i915_guc_submission.c 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
#include "i915_drv.h"
26
#include "intel_uc.h"
27

28 29
#include <trace/events/dma_fence.h>

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32
 *
33 34 35 36 37 38
 * GuC client:
 * A i915_guc_client refers to a submission path through GuC. Currently, there
 * is only one of these (the execbuf_client) and this one is charged with all
 * submissions to the GuC. This struct is the owner of a doorbell, a process
 * descriptor and a workqueue (all of them inside a single gem object that
 * contains all required pages for these elements).
39
 *
40 41 42 43 44 45 46 47 48 49 50 51
 * GuC context descriptor:
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
 * guc_context_desc (via the client's context_index), so effectively only
 * one guc_context_desc gets used. This context descriptor lets the GuC know
 * about the doorbell, workqueue and process descriptor. Theoretically, it also
 * lets the GuC know about our HW contexts (Context ID, etc...), but we actually
 * employ a kind of submission where the GuC uses the LRCA sent via the work
 * item instead (the single guc_context_desc associated to execbuf client
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
52 53 54 55 56 57 58 59
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
60
 * See intel_guc_send()
61 62 63 64 65 66 67 68 69 70 71
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
72
 * See guc_wq_item_append()
73
 *
74 75 76 77 78 79 80
 * ADS:
 * The Additional Data Struct (ADS) has pointers for different buffers used by
 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
 * scheduling policies (guc_policies), a structure describing a collection of
 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
 * its internal state for sleep.
 *
81 82
 */

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
static inline bool is_high_priority(struct i915_guc_client* client)
{
	return client->priority <= GUC_CTX_PRIORITY_HIGH;
}

static int __reserve_doorbell(struct i915_guc_client *client)
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
	end = GUC_NUM_DOORBELLS/2;
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

	id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end);
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
			 client->ctx_index, yesno(is_high_priority(client)),
			 id);
	return 0;
}

static void __unreserve_doorbell(struct i915_guc_client *client)
{
	GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

128 129 130 131
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

132
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 ctx_index)
133
{
134 135
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136
		ctx_index
137
	};
138

139
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 141
}

142
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 ctx_index)
143
{
144 145
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146
		ctx_index
147
	};
148

149
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 151
}

152 153 154 155 156 157 158
static struct guc_context_desc *__get_context_desc(struct i915_guc_client *client)
{
	struct guc_context_desc *base = client->guc->ctx_pool_vaddr;

	return &base[client->ctx_index];
}

159 160 161 162 163 164 165
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

166
static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167
{
168
	struct guc_context_desc *desc;
169

170
	/* Update the GuC's idea of the doorbell ID */
171 172
	desc = __get_context_desc(client);
	desc->db_id = new_id;
173
}
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
{
	return client->vaddr + client->doorbell_offset;
}

static bool has_doorbell(struct i915_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

static int __create_doorbell(struct i915_guc_client *client)
{
	struct guc_doorbell_info *doorbell;
	int err;

	doorbell = __get_doorbell(client);
194
	doorbell->db_status = GUC_DOORBELL_ENABLED;
195
	doorbell->cookie = client->doorbell_cookie;
196 197 198 199 200 201 202

	err = __guc_allocate_doorbell(client->guc, client->ctx_index);
	if (err) {
		doorbell->db_status = GUC_DOORBELL_DISABLED;
		doorbell->cookie = 0;
	}
	return err;
203 204
}

205
static int __destroy_doorbell(struct i915_guc_client *client)
206
{
207
	struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
208
	struct guc_doorbell_info *doorbell;
209 210 211
	u16 db_id = client->doorbell_id;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
212

213 214 215 216
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;
	doorbell->cookie = 0;

217 218 219 220 221 222
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
	 * release the doorbell */
	if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");

223
	return __guc_deallocate_doorbell(client->guc, client->ctx_index);
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static int create_doorbell(struct i915_guc_client *client)
{
	int ret;

	ret = __reserve_doorbell(client);
	if (ret)
		return ret;

	__update_doorbell_desc(client, client->doorbell_id);

	ret = __create_doorbell(client);
	if (ret)
		goto err;

	return 0;

err:
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
	__unreserve_doorbell(client);
	return ret;
}

