_event;
		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
K
Kan Liang 已提交
5600 5601 5602 5603
		pr_cont("Icelake events, ");
		name = "icelake";
		break;

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
	case INTEL_FAM6_SAPPHIRERAPIDS_X:
		pmem = true;
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		x86_pmu.event_constraints = intel_spr_event_constraints;
		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
		x86_pmu.extra_regs = intel_spr_extra_regs;
		x86_pmu.limit_period = spr_limit_period;
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.pebs_block = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = spr_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		extra_skl_attr = skl_format_attr;
		mem_attr = spr_events_attrs;
		td_attr = spr_td_events_attrs;
		tsx_attr = spr_tsx_events_attrs;
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
		x86_pmu.lbr_pt_coexist = true;
		intel_pmu_pebs_data_source_skl(pmem);
		x86_pmu.num_topdown_events = 8;
		x86_pmu.update_topdown_event = icl_update_topdown_event;
		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
		pr_cont("Sapphire Rapids events, ");
		name = "sapphire_rapids";
		break;

5641
	default:
5642 5643 5644 5645
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
5646
			name = "generic_arch_v1";
5647 5648 5649 5650 5651 5652 5653
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
5654
			name = "generic_arch_v2+";
5655 5656
			break;
		}
5657
	}
5658

5659
	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5660

5661

5662 5663 5664
	group_events_td.attrs  = td_attr;
	group_events_mem.attrs = mem_attr;
	group_events_tsx.attrs = tsx_attr;
5665
	group_format_extra.attrs = extra_attr;
5666
	group_format_extra_skl.attrs = extra_skl_attr;
5667 5668

	x86_pmu.attr_update = attr_update;
5669

5670 5671 5672 5673 5674
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
5675
	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

5686 5687 5688 5689
	/* AnyThread may be deprecated on arch perfmon v5 or later */
	if (x86_pmu.intel_cap.anythread_deprecated)
		x86_pmu.format_attrs = intel_arch_formats_attr;

5690 5691 5692 5693 5694 5695
	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
5696 5697 5698 5699 5700 5701 5702 5703 5704
			/*
			 * Don't extend the topdown slots and metrics
			 * events to the generic counters.
			 */
			if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
				c->weight = hweight64(c->idxmsk64);
				continue;
			}

5705 5706 5707
			if (c->cmask == FIXED_EVENT_FLAGS
			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5708
			}
5709
			c->idxmsk64 &=
5710
				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5711
			c->weight = hweight64(c->idxmsk64);
5712 5713 5714
		}
	}

5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

5729
	if (x86_pmu.lbr_nr)
5730
		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5731

5732 5733 5734 5735 5736 5737 5738
	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (x86_pmu.extra_regs) {
		for (er = x86_pmu.extra_regs; er->msr; er++) {
5739
			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5740 5741 5742 5743 5744 5745
			/* Disable LBR select mapping */
			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
				x86_pmu.lbr_sel_map = NULL;
		}
	}

5746 5747
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
5748
		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5749 5750 5751 5752
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

5753 5754 5755
	if (x86_pmu.intel_cap.perf_metrics)
		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;

5756 5757
	return 0;
}
5758 5759 5760 5761 5762 5763 5764 5765 5766

/*
 * HT bug: phase 2 init
 * Called once we have valid topology information to check
 * whether or not HT is enabled
 * If HT is off, then we disable the workaround
 */
static __init int fixup_ht_bug(void)
{
5767
	int c;
5768 5769 5770 5771 5772 5773
	/*
	 * problem not present on this CPU model, nothing to do
	 */
	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
		return 0;

5774
	if (topology_max_smt_threads() > 1) {
5775 5776 5777 5778
		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
		return 0;
	}

5779 5780 5781
	cpus_read_lock();

	hardlockup_detector_perf_stop();
5782 5783 5784 5785

	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);

	x86_pmu.start_scheduling = NULL;
5786
	x86_pmu.commit_scheduling = NULL;
5787 5788
	x86_pmu.stop_scheduling = NULL;

5789
	hardlockup_detector_perf_restart();
5790

5791
	for_each_online_cpu(c)
5792
		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5793

5794
	cpus_read_unlock();
5795 5796 5797 5798
	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
	return 0;
}
subsys_initcall(fixup_ht_bug)