248
static int destroy_doorbell(struct i915_guc_client *client)
249
{
250
	int err;
251

252 253 254 255
	GEM_BUG_ON(!has_doorbell(client));

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
256

257 258 259
	err = __destroy_doorbell(client);
	if (err)
		return err;
260

261
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
262

263 264 265 266
	__unreserve_doorbell(client);

	return 0;
}
267

268
static unsigned long __select_cacheline(struct intel_guc* guc)
269
{
270
	unsigned long offset;
271 272 273 274 275

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
276
	guc->db_cacheline += cache_line_size();
277

278 279
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cache_line_size());
280 281 282 283 284 285
	return offset;
}

/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
286
static void guc_proc_desc_init(struct intel_guc *guc,
287 288 289 290
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

291
	desc = client->vaddr + client->proc_desc_offset;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

	memset(desc, 0, sizeof(*desc));

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

	desc->context_id = client->ctx_index;
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
 * Initialise/clear the context descriptor shared with the GuC firmware.
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
317
static void guc_ctx_desc_init(struct intel_guc *guc,
318 319
			      struct i915_guc_client *client)
{
320
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
321
	struct intel_engine_cs *engine;
322
	struct i915_gem_context *ctx = client->owner;
323
	struct guc_context_desc *desc;
324
	unsigned int tmp;
325
	u32 gfx_addr;
326

327 328
	desc = __get_context_desc(client);
	memset(desc, 0, sizeof(*desc));
329

330 331 332 333
	desc->attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
	desc->context_id = client->ctx_index;
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
334

335
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
336
		struct intel_context *ce = &ctx->engine[engine->id];
337
		uint32_t guc_engine_id = engine->guc_id;
338
		struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
339 340 341 342 343 344 345 346

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
347
		if (!ce->state)
348 349
			break;	/* XXX: continue? */

350 351 352 353 354 355 356
		/*
		 * XXX: When this is a GUC_CTX_DESC_ATTR_KERNEL client (proxy
		 * submission or, in other words, not using a direct submission
		 * model) the KMD's LRCA is not used for any work submission.
		 * Instead, the GuC uses the LRCA of the user mode context (see
		 * guc_wq_item_append below).
		 */
357
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
358 359

		/* The state page is after PPHWSP */
360
		lrc->ring_lrca =
361
			guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
362
		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
363
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
364

365
		lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
366 367
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
368 369
		lrc->ring_current_tail_pointer_value = 0;

370
		desc->engines_used |= (1 << guc_engine_id);
371 372
	}

373
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
374 375
			client->engines, desc->engines_used);
	WARN_ON(desc->engines_used == 0);
376

377
	/*
378 379
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
380
	 */
381
	gfx_addr = guc_ggtt_offset(client->vma);
382
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
383
				client->doorbell_offset;
384 385 386 387 388
	desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
	desc->wq_addr = gfx_addr + client->wq_offset;
	desc->wq_size = client->wq_size;
389

390
	desc->desc_private = (uintptr_t)client;
391 392
}

393
static void guc_ctx_desc_fini(struct intel_guc *guc,
394 395
			      struct i915_guc_client *client)
{
396
	struct guc_context_desc *desc;
397

398 399
	desc = __get_context_desc(client);
	memset(desc, 0, sizeof(*desc));
400 401
}

402
/**
403
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
404 405 406 407 408 409 410
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
411 412
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
413
 *
414
 * Reservation allows the caller to determine in advance that space
415 416 417
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
418
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
419
{
420
	const size_t wqi_size = sizeof(struct guc_wq_item);
421 422 423
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
	struct guc_process_desc *desc = client->vaddr +
					client->proc_desc_offset;
424
	u32 freespace;
425
	int ret;
426

427
	spin_lock_irq(&client->wq_lock);
428 429
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
	freespace -= client->wq_rsvd;
430
	if (likely(freespace >= wqi_size)) {
431
		client->wq_rsvd += wqi_size;
432 433
		ret = 0;
	} else {
434
		client->no_wq_space++;
435 436
		ret = -EAGAIN;
	}
437
	spin_unlock_irq(&client->wq_lock);
438

439
	return ret;
440 441
}

442 443 444 445 446 447 448 449 450
static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
{
	unsigned long flags;

	spin_lock_irqsave(&client->wq_lock, flags);
	client->wq_rsvd += size;
	spin_unlock_irqrestore(&client->wq_lock, flags);
}

451 452
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
453
	const int wqi_size = sizeof(struct guc_wq_item);
454
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
455

456
	GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
457
	guc_client_update_wq_rsvd(client, -wqi_size);
458 459
}

460
/* Construct a Work Item and append it to the GuC's Work Queue */
461
static void guc_wq_item_append(struct i915_guc_client *client,
462
			       struct drm_i915_gem_request *rq)
463
{
464 465 466
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
467
	struct intel_engine_cs *engine = rq->engine;
468
	struct guc_process_desc *desc;
469
	struct guc_wq_item *wqi;
470
	u32 freespace, tail, wq_off;
471

472
	desc = client->vaddr + client->proc_desc_offset;
473

474
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
475
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
476 477 478 479 480 481 482
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
	GEM_BUG_ON(tail & 7);
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
483 484 485 486 487 488 489 490

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
491
	BUILD_BUG_ON(wqi_size != 16);
492
	GEM_BUG_ON(client->wq_rsvd < wqi_size);
493

494
	/* postincrement WQ tail for next time */
495
	wq_off = client->wq_tail;
496
	GEM_BUG_ON(wq_off & (wqi_size - 1));
497 498 499
	client->wq_tail += wqi_size;
	client->wq_tail &= client->wq_size - 1;
	client->wq_rsvd -= wqi_size;
500 501

	/* WQ starts from the page after doorbell / process_desc */
502
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
503

504
	/* Now fill in the 4-word work queue item */
505
	wqi->header = WQ_TYPE_INORDER |
506
			(wqi_len << WQ_LEN_SHIFT) |
507
			(engine->guc_id << WQ_TARGET_SHIFT) |
508 509 510
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
511
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
512

513
	wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
514
	wqi->fence_id = rq->global_seqno;
515 516
}

517 518 519 520 521 522 523 524 525 526 527
static void guc_reset_wq(struct i915_guc_client *client)
{
	struct guc_process_desc *desc = client->vaddr +
					client->proc_desc_offset;

	desc->head = 0;
	desc->tail = 0;

	client->wq_tail = 0;
}

528
static int guc_ring_doorbell(struct i915_guc_client *client)
529 530 531 532 533 534
{
	struct guc_process_desc *desc;
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

535
	desc = client->vaddr + client->proc_desc_offset;
536 537

	/* Update the tail so it is visible to GuC */
538
	desc->tail = client->wq_tail;
539 540 541

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
542
	db_cmp.cookie = client->doorbell_cookie;
543 544 545

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
546
	db_exc.cookie = client->doorbell_cookie + 1;
547 548 549 550
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
551
	db = (union guc_doorbell_qw *)__get_doorbell(client);
552 553 554 555 556 557 558 559 560

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
561
			client->doorbell_cookie = db_exc.cookie;
562 563 564 565 566 567 568 569
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

570 571
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
572 573 574 575 576 577 578 579 580 581 582

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

583
/**
584
 * __i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
585
 * @rq:		request associated with the commands
586
 *
587 588 589
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
590 591
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
592 593
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
594 595 596
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
597
 */
598
static void __i915_guc_submit(struct drm_i915_gem_request *rq)
599
{
600
	struct drm_i915_private *dev_priv = rq->i915;
601 602
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
603 604
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
605
	unsigned long flags;
606
	int b_ret;
607

608 609 610 611
	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

612
	spin_lock_irqsave(&client->wq_lock, flags);
613 614

	guc_wq_item_append(client, rq);
615
	b_ret = guc_ring_doorbell(client);
616

617
	client->submissions[engine_id] += 1;
618 619
	client->retcode = b_ret;
	if (b_ret)
620
		client->b_fail += 1;
621

622
	guc->submissions[engine_id] += 1;
623
	guc->last_seqno[engine_id] = rq->global_seqno;
624

625
	spin_unlock_irqrestore(&client->wq_lock, flags);
626 627
}

628 629
static void i915_guc_submit(struct drm_i915_gem_request *rq)
{
630
	__i915_gem_request_submit(rq);
631 632 633
	__i915_guc_submit(rq);
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
	/* If we use dma_fence_enable_sw_signaling() directly, lockdep
	 * detects an ordering issue between the fence lockclass and the
	 * global_timeline. This circular dependency can only occur via 2
	 * different fences (but same fence lockclass), so we use the nesting
	 * annotation here to prevent the warn, equivalent to the nesting
	 * inside i915_gem_request_submit() for when we also enable the
	 * signaler.
	 */

	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &rq->fence.flags))
		return;

	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
	trace_dma_fence_enable_signal(&rq->fence);

	spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
	intel_engine_enable_signaling(rq);
	spin_unlock(&rq->lock);
}

static bool i915_guc_dequeue(struct intel_engine_cs *engine)
{
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *last = port[0].request;
	struct rb_node *rb;
	bool submit = false;

664 665 666 667 668 669 670 671 672 673 674 675
	/* After execlist_first is updated, the tasklet will be rescheduled.
	 *
	 * If we are currently running (inside the tasklet) and a third
	 * party queues a request and so updates engine->execlist_first under
	 * the spinlock (which we have elided), it will atomically set the
	 * TASKLET_SCHED flag causing the us to be re-executed and pick up
	 * the change in state (the update to TASKLET_SCHED incurs a memory
	 * barrier making this cross-cpu checking safe).
	 */
	if (!READ_ONCE(engine->execlist_first))
		return false;

676
	spin_lock_irq(&engine->timeline->lock);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *rq =
			rb_entry(rb, typeof(*rq), priotree.node);

		if (last && rq->ctx != last->ctx) {
			if (port != engine->execlist_port)
				break;

			i915_gem_request_assign(&port->request, last);
			nested_enable_signaling(last);
			port++;
		}

		rb = rb_next(rb);
		rb_erase(&rq->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&rq->priotree.node);
		rq->priotree.priority = INT_MAX;

		i915_guc_submit(rq);
697
		trace_i915_gem_request_in(rq, port - engine->execlist_port);
698 699 700 701 702 703 704 705
		last = rq;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
		nested_enable_signaling(last);
		engine->execlist_first = rb;
	}
706
	spin_unlock_irq(&engine->timeline->lock);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

	return submit;
}

static void i915_guc_irq_handler(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq;
	bool submit;

	do {
		rq = port[0].request;
		while (rq && i915_gem_request_completed(rq)) {
			trace_i915_gem_request_out(rq);
			i915_gem_request_put(rq);
			port[0].request = port[1].request;
			port[1].request = NULL;
			rq = port[0].request;
		}

		submit = false;
		if (!port[1].request)
			submit = i915_guc_dequeue(engine);
	} while (submit);
}

734 735 736 737 738 739
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

740
/**
741
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
742 743
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
744
 *
745 746 747 748 749
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
750
 *
751
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
752
 */
753
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
754
{
755
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
756
	struct drm_i915_gem_object *obj;
757 758
	struct i915_vma *vma;
	int ret;
759

760
	obj = i915_gem_object_create(dev_priv, size);
761
	if (IS_ERR(obj))
762
		return ERR_CAST(obj);
763

764
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
765 766
	if (IS_ERR(vma))
		goto err;
767

768 769 770 771 772
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
773 774
	}

775 776 777 778 779
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
780 781
}

782
/* Check that a doorbell register is in the expected state */
783
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
784 785
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
786 787 788 789 790 791 792
	u32 drbregl;
	bool valid;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);

	drbregl = I915_READ(GEN8_DRBREGL(db_id));
	valid = drbregl & GEN8_DRB_VALID;
793

794
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
795 796
		return true;

797 798
	DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
			 db_id, drbregl, yesno(valid));
799 800 801 802

	return false;
}

803 804 805 806 807 808 809 810 811
/*
 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
 * doorbell to the rightful owner.
 */
static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
{
	int err;

812 813
	__update_doorbell_desc(client, db_id);
	err = __create_doorbell(client);
814 815 816 817 818 819
	if (!err)
		err = __destroy_doorbell(client);

	return err;
}

820
/*
821 822 823 824 825
 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
 * HW is (re)initialised. For that end, we might have to borrow the first
 * client. Also, tell GuC about all the doorbells in use by all clients.
 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
 * sync (e.g. we can reset the GuC, but not the doorbel HW).
826
 */
827
static int guc_init_doorbell_hw(struct intel_guc *guc)
828 829
{
	struct i915_guc_client *client = guc->execbuf_client;
830 831 832
	bool recreate_first_client = false;
	u16 db_id;
	int ret;
833

834 835 836
	/* For unused doorbells, make sure they are disabled */
	for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
		if (doorbell_ok(guc, db_id))
837 838
			continue;

839 840 841 842 843 844 845 846
		if (has_doorbell(client)) {
			/* Borrow execbuf_client (we will recreate it later) */
			destroy_doorbell(client);
			recreate_first_client = true;
		}

		ret = __reset_doorbell(client, db_id);
		WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
847 848
	}

849 850 851 852 853 854
	if (recreate_first_client) {
		ret = __reserve_doorbell(client);
		if (unlikely(ret)) {
			DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
			return ret;
		}
855

856 857
		__update_doorbell_desc(client, client->doorbell_id);
	}
858

859 860 861 862 863 864 865 866 867 868 869
	/* Now for every client (and not only execbuf_client) make sure their
	 * doorbells are known by the GuC */
	//for (client = client_list; client != NULL; client = client->next)
	{
		ret = __create_doorbell(client);
		if (ret) {
			DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
				client->ctx_index, ret);
			return ret;
		}
	}
870

871 872 873
	/* Read back & verify all (used & unused) doorbell registers */
	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		WARN_ON(!doorbell_ok(guc, db_id));
874 875

	return 0;
876 877
}

878 879
/**
 * guc_client_alloc() - Allocate an i915_guc_client
880
 * @dev_priv:	driver private data structure
881
 * @engines:	The set of engines to enable for this client
882 883 884 885
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
886 887
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
888
 *
889
 * Return:	An i915_guc_client object if success, else NULL.
890
 */
891 892
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
893
		 uint32_t engines,
894 895
		 uint32_t priority,
		 struct i915_gem_context *ctx)
896 897 898
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
899
	struct i915_vma *vma;
900
	void *vaddr;
901
	int ret;
902 903 904

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
905
		return ERR_PTR(-ENOMEM);
906 907

	client->guc = guc;
908
	client->owner = ctx;
909 910
	client->engines = engines;
	client->priority = priority;
911 912 913 914
	client->doorbell_id = GUC_DOORBELL_INVALID;
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;
	spin_lock_init(&client->wq_lock);
915

916 917 918 919 920 921
	ret = ida_simple_get(&guc->ctx_ids, 0, GUC_MAX_GPU_CONTEXTS,
				GFP_KERNEL);
	if (ret < 0)
		goto err_client;

	client->ctx_index = ret;
922 923

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
924
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
925 926 927 928
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
929

930
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
931
	client->vma = vma;
932 933

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
934 935 936 937
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
938
	client->vaddr = vaddr;
939

940
	client->doorbell_offset = __select_cacheline(guc);
941 942 943 944 945 946 947 948 949 950 951

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

952 953
	guc_proc_desc_init(guc, client);
	guc_ctx_desc_init(guc, client);
954

955 956 957
	ret = create_doorbell(client);
	if (ret)
		goto err_vaddr;
958

959
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
960 961 962
			 priority, client, client->engines, client->ctx_index);
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
963 964

	return client;
965 966 967

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
968 969 970 971 972 973 974
err_vma:
	i915_vma_unpin_and_release(&client->vma);
err_id:
	ida_simple_remove(&guc->ctx_ids, client->ctx_index);
err_client:
	kfree(client);
	return ERR_PTR(ret);
975 976
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void guc_client_free(struct i915_guc_client *client)
{
	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

	/* FIXME: in many cases, by the time we get here the GuC has been
	 * reset, so we cannot destroy the doorbell properly. Ignore the
	 * error message for now */
	destroy_doorbell(client);
	guc_ctx_desc_fini(client->guc, client);
	i915_gem_object_unpin_map(client->vma->obj);
	i915_vma_unpin_and_release(&client->vma);
	ida_simple_remove(&client->guc->ctx_ids, client->ctx_index);
	kfree(client);
}

995
static void guc_policies_init(struct guc_policies *policies)
996 997 998 999 1000 1001 1002 1003
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1004
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1017
static int guc_ads_create(struct intel_guc *guc)
1018 1019
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1020
	struct i915_vma *vma;
1021 1022
	struct page *page;
	/* The ads obj includes the struct itself and buffers passed to GuC */
1023 1024 1025 1026 1027 1028 1029 1030 1031
	struct {
		struct guc_ads ads;
		struct guc_policies policies;
		struct guc_mmio_reg_state reg_state;
		u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
	} __packed *blob;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 base;
1032

1033
	GEM_BUG_ON(guc->ads_vma);
1034

1035 1036 1037 1038 1039
	vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	guc->ads_vma = vma;
1040

1041
	page = i915_vma_first_page(vma);
1042
	blob = kmap(page);
1043

1044
	/* GuC scheduling policies */
1045
	guc_policies_init(&blob->policies);
1046

1047
	/* MMIO reg state */
1048
	for_each_engine(engine, dev_priv, id) {
1049
		blob->reg_state.mmio_white_list[engine->guc_id].mmio_start =
1050
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1051 1052

		/* Nothing to be saved or restored for now. */
1053
		blob->reg_state.mmio_white_list[engine->guc_id].count = 0;
1054 1055
	}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
	blob->ads.golden_context_lrca =
		dev_priv->engine[RCS]->status_page.ggtt_offset;

	for_each_engine(engine, dev_priv, id)
		blob->ads.eng_state_size[engine->guc_id] =
			intel_lr_context_size(engine);
1069

1070 1071 1072 1073
	base = guc_ggtt_offset(vma);
	blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
	blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
	blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1074

1075
	kunmap(page);
1076 1077 1078 1079

	return 0;
}

1080
static void guc_ads_destroy(struct intel_guc *guc)
1081 1082
{
	i915_vma_unpin_and_release(&guc->ads_vma);
1083 1084
}

1085
/*
1086 1087
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1088
 */
1089
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1090
{
1091 1092 1093
	const size_t ctxsize = sizeof(struct guc_context_desc);
	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1094
	struct intel_guc *guc = &dev_priv->guc;
1095
	struct i915_vma *vma;
1096
	void *vaddr;
1097
	int ret;
1098

1099
	if (guc->ctx_pool)
1100
		return 0;
1101

1102
	vma = intel_guc_allocate_vma(guc, gemsize);
1103 1104
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1105

1106 1107
	guc->ctx_pool = vma;

1108 1109 1110 1111 1112
	vaddr = i915_gem_object_pin_map(guc->ctx_pool->obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
1113 1114 1115

	guc->ctx_pool_vaddr = vaddr;

1116 1117 1118 1119
	ret = intel_guc_log_create(guc);
	if (ret < 0)
		goto err_vaddr;

1120
	ret = guc_ads_create(guc);
1121 1122 1123
	if (ret < 0)
		goto err_log;

1124
	ida_init(&guc->ctx_ids);
1125

1126
	return 0;
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
err_log:
	intel_guc_log_destroy(guc);
err_vaddr:
	i915_gem_object_unpin_map(guc->ctx_pool->obj);
err_vma:
	i915_vma_unpin_and_release(&guc->ctx_pool);
	return ret;
}

void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
{
	struct intel_guc *guc = &dev_priv->guc;

	ida_destroy(&guc->ctx_ids);
1142
	guc_ads_destroy(guc);
1143 1144 1145
	intel_guc_log_destroy(guc);
	i915_gem_object_unpin_map(guc->ctx_pool->obj);
	i915_vma_unpin_and_release(&guc->ctx_pool);
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/* tell all command streamers to forward interrupts (but not vblank) to GuC */
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
	dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1187
	dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1188 1189
}

1190
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1191 1192
{
	struct intel_guc *guc = &dev_priv->guc;
1193
	struct i915_guc_client *client = guc->execbuf_client;
1194
	struct intel_engine_cs *engine;
1195
	enum intel_engine_id id;
1196
	int err;
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	if (!client) {
		client = guc_client_alloc(dev_priv,
					  INTEL_INFO(dev_priv)->ring_mask,
					  GUC_CTX_PRIORITY_KMD_NORMAL,
					  dev_priv->kernel_context);
		if (IS_ERR(client)) {
			DRM_ERROR("Failed to create GuC client for execbuf!\n");
			return PTR_ERR(client);
		}

		guc->execbuf_client = client;
	}
1210

1211 1212
	err = intel_guc_sample_forcewake(guc);
	if (err)
1213
		goto err_execbuf_client;
1214 1215

	guc_reset_wq(client);
1216

1217 1218
	err = guc_init_doorbell_hw(guc);
	if (err)
1219
		goto err_execbuf_client;
A
Alex Dai 已提交
1220

1221
	/* Take over from manual control of ELSP (execlists) */
1222 1223 1224 1225 1226
	guc_interrupts_capture(dev_priv);

	for_each_engine(engine, dev_priv, id) {
		const int wqi_size = sizeof(struct guc_wq_item);
		struct drm_i915_gem_request *rq;
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236
		/* The tasklet was initialised by execlists, and may be in
		 * a state of flux (across a reset) and so we just want to
		 * take over the callback without changing any other state
		 * in the tasklet.
		 */
		engine->irq_tasklet.func = i915_guc_irq_handler;
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

		/* Replay the current set of previously submitted requests */
1237
		spin_lock_irq(&engine->timeline->lock);
1238
		list_for_each_entry(rq, &engine->timeline->requests, link) {
1239
			guc_client_update_wq_rsvd(client, wqi_size);
1240
			__i915_guc_submit(rq);
1241
		}
1242
		spin_unlock_irq(&engine->timeline->lock);
1243 1244
	}

1245
	return 0;
1246 1247 1248 1249 1250

err_execbuf_client:
	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
	return err;
1251 1252
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route all GT interrupts to the host */
	I915_WRITE(GUC_BCS_RCS_IER, 0);
	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
	I915_WRITE(GUC_WD_VECS_IER, 0);
1272

1273
	dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1274
	dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1275 1276
}

1277
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1278 1279 1280
{
	struct intel_guc *guc = &dev_priv->guc;

1281 1282
	guc_interrupts_release(dev_priv);

1283
	/* Revert back to manual ELSP submission */
1284
	intel_engines_reset_default_submission(dev_priv);
1285 1286 1287

	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
1288 1289
}

1290 1291
/**
 * intel_guc_suspend() - notify GuC entering suspend state
1292
 * @dev_priv:	i915 device private
1293
 */
1294
int intel_guc_suspend(struct drm_i915_private *dev_priv)
1295 1296
{
	struct intel_guc *guc = &dev_priv->guc;
1297
	struct i915_gem_context *ctx;
1298 1299
	u32 data[3];

1300
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1301 1302
		return 0;

1303 1304
	gen9_disable_guc_interrupts(dev_priv);

1305
	ctx = dev_priv->kernel_context;
1306

1307
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1308 1309 1310
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1311
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1312

1313
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1314 1315 1316 1317
}

/**
 * intel_guc_resume() - notify GuC resuming from suspend state
1318
 * @dev_priv:	i915 device private
1319
 */
1320
int intel_guc_resume(struct drm_i915_private *dev_priv)
1321 1322
{
	struct intel_guc *guc = &dev_priv->guc;
1323
	struct i915_gem_context *ctx;
1324 1325
	u32 data[3];

1326
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1327 1328
		return 0;

1329 1330 1331
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1332
	ctx = dev_priv->kernel_context;
1333

1334
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1335 1336
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1337
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1338

1339
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1340
